ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 29	Information Theory and Coding
Solutions to Homework 12	Dec. 15, 2015

Problem 1.

(a) Suppose **x** and **x'** are two codewords in C. Then for $\forall i = 0, 1, \dots, m-1$,

$$x_0 + x_1 \alpha_i + \dots + x_{n-1} \alpha_i^{n-1} = 0$$

$$x'_0 + x'_1 \alpha_i + \dots + x'_{n-1} \alpha_i^{n-1} = 0$$

Therefore,

$$(x_0 + x'_0) + (x_1 + x'_1)\alpha_i + \dots + (x_{n-1} + x'_{n-1})\alpha_i^{n-1} = 0$$
 for $\forall i = 0, 1, \dots, m-1$.

which shows $\mathbf{x} + \mathbf{x}'$ is also a codeword.

(b) $x(D) = x_0 + x_1D + \dots + x_{n-1}D^{n-1}$ is a polynomial of degree (at most) n-1 and (x_1, \dots, x_{n-1}) is a codeword if $\alpha_0, \alpha_1, \dots, \alpha_{m-1}$ are *m* of its roots. This means

$$x(D) = (D - \alpha_0)(D - \alpha_1)\dots(D - \alpha_{m-1})h(D) = g(D)h(D)$$

for some h(D). Note that h(D) can have degree (at most) n - m - 1. On the other side, there is a one-to-one correspondence between the codewords of C and degree n - 1 polynomials. Since g(D) is fixed for all codewords, a polynomial x(D) corresponding to a codeword \mathbf{x} is determined by choosing the coefficients of $h(D) = h_0 + h_1D + \cdots + h_{n-m-1}D^{n-m-1}$. Since $h_j \in \mathcal{X}$ for $j = 0, 1, \ldots, n - m - 1$ we have q^{n-m} different h(D)s and, thus, q^{n-m} codewords.

- (c) For every column vector $\mathbf{u} = [u_0, u_1, \dots, u_{m-1}]^T$, $A\mathbf{u} = [u(1), u(\beta), \dots, u(\beta^{n-1})]^T$. Consequently, $\mathbf{u}A = \mathbf{0}$ means u(D) has n roots which is impossible (since it is a polynomial of degree m - 1 < n).
- (d) Using the same reasoning as in (c) one can verify that $\mathbf{x} = (x_1, \ldots, x_n)$ is a codeword iff $\mathbf{x}A = \mathbf{0}$. This means A is the parity-check matrix of the code \mathcal{C} . Since the code is linear, using Problem 4 of Homework 11 we know that has minimum distance d iff every d 1 rows of H are linearly independent and some d rows are linearly dependent. That A has rank m implies there are no m linearly dependent rows thus $d \ge m + 1$. On the other side, we know from the Singleton bound that a code with q^{n-m} codewords and block-length n has minimum distance $d \le m + 1$. Thus we conclude that d = m + 1.

PROBLEM 2.

(a) For every $0 \le p \le 1$, define $\overline{p} := 1 - p$. We have:

$$h_2(\overline{p}) = -\overline{p}\log\overline{p} - p\log p = -p\log p - \overline{p}\log\overline{p} = h_2(p).$$
(1)

On the other hand, it is easy to check that for every $0 \le p', p'' \le 1$, we have:

$$\overline{p'} * p'' = p' * \overline{p''} = \overline{p' * p''}$$
 and $\overline{p'} * \overline{p''} = p' * p''.$

Now (1) implies that

$$h_2(\overline{p'} * p'') = h_2(p' * \overline{p''}) = h_2(\overline{p'} * \overline{p''}) = h_2(p' * p'').$$
(2)

Let $p' = \mathbb{P}[X_1 = 1]$ and $p'' = \mathbb{P}[X_2 = 1]$. We have the following:

- $\mathbb{P}[X_1 \oplus X_2 = 1] = \mathbb{P}[X_1 = 1]\mathbb{P}[X_2 = 0] + \mathbb{P}[X_1 = 0]\mathbb{P}[X_2 = 1] = p'\overline{p''} + \overline{p'}p'' = p'$ p' * p''. Therefore, $H(X_1 \oplus X_2) = h_2(p' * p'')$.
- Since $H(X_1) = h_2(p_1)$, then we have either $p' = p_1$ or $p' = 1 p_1$. I.e., we have $p_1 = p' \text{ or } p_1 = 1 - p' = \overline{p'}.$
- Since $H(X_2) = h_2(p_2)$, then we have either $p'' = p_2$ or $p'' = 1 p_2$. I.e., we have $p_2 = p''$ or $p_2 = 1 - p'' = \overline{p''}$.

Now (2) implies that $H(X_1 \oplus X_2) = h_2(p' * p'') = h_2(p_1 * p_2)$.

