ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 25
Solutions to Homework 10

Information Theory and Coding
Nov. 30, 2015

Problem 1.

(a) We have

$$
\begin{aligned}
\operatorname{Pr}\left[U(1) \neq U^{n} \mid U^{n}=u^{n}\right] & =\operatorname{Pr}\left[U(1) \neq u^{n} \mid U^{n}=u^{n}\right] \stackrel{(*)}{=} \operatorname{Pr}\left[U(1) \neq u^{n}\right] \\
& =1-\operatorname{Pr}\left[U(1)=u^{n}\right]=1-\prod_{i=1}^{n} \operatorname{Pr}\left[U(1)_{i}=u_{i}\right]=1-\prod_{i=1}^{n} p_{U}\left(u_{i}\right),
\end{aligned}
$$

where $(*)$ follows from the independence of $U(1)$ and U^{n}.
(b) An encoding failure happens if and only if $U(m) \neq U^{n}$ for every $m=1,2, \ldots, M$. Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left[\text { "failure" } \mid U^{n}=u^{n}\right] & =\operatorname{Pr}\left[U(m) \neq U^{n}, \forall m=1, \ldots, M \mid U^{n}=u^{n}\right] \\
& =\operatorname{Pr}\left[U(m) \neq u^{n}, \forall m=1, \ldots, M \mid U^{n}=u^{n}\right] \\
& =\operatorname{Pr}\left[U(m) \neq u^{n}, \forall m=1, \ldots, M\right] \\
& =\prod_{m=1}^{M}\left(1-\prod_{i=1}^{n} p_{U}\left(u_{i}\right)\right)=\left(1-\prod_{i=1}^{n} p_{U}\left(u_{i}\right)\right)^{M}
\end{aligned}
$$

(c) Note that if $u^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)$, then $\prod_{i=1}^{n} p_{U}\left(u_{i}\right) \geq 2^{-n H(U)(1+\epsilon)}$, which implies

$$
\begin{aligned}
\operatorname{Pr}\left[\text { "failure" } \mid U^{n}=u^{n}\right] & =\left(1-\prod_{i=1}^{n} p_{U}\left(u_{i}\right)\right)^{M} \leq\left(1-2^{-n H(U)(1+\epsilon)}\right)^{M} \\
& \stackrel{(*)}{\leq} \exp \left(-M 2^{-n H(U)(1+\epsilon)}\right)=\exp \left(-2^{n R-n H(U)(1+\epsilon)}\right) .
\end{aligned}
$$

where (*) follows from the hint. Therefore, we have

$$
\begin{aligned}
\operatorname{Pr}\left[\text { "failure" } \mid U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right] & =\frac{\operatorname{Pr}\left[\text { "failure" }, U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right]}{\operatorname{Pr}\left[U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right]} \\
& =\frac{\sum_{u^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)} \operatorname{Pr}\left[\text { "failure" }, U^{n}=u^{n}\right]}{\operatorname{Pr}\left[U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right]} \\
& =\frac{\sum_{u^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)} \operatorname{Pr}\left[\text { "failure" } \mid U^{n}=u^{n}\right] \operatorname{Pr}\left[U^{n}=u^{n}\right]}{\operatorname{Pr}\left[U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right]} \\
& \leq \frac{\sum_{u^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)} \exp \left(-2^{n R-n H(U)(1+\epsilon)}\right) \operatorname{Pr}\left[U^{n}=u^{n}\right]}{\operatorname{Pr}\left[U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right]} \\
& =\exp \left(-2^{n R-n H(U)(1+\epsilon)}\right) \frac{\sum_{u^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)} \operatorname{Pr}\left[U^{n}=u^{n}\right]}{\operatorname{Pr}\left[U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right]} \\
& =\exp \left(-2^{n R-n H(U)(1+\epsilon)}\right) \frac{\operatorname{Pr}\left[U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right]}{\operatorname{Pr}\left[U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right]} \\
& =\exp \left(-2^{n R-n H(U)(1+\epsilon)}\right) .
\end{aligned}
$$

(d) Assume $R>H(U)$, then there exists $\epsilon>0$ such that $R>H(U)(1+\epsilon)$. We have

$$
\begin{aligned}
\operatorname{Pr}[\text { "failure" }] & =\operatorname{Pr}\left[\text { "failure" }, U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right]+\operatorname{Pr}\left[\text { "failure" }, U^{n} \notin \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right] \\
& =\operatorname{Pr}\left[\text { "failure" } \mid U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right] \operatorname{Pr}\left[U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right]+\operatorname{Pr}\left[\text { "failure" }, U^{n} \notin \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right] \\
& \leq \operatorname{Pr}\left[\text { "failure" } \mid U^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right]+\operatorname{Pr}\left[U^{n} \notin \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right] \\
& \leq \exp \left(-2^{n R-n H(U)(1+\epsilon)}\right)+\operatorname{Pr}\left[U^{n} \notin \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right] .
\end{aligned}
$$

Since $R>H(U)(1+\epsilon)$ both terms in the above go to 0 as $n \rightarrow \infty$. Hence, Pr ["failure"] $\rightarrow 0$ as n gets large.