(b) We have $H(X_1|Y) = \sum_{y \in \mathcal{Y}} H(X_1|Y=y) \mathbb{P}_Y(y) = \sum_{y \in \mathcal{Y}} h_2(p_1(y))q(y)$. Now for every $y \in \mathcal{Y}$, X_1 and X_2 are independent conditioned on Y = y. Moreover,

 $H(X_1|Y = y) = h_2(p_1(y))$ and $H(X_2|Y = y) = H(X_2) = h_2(p_2)$ since X_2 and Y are independent. Therefore, part (a) implies that $H(X_1 \oplus X_2 | Y = y) = h_2(p_1(y) * p_2)$.

We conclude that

$$H(X_1 \oplus X_2|Y) = \sum_{y \in \mathcal{Y}} H(X_1 \oplus X_2|Y=y) \mathbb{P}_Y(y)$$
$$= \sum_{y \in \mathcal{Y}} h_2(p_1(y) * p_2)q(y) = \sum_{y \in \mathcal{Y}} h_2(p_2 * p_1(y))q(y)$$

(c) Note that $p_2 * p = p(1 - p_2) + p_2(1 - p) = \beta p + p_2$, where $\beta = 1 - 2p_2 \ge 0$. Let $g(p) = \frac{\frac{\partial}{\partial p} h_2(p_2 * p)}{\frac{\partial}{\partial p} h_2(p)} = \frac{\frac{\partial}{\partial p} h_2(\beta p + p_2)}{\frac{\partial}{\partial p} h_2(p)} = \frac{\beta h'_2(\beta p + p_2)}{h'_2(p)}$. We have

$$g'(p) = \frac{\beta^2 h_2''(\beta p + p_2) h_2'(p) - \beta h_2''(p) h_2'(\beta p + p_2)}{h_2'(p)^2}$$
$$= \frac{\beta h_2''(\beta p + p_2) h_2''(p)}{h_2'(p)^2} \Big[\beta \frac{h_2'(p)}{h_2''(p)} - \frac{h_2'(\beta p + p_2)}{h_2''(\beta p + p_2)}\Big]$$

Note that $h'_2(p) = \log \frac{1-p}{p}$ and $h''_2(p) = \frac{-1}{p(1-p)\ln 2}$, which implies that $h''_2(\beta p + p_2) \leq 0$ and $h''_2(p) \leq 0$. Therefore, $\frac{\beta h''_2(\beta p + p_2)h''_2(p)}{h'_2(p)^2} \geq 0$ and so it is sufficient to show that we have $\beta \frac{h'_2(p)}{h''_2(p)} - \frac{h'_2(\beta p + p_2)}{h''_2(\beta p + p_2)} \ge 0$. Now define $\alpha = 1 - 2p$. It is easy to check the following:

- $p = \frac{1}{2}(1 \alpha).$
- $1 p = \frac{1}{2}(1 + \alpha).$
- $\beta p + p_2 = \frac{1}{2}(1 \alpha\beta).$
- $1 (\beta p + p_2) = \frac{1}{2}(1 + \alpha \beta).$

Therefore, we have

$$\beta \frac{h_2'(p)}{h_2''(p)} = -\beta(\ln 2)p(1-p)\log\frac{1-p}{p} = -\frac{\beta\ln 2}{4}(1-\alpha^2)\log\frac{1+\alpha}{1-\alpha}$$

and

$$\frac{h_2'(\beta p + p_2)}{h_2''(\beta p + p_2)} = -(\ln 2)(\beta p + p_2)(1 - \beta p - p_2)\log\frac{1 - \beta p - p_2}{\beta p + p_2} = -\frac{\ln 2}{4}(1 - (\alpha\beta)^2)\log\frac{1 + \alpha\beta}{1 - \alpha\beta}$$

Using the formula $\log(1+x) = \sum_{k \ge 1} (-1)^{k-1} \frac{x^k}{k}$, we get

$$\log \frac{1+x}{1-x} = \log(1+x) - \log(1-x) = \left(\sum_{k \ge 1} (-1)^{k-1} \frac{x^k}{k}\right) - \left(\sum_{k \ge 1} (-1)^{k-1} \frac{(-x)^k}{k}\right)$$
$$= \sum_{k \ge 1} \left((-1)^{k-1} + 1\right) \frac{x^k}{k} = 2 \sum_{\substack{k \ge 1\\k \text{ is odd}}} \frac{x^k}{k}.$$

Therefore,

$$\begin{aligned} -(1-x^2)\log\frac{1+x}{1-x} &= -2\sum_{\substack{k\ge 1\\k \text{ is odd}}} \frac{x^k}{k} + 2\sum_{\substack{k\ge 1\\k \text{ is odd}}} \frac{x^{k+2}}{k} = -2x - 2\sum_{\substack{k\ge 3\\k \text{ is odd}}} \frac{x^k}{k} + 2\sum_{\substack{k\ge 3\\k \text{ is odd}}} \frac{x^k}{k-2} \\ &= -2x + 2\sum_{\substack{k\ge 3\\k \text{ is odd}}} \left(\frac{1}{k-2} - \frac{1}{k}\right) x^k. \end{aligned}$$

Hence,

$$\begin{split} \beta \frac{h_2'(p)}{h_2''(p)} &= -\frac{\beta \ln 2}{4} (1-\alpha^2) \log \frac{1+\alpha}{1-\alpha} = \frac{\beta \ln 2}{4} \left[-2\alpha + 2\sum_{\substack{k \ge 3\\k \text{ is odd}}} \left(\frac{1}{k-2} - \frac{1}{k} \right) \alpha^k \right] \\ &= -\frac{\alpha\beta \ln 2}{2} + \frac{\ln 2}{2} \sum_{\substack{k \ge 3\\k \text{ is odd}}} \left(\frac{1}{k-2} - \frac{1}{k} \right) \beta \alpha^k, \end{split}$$

and

$$\frac{h_{2}'(\beta p + p_{2})}{h_{2}''(\beta p + p_{2})} = -\frac{\ln 2}{4} (1 - (\alpha \beta)^{2}) \log \frac{1 + \alpha \beta}{1 - \alpha \beta} = \frac{\ln 2}{4} \left[-2\alpha\beta + 2\sum_{\substack{k \ge 3\\k \text{ is odd}}} \left(\frac{1}{k - 2} - \frac{1}{k} \right) (\alpha \beta)^{k} \right]$$
$$= -\frac{\alpha\beta \ln 2}{2} + \frac{\ln 2}{2} \sum_{\substack{k \ge 3\\k \text{ is odd}}} \left(\frac{1}{k - 2} - \frac{1}{k} \right) \beta^{k} \alpha^{k}.$$

We conclude that

$$\beta \frac{h_2'(p)}{h_2''(p)} - \frac{h_2'(\beta p + p_2)}{h_2''(\beta p + p_2)} = \frac{\ln 2}{2} \sum_{\substack{k \ge 3\\k \text{ is odd}}} \left(\frac{1}{k-2} - \frac{1}{k}\right) (\beta - \beta^k) \alpha^k \stackrel{(*)}{\ge} 0,$$

where (*) follows from the fact that $\beta = 1 - 2p_2 \leq 1$ which implies that $\beta^k \leq \beta$. Therefore, $g'(p) \geq 0$ and so g(p) is increasing. We conclude that the function f is convex. (d) We have

$$H(X_1 \oplus X_2 | Y) = \sum_{y \in \mathcal{Y}} h_2(p_2 * p_1(y))q(y) = \sum_{y \in \mathcal{Y}} h_2(p_2 * h_2^{-1}(H(X_1 | Y = y)))q(y)$$

= $\sum_{y \in \mathcal{Y}} f(H(X_1 | Y = y))q(y) \stackrel{(*)}{\geq} f(\sum_{y \in \mathcal{Y}} H(X_1 | Y = y)q(y))$
= $f(H(X_1 | Y)) = h_2(p_2 * h_2^{-1}(H(X_1 | Y))) = h_2(p_2 * p_1) = h_2(p_1 * p_2),$

where (*) follows from the convexity of the function f.

(e) For every $y_1 \in \mathcal{Y}_1$, let $0 \leq p_1(y_1) \leq \frac{1}{2}$ be such that $H(X_1|Y_1 = y_1) = h_2(p_1(y_1))$ and let $q_1(y_1) = \mathbb{P}_{Y_1}(y_1)$. Similarly, for every $y_2 \in \mathcal{Y}_2$, let $0 \leq p_2(y_2) \leq \frac{1}{2}$ be such that $H(X_2|Y_2 = y_2) = h_2(p_2(y_2))$ and let $q_2(y_2) = \mathbb{P}_{Y_2}(y_2)$. For every $y_1 \in \mathcal{Y}_1$, define the mapping $f_{y_1} : [0, 1] \to \mathbb{R}$ as $f_{y_1}(h) = h_2(p_1(y) * h_2^{-1}(h))$. Part (c) implies that f_{y_1} is convex for every $y_1 \in \mathcal{Y}_1$. We have

$$\begin{split} H(X_1 \oplus X_2 | Y_1, Y_2) &= \sum_{y_1 \in \mathcal{Y}_1} \sum_{y_2 \in \mathcal{Y}_2} h_2(p_1(y_1) * p_2(y_2)) \mathbb{P}_{Y_1, Y_2}(y_1, y_2) \\ &= \sum_{y_1 \in \mathcal{Y}_1} \sum_{y_2 \in \mathcal{Y}_2} h_2(p_1(y_1) * p_2(y_2)) q_1(y_1) q_2(y_2) \\ &= \sum_{y_1 \in \mathcal{Y}_1} q_1(y_1) \sum_{y_2 \in \mathcal{Y}_2} h_2(p_1(y_1) * h_2^{-1}(H(X_2 | Y_2 = y_2))) q_2(y_2) \\ &= \sum_{y_1 \in \mathcal{Y}_1} q_1(y_1) \sum_{y_2 \in \mathcal{Y}_2} f_{y_1}(H(X_2 | Y_2 = y_2)) q_2(y_2) \\ \stackrel{(*)}{\geq} \sum_{y_1 \in \mathcal{Y}_1} q_1(y_1) f_{y_1}(\sum_{y_2 \in \mathcal{Y}_2} H(X_2 | Y_2 = y_2) q_2(y_2)) \\ &= \sum_{y_1 \in \mathcal{Y}_1} q_1(y_1) f_{y_1}(H(X_2 | Y_2)) = \sum_{y_1 \in \mathcal{Y}_1} q_1(y_1) h_2(p_1(y_1) * h_2^{-1}(H(X_2 | Y_2))) \\ &= \sum_{y_1 \in \mathcal{Y}_1} q_1(y_1) h_2(p_1(y_1) * p_2) = \sum_{y_1 \in \mathcal{Y}_1} h_2(p_2 * h_2^{-1}(H(X_1 | Y_1 = y_1))) q_1(y_1) \\ &= \sum_{y_1 \in \mathcal{Y}_1} f\left(H(X_1 | Y_1 = y_1)\right) q_1(y_1) \stackrel{(**)}{\geq} f\left(\sum_{y_1 \in \mathcal{Y}_1} H(X_1 | Y_1 = y_1) q(y_1)\right) \\ &= f(H(X_1 | Y_1)) = h_2(p_2 * h_2^{-1}(H(X_1 | Y_1))) = h_2(p_2 * p_1) = h_2(p_1 * p_2), \end{split}$$

where (*) follows from the convexity of the functions $\{f_{y_1}: y_1 \in \mathcal{Y}_1\}$ and (**) follows from the convexity of f.

Problem 3.

- (a) Any codeword of \mathcal{C} is of the from $\langle \mathbf{a}, \mathbf{a} \oplus \mathbf{b} \rangle$ with $\mathbf{a} \in \mathcal{C}_1$ and $\mathbf{b} \in \mathcal{C}_2$. Given two codewords $\langle \mathbf{u}', \mathbf{u}' \oplus \mathbf{v}' \rangle$ and $\langle \mathbf{u}'', \mathbf{u}'' \oplus \mathbf{v}'' \rangle$ of \mathcal{C} , their sum is $\langle \mathbf{u}, \mathbf{u} \oplus \mathbf{v} \rangle$ with $\mathbf{u} = \mathbf{u}' \oplus \mathbf{u}''$ and $\mathbf{v} = \mathbf{v}' \oplus \mathbf{v}''$. Since \mathcal{C}_1 and \mathcal{C}_2 are linear codes $\mathbf{u} \in \mathcal{C}_1$ and $\mathbf{v} \in \mathcal{C}_2$. Thus the sum of any two codewords of \mathcal{C} is a codeword of \mathcal{C} and we conclude that \mathcal{C} is linear.
- (b) If $(\mathbf{u}, \mathbf{v}) \neq (\mathbf{u}', \mathbf{v}')$, then either $\mathbf{u} \neq \mathbf{u}'$, or, $\mathbf{u} = \mathbf{u}'$ and $\mathbf{v} \neq \mathbf{v}'$. In either case $\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle \neq \langle \mathbf{u}' | \mathbf{u}' \oplus \mathbf{v}' \rangle$: in the first case the first halves differ, in the second case the second halves differ. Thus no two of the (\mathbf{u}, \mathbf{v}) pairs are mapped to the same element of \mathcal{C} , and the code has exactly $M_1 M_2$ elements. Its rate is $\frac{1}{2n} \log(M_1 M_2) = \frac{1}{2} R_1 + \frac{1}{2} R_2$.
- (c) As $\mathbf{v} = \mathbf{u} \oplus \mathbf{u} \oplus \mathbf{v}$,

$$w_H(\mathbf{v}) = w_H(\mathbf{u} \oplus \mathbf{u} \oplus \mathbf{v}) \le w_H(\mathbf{u}) + w_H(\mathbf{u} \oplus \mathbf{v})$$

by the triangle inequality. Noting that the right hand side is $w_H(\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle)$ completes the proof.

(d) If $\mathbf{v} = \mathbf{0}$ we have $\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle = \langle \mathbf{u} | \mathbf{u} \rangle$ which has twice the Hamming weight of \mathbf{u} . Otherwise (c) gives $w_H(\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle) \ge w_H(\mathbf{v})$.

- (e) Since C is linear its minimum distance equals the minimum weight of its non-zero codewords. If $\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle$ is non-zero either $\mathbf{v} \neq \mathbf{0}$, or, $\mathbf{v} = \mathbf{0}$ and $\mathbf{u} \neq \mathbf{0}$. By (d), in the first case $w_H(\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle) \geq w_H(\mathbf{v}) \geq d_1$, in the second case $w_H(\langle \mathbf{u} | \mathbf{u} \oplus \mathbf{v} \rangle) \geq 2w_H(\mathbf{u}) \geq 2d_2$. Thus $d \geq \min\{2d_1, d_2\}$.
- (f) Let \mathbf{u}_0 be the minimum weight non-zero codeword of \mathcal{C}_1 and let \mathbf{v}_0 be the minimum weight non-zero codeword of \mathcal{C}_2 . Note that $\langle \mathbf{u}_0 | \mathbf{u}_0 \rangle$ is a non-zero codeword of \mathcal{C} (corresponding to the choice $\mathbf{u} = \mathbf{u}_0$, $\mathbf{v} = \mathbf{0}$). It has weight $2d_1$. Similarly, $\langle \mathbf{0} | \mathbf{v}_0 \rangle$ is also a non-zero codeword of \mathcal{C} (corresponding to the choice $\mathbf{u} = \mathbf{0}$, $\mathbf{v} = \mathbf{v}_0$). It has weight d_2 . Consequently $d \leq \min\{2d_1, d_2\}$. In light of (e) we find $d = \min\{2d_1, d_2\}$.

This method of constructing a longer code from two shorter ones is known under several names: 'Plotkin construction', 'bar product', '(u|u+v) construction' appear regularly in the literature. Compare this method to the 'obvious' method of letting the codewords to be $\langle \mathbf{u} | \mathbf{v} \rangle$. The simple method has the same block-length and rate as we have here, but its minimum distance is only min $\{d_1, d_2\}$. The factor two gained in d_1 by the bar product is significant, and many practical code families can be built from very simple base codes by a recursive application of the bar product. Notable among them are the family of Reed–Muller codes.

Problem 4.

(a) We have

$$\begin{split} W^{-}(y_{1},y_{2}|u_{1}) &= \mathbb{P}_{Y_{1},Y_{2}|X_{1}\oplus X_{2}}(y_{1},y_{2}|u_{1}) = \frac{\mathbb{P}_{Y_{1},Y_{2},X_{1}\oplus X_{2}}(y_{1},y_{2},u_{1})}{\mathbb{P}_{X_{1}\oplus X_{2}}(u_{1})} \\ &\stackrel{(*)}{=} 2\mathbb{P}_{Y_{1},Y_{2},X_{1}\oplus X_{2}}(y_{1},y_{2},u_{1}) \\ &= 2\sum_{u_{2}\in\{0,1\}} \mathbb{P}_{Y_{1},Y_{2},X_{1}\oplus X_{2},X_{2}}(y_{1},y_{2},u_{1},u_{2}) \\ \stackrel{(**)}{=} 2\sum_{u_{2}\in\{0,1\}} \mathbb{P}_{Y_{1},Y_{2},X_{1},X_{2}}(y_{1},y_{2},u_{1}\oplus u_{2},u_{2}) \\ &= 2\sum_{u_{2}\in\{0,1\}} \mathbb{P}_{Y_{1},Y_{2}|X_{1},X_{2}}(y_{1},y_{2}|u_{1}\oplus u_{2},u_{2})\mathbb{P}_{X_{1},X_{2}}(u_{1}\oplus u_{2},u_{2}) \\ &= 2\sum_{u_{2}\in\{0,1\}} W(y_{1}|u_{1}\oplus u_{2})W(y_{2}|u_{2})\frac{1}{2^{2}} \\ &= \frac{1}{2}\sum_{u_{2}\in\{0,1\}} W(y_{1}|u_{1}\oplus u_{2})W(y_{2}|u_{2}), \end{split}$$

where (*) follows from the fact that if X_1, X_2 are independent and uniform then $X_1 \oplus X_2$ is also uniform. (**) follows from the fact that

$$(X_1 \oplus X_2 = u_1 \text{ and } X_2 = u_2) \Leftrightarrow (X_1 = u_1 \oplus u_2 \text{ and } X_2 = u_2).$$

(b) We have

$$W^{+}(y_{1}, y_{2}, u_{1}|u_{2}) = \mathbb{P}_{Y_{1}, Y_{2}, X_{1} \oplus X_{2}|X_{2}}(y_{1}, y_{2}, u_{1}|u_{2}) = \frac{\mathbb{P}_{Y_{1}, Y_{2}, X_{1} \oplus X_{2}, X_{2}}(y_{1}, y_{2}, u_{1}, u_{2})}{\mathbb{P}_{X_{2}}(u_{2})}$$

$$= 2\mathbb{P}_{Y_{1}, Y_{2}, X_{1} \oplus X_{2}, X_{2}}(y_{1}, y_{2}, u_{1}, u_{2})$$

$$\stackrel{(*)}{=} 2\mathbb{P}_{Y_{1}, Y_{2}, X_{1}, X_{2}}(y_{1}, y_{2}, u_{1} \oplus u_{2}, u_{2})$$

$$= 2\mathbb{P}_{Y_{1}, Y_{2}|X_{1}, X_{2}}(y_{1}, y_{2}|u_{1} \oplus u_{2}, u_{2})\mathbb{P}_{X_{1}, X_{2}}(u_{1} \oplus u_{2}, u_{2})$$

$$= 2W(y_{1}|u_{1} \oplus u_{2})W(y_{2}|u_{2})\frac{1}{2^{2}}$$

$$= \frac{1}{2}W(y_{1}|u_{1} \oplus u_{2})W(y_{2}|u_{2}),$$

where (\ast) follows from the fact that

$$(X_1 \oplus X_2 = u_1 \text{ and } X_2 = u_2) \Leftrightarrow (X_1 = u_1 \oplus u_2 \text{ and } X_2 = u_2).$$

(c) We have

$$\begin{split} Z(W^+) &= \sum_{\substack{y_1, y_2 \in \mathcal{Y}, \\ u_1 \in \{0, 1\} \\ u_1 \in \{0, 1\} \\ }} \sqrt{W^+(y_1, y_2, u_1|0)W^+(y_1, y_2, u_1|1)} \\ &= \frac{1}{2} \sum_{\substack{y_1, y_2 \in \mathcal{Y}, \\ u_1 \in \{0, 1\} \\ }} \sqrt{W(y_1|u_1 \oplus 0)W(y_2|0)W(y_1|u_1 \oplus 1)W(y_2|1)} \\ &= \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \sqrt{W(y_1|0 \oplus 0)W(y_2|0)W(y_1|1 \oplus 1)W(y_2|1)} \right) \\ &+ \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \sqrt{W(y_1|0)W(y_2|0)W(y_1|1)W(y_2|1)} \right) \\ &= \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \sqrt{W(y_1|0)W(y_2|0)W(y_1|1)W(y_2|1)} \right) \\ &= \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \sqrt{W(y_1|0)W(y_1|1)} \right) \left(\sum_{y_2 \in \mathcal{Y}} \sqrt{W(y_2|0)W(y_2|1)} \right) \\ &+ \frac{1}{2} \left(\sum_{y_1 \in \mathcal{Y}} \sqrt{W(y_1|0)W(y_1|1)} \right) \left(\sum_{y_2 \in \mathcal{Y}} \sqrt{W(y_2|0)W(y_2|1)} \right) \\ &= \frac{1}{2} Z(W) \cdot Z(W) + \frac{1}{2} Z(W) \cdot Z(W) = Z(W)^2. \end{split}$$

(d) For every $y_1, y_2 \in \mathcal{Y}$, we have:

$$W^{-}(y_{1}, y_{2}|0) = \frac{1}{2} \sum_{u_{2} \in \{0,1\}} W(y_{1}|0 \oplus u_{2})W(y_{2}|u_{2}) = \frac{1}{2} \sum_{u_{2} \in \{0,1\}} W(y_{1}|u_{2})W(y_{2}|u_{2})$$

$$= \frac{1}{2} W(y_{1}|0)W(y_{2}|0) + \frac{1}{2} W(y_{1}|1)W(y_{2}|1) = \frac{1}{2} \alpha(y_{1})\alpha(y_{2}) + \frac{1}{2} \beta(y_{1})\beta(y_{2})$$

$$= \frac{1}{2} (\alpha(y_{1})\alpha(y_{2}) + \beta(y_{1})\beta(y_{2})),$$

and

$$\begin{split} W^{-}(y_{1}, y_{2}|1) &= \frac{1}{2} \sum_{u_{2} \in \{0,1\}} W(y_{1}|1 \oplus u_{2}) W(y_{2}|u_{2}) \\ &= \frac{1}{2} W(y_{1}|1 \oplus 0) W(y_{2}|0) + \frac{1}{2} W(y_{1}|1 \oplus 1) W(y_{2}|1) \\ &= \frac{1}{2} W(y_{1}|1) W(y_{2}|0) + \frac{1}{2} W(y_{1}|0) W(y_{2}|1) = \frac{1}{2} \beta(y_{1}) \alpha(y_{2}) + \frac{1}{2} \alpha(y_{1}) \beta(y_{2}) \\ &= \frac{1}{2} (\alpha(y_{1}) \beta(y_{2}) + \beta(y_{1}) \alpha(y_{2})). \end{split}$$

We have

$$Z(W^{-}) = \sum_{y_1, y_2 \in \mathcal{Y}} \sqrt{W^{-}(y_1, y_2|0)W^{-}(y_1, y_2|1)}$$

= $\frac{1}{2} \sum_{y_1, y_2 \in \mathcal{Y}} \sqrt{\left(\alpha(y_1)\alpha(y_2) + \beta(y_1)\beta(y_2)\right)\left(\alpha(y_1)\beta(y_2) + \beta(y_1)\alpha(y_2)\right)}.$

(e) For every $x, y \ge 0$, we have $x + y \le x + y + 2\sqrt{xy} = (\sqrt{x} + \sqrt{y})^2$ which implies that $\sqrt{x+y} \le \sqrt{x} + \sqrt{y}$. Therefore, for every $x, y, z, t \ge 0$ we have:

$$\sqrt{x+y+z+t} \le \sqrt{x+y} + \sqrt{z+t} \le \sqrt{x} + \sqrt{y} + \sqrt{z} + \sqrt{t}.$$

Therefore,

$$Z(W^{-}) = \frac{1}{2} \sum_{y_1, y_2 \in \mathcal{Y}} \sqrt{\left(\alpha(y_1)\alpha(y_2) + \beta(y_1)\beta(y_2)\right) \left(\alpha(y_1)\beta(y_2) + \beta(y_1)\alpha(y_2)\right)} \\ = \frac{1}{2} \sum_{y_1, y_2 \in \mathcal{Y}} \sqrt{\alpha(y_1)^2 \gamma(y_2)^2 + \alpha(y_2)^2 \gamma(y_1)^2 + \beta(y_2)^2 \gamma(y_1)^2 + \beta(y_1)^2 \gamma(y_2)^2} \\ \stackrel{(*)}{\leq} \frac{1}{2} \sum_{y_1, y_2 \in \mathcal{Y}} \left(\sqrt{\alpha(y_1)^2 \gamma(y_2)^2} + \sqrt{\alpha(y_2)^2 \gamma(y_1)^2} + \sqrt{\beta(y_2)^2 \gamma(y_1)^2} + \sqrt{\beta(y_1)^2 \gamma(y_2)^2}\right) \\ = \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_1)\gamma(y_2)\right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_2)\gamma(y_1)\right) \\ + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \beta(y_2)\gamma(y_1)\right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \beta(y_1)\gamma(y_2)\right),$$

where (*) follows from the inequality $\sqrt{x+y+z+t} \leq \sqrt{x} + \sqrt{y} + \sqrt{z} + \sqrt{t}$.

(f) Note that
$$\sum_{y \in \mathcal{Y}} \alpha(y) = \sum_{y \in \mathcal{Y}} \beta(y) = 1$$
 and $\sum_{y \in \mathcal{Y}} \gamma(y) = Z(W)$. Therefore,

$$Z(W^{-}) \leq \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_1)\gamma(y_2) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \alpha(y_2)\gamma(y_1) \right) + \frac{1}{2} \left(\sum_{y_1, y_2 \in \mathcal{Y}} \beta(y_1)\gamma(y_2) \right) + \frac{1}{2} \left(\sum_{y_1 \in \mathcal{Y}} \alpha(y_1) \right) \left(\sum_{y_2 \in \mathcal{Y}} \gamma(y_2) \right) + \frac{1}{2} \left(\sum_{y_2 \in \mathcal{Y}} \alpha(y_2) \right) \left(\sum_{y_1 \in \mathcal{Y}} \gamma(y_1) \right) + \frac{1}{2} \left(\sum_{y_2 \in \mathcal{Y}} \beta(y_2) \right) \left(\sum_{y_2 \in \mathcal{Y}} \gamma(y_1) \right) + \frac{1}{2} \left(\sum_{y_1 \in \mathcal{Y}} \beta(y_1) \right) \left(\sum_{y_2 \in \mathcal{Y}} \gamma(y_2) \right) + \frac{1}{2} \left(\sum_{y_1 \in \mathcal{Y}} \beta(y_1) \right) \left(\sum_{y_2 \in \mathcal{Y}} \gamma(y_2) \right) + \frac{1}{2} \left(\sum_{y_1 \in \mathcal{Y}} \beta(y_1) \right) \left(\sum_{y_2 \in \mathcal{Y}} \gamma(y_2) \right) + \frac{1}{2} \left(\sum_{y_1 \in \mathcal{Y}} \beta(y_1) \right) \left(\sum_{y_2 \in \mathcal{Y}} \gamma(y_2) \right) + \frac{1}{2} \left(\sum_{y_1 \in \mathcal{Y}} \beta(y_1) + \frac{1}{2} 1 \cdot Z(W) + \frac{1}{2} 1 \cdot Z(W)$$

Problem 5.

(a) We have

$$\begin{aligned} Q_{i+1} &= \sqrt{Z_{i+1}(1-Z_{i+1})} = \begin{cases} \sqrt{Z_i^2(1-Z_i^2)} & \text{w.p. } 1/2\\ \sqrt{(2Z_i-Z_i^2)(1-2Z_i+Z_i^2)} & \text{w.p. } 1/2 \end{cases} \\ &= \begin{cases} \sqrt{Z_i^2(1-Z_i)(1+Z_i)} & \text{w.p. } 1/2\\ \sqrt{(2-Z_i)Z_i(1-Z_i)^2} & \text{w.p. } 1/2 \end{cases} \\ &= \begin{cases} \sqrt{Z_i(1-Z_i)} \sqrt{Z_i(1+Z_i)} & \text{w.p. } 1/2\\ \sqrt{Z_i(1-Z_i)} \sqrt{(2-Z_i)(1-Z_i)} & \text{w.p. } 1/2 \end{cases} \\ &= \sqrt{Z_i(1-Z_i)} \begin{cases} \sqrt{Z_i(1+Z_i)} & \text{w.p. } 1/2\\ \sqrt{(2-Z_i)(1-Z_i)} & \text{w.p. } 1/2 \end{cases} \\ &= Q_i \begin{cases} f_1(Z_i) & \text{w.p. } 1/2\\ f_2(Z_i) & \text{w.p. } 1/2 \end{cases}, \end{aligned}$$

where $f_1(z) = \sqrt{z(z+1)}$ and $f_2(z) = \sqrt{(2-z)(1-z)}$.

(b) We have

$$f_1'(z) = \frac{2z+1}{2\sqrt{z(z+1)}}$$

 \mathbf{SO}

$$f_1''(z) = \frac{4\sqrt{z(z+1)} - (2z+1)\frac{2(2z+1)}{2\sqrt{z(z+1)}}}{\left(2\sqrt{z(z+1)}\right)^2}$$
$$= \frac{4z(z+1) - (2z+1)^2}{4\left(z(z+1)\right)^{\frac{3}{2}}} = \frac{-1}{4\left(z(z+1)\right)^{\frac{3}{2}}} \le 0.$$

Therefore, f_1 is concave. By noticing that $f_2(z) = f_1(1-z)$, we obtain:

$$f_1(z) + f_2(z) = f_1(z) + f_1(1-z) = 2\left(\frac{1}{2}f_1(z) + \frac{1}{2}f_1(1-z)\right)$$

$$\stackrel{(*)}{\leq} 2f_1\left(\frac{1}{2}z + \frac{1}{2}(1-z)\right) = 2f_1\left(\frac{1}{2}\right) = 2\sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)}$$

$$= 2\sqrt{\frac{1}{2}\cdot\frac{3}{2}} = 2\frac{\sqrt{3}}{2} = \sqrt{3},$$

where (*) follows from the concavity of f_1 . We have

$$\mathbb{E}[Q_{i+1} \mid Z_0, \dots, Z_i] = \frac{1}{2} f_1(Z_i) Q_i + \frac{1}{2} f_2(Z_i) Q_i = \frac{1}{2} (f_1(Z_i) + f_2(Z_i)) Q_i \le \rho Q_i,$$

where $\rho = \frac{\sqrt{3}}{2} < 1$.

(c) We will show the claim by induction on $i \ge 0$. For i = 0, we have $Z_0 = z_0$ with probability 1. Therefore, $\mathbb{E}Q_0 = \sqrt{z_0(1-z_0)}$. It is easy to that the function $[0,1] \to \mathbb{R}$ defined by $z \to \sqrt{z(1-z)}$ achieves its

maximum at $z = \frac{1}{2}$, and so $\mathbb{E}Q_0 = \sqrt{z_0(1-z_0)} \le \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right)} = \frac{1}{2}$. Therefore, the claim is true for i = 0.

Now suppose that the claim is true for $i \ge 0$, i.e., $\mathbb{E}Q_i \le \frac{1}{2}\rho^i$. We have

$$\mathbb{E}Q_{i+1} = \mathbb{E}\left[\mathbb{E}\left[Q_{i+1} \mid Z_0, \dots, Z_i\right]\right] \stackrel{(*)}{\leq} \mathbb{E}[\rho Q_i] = \rho \mathbb{E}[Q_i] \stackrel{(**)}{\leq} \rho \cdot \frac{1}{2}\rho^i = \frac{1}{2}\rho^{i+1},$$

where (*) follows from Part (b) and (**) follows from the induction hypothesis. We conclude that $\mathbb{E}Q_i \leq \frac{1}{2}\rho^i$ for every $i \geq 0$.

(d) By noticing that $\delta < z < 1 - \delta$ if and only if $z(1 - z) > \delta(1 - \delta)$, we get:

$$\mathbb{P}[Z_i \in (\delta, 1-\delta)] = \mathbb{P}[Z_i(1-Z_i) > \delta(1-\delta)] = \mathbb{P}[\sqrt{Z_i(1-Z_i)} > \sqrt{\delta(1-\delta)}]$$
$$= \mathbb{P}[Q_i > \sqrt{\delta(1-\delta)}] \stackrel{(*)}{\leq} \frac{\mathbb{E}Q_i}{\sqrt{\delta(1-\delta)}} \stackrel{(**)}{\leq} \frac{\rho^i}{2\sqrt{\delta(1-\delta)}},$$

where (*) follows from the Markov inequality and (**) follows from Part (c). Now since $\rho < 1$, we have $\frac{\rho^i}{2\sqrt{\delta(1-\delta)}} \to 0$ as $i \to \infty$. We conclude that

 $\mathbb{P}[Z_i \in (\delta, 1-\delta)] \to 0 \text{ as } i \text{ gets large.}$