Problem 2. Let the input distribution be p. We thus have

$$
p(-1)+p(0)+p(1)=1 \quad p(-1) \geq 0, p(0) \geq 0, p(1) \geq 0
$$

(since p is a distribution) and, to satisfy $E[b(X)] \leq \beta$ we must have

$$
p(-1)+p(1)=1-p(0) \leq \beta
$$

Moreover,

$$
\begin{aligned}
I(X ; Y) & =H(Y)-H(Y \mid X) \\
& \stackrel{(a)}{=} H(Y)-p(0) \\
& \stackrel{(b)}{\leq} 1-p(0) \\
& \stackrel{(c)}{\leq} \max \{1, \beta\} .
\end{aligned}
$$

where (a) follows because given $\{X=-1\}$ or $\{X=1\}$ there is no uncertainity in Y while given $\{X=0\}, Y$ is uniformly distributed in $\{-1,1\}$, (b) holds since Y is binary with equality if $p(-1)+\frac{1}{2} p(0)=p(1)+\frac{1}{2} p(0)=\frac{1}{2}$ (which happens if we choose $p(1)=$ $\left.p(-1)=\frac{1}{2}(1-p(0))\right)$ and (c) holds because of the cost constraint and is equality if we choose $p(0)=\max \{1-\beta, 0\}$. Hence, the capacity is

$$
C=\left\{\begin{array}{ll}
\beta, & \text { if } \beta \leq 1 \\
1, & \text { if } \beta>1
\end{array} .\right.
$$

Problem 3.

$$
\begin{aligned}
h(X) & =\frac{1}{2} \log \left(2 \pi e \sigma_{x}^{2}\right) \\
h(Y) & =\frac{1}{2} \log \left(2 \pi e \sigma_{y}^{2}\right) \\
h(X, Y) & =\frac{1}{2} \log \left((2 \pi e)^{2} \operatorname{det}(K)\right)=\frac{1}{2} \log \left((2 \pi e)^{2}\left(\sigma_{x}^{2} \sigma_{y}^{2}-\rho^{2} \sigma_{x}^{2} \sigma_{y}^{2}\right)\right. \\
I(X, Y) & =h(X)+h(Y)-h(X, Y)=\frac{1}{2} \log \frac{1}{1-\rho^{2}}
\end{aligned}
$$

Note that the result does not depend on σ_{x}, σ_{y}, which says that normalization does not change the mutual information.

Problem 4.
(a) All rates less than $\frac{1}{2} \log _{2}\left(1+\frac{P}{\sigma^{2}}\right)$ are achievable.
(b) The new noise $Z_{1}-\rho Z_{2}$ has zero mean and variance $\mathrm{E}\left(\left(Z_{1}-\rho Z_{2}\right)^{2}\right)=\sigma^{2}\left(1-\rho^{2}\right)$. Therefore, all rates less than $\frac{1}{2} \log _{2}\left(1+\frac{P}{\sigma^{2}\left(1-\rho^{2}\right)}\right)$ are achievable.
(c) The capacity is $C=\max I\left(X ; Y_{1}, Y_{2}\right)=\max \left(h\left(Y_{1}, Y_{2}\right)-h\left(Z_{1}, Z_{2}\right)\right)=\frac{1}{2} \log _{2}(1+$ $\left.\frac{P}{\sigma^{2}\left(1-\rho^{2}\right)}\right)$. This shows that the scheme used in (b) is a way to achieve capacity.

Problem 5.

(a) We have

$$
I(X ; Y)=h(Y)-h(Y \mid X)=h(Y)-h(Z \mid X)=h(Y)-h(Z)
$$

where the last equality is because Z is independent of X.
(b) In the natural log basis,

$$
h(Z)=-\int f_{Z}(z) \ln f_{Z}(z) d z=\int_{0}^{\infty} z e^{-z} d z=1 \text { nats. }
$$

(c) Since $Y=X+Z$, the expectation of $Y, E[Y]$ equals $E[X]+E[Z]$. Since $E[X]$ is constrained to be less than or equal to P and $E[Z]=1$, we see that $E[Y] \leq P+1$. Since X is constrained to be non-negative and so is Z, we see that Y is also constrained to be non-negative.
From Homework 9, Problem 7 we know that among non-negative random variables of a given expectation λ, the one with density $p(y)=e^{-y / \lambda} / \lambda$ has the largest differential entropy. This differential entropy in natural units is

$$
\int_{0}^{\infty} \frac{e^{-y / \lambda}}{\lambda}[\ln \lambda+y / \lambda] d y=\ln \lambda+1 \text { nats. }
$$

Thus, the differential entropy of Y is less than $1+\ln E[Y] \leq 1+\ln (1+P)$, which implies

$$
C \leq \ln (1+P) \text { nats }
$$

At this point, we do not know if Y can be made to have an exponential distribution with mean $1+P$ so we cannot know if this above inequality is an equality or not.
(d) The Laplace transform of the random variable Y is $E\left(e^{s Y}\right)=E\left(e^{s(X+Z)}\right)=E\left(e^{s X}\right) E\left(e^{s Z}\right)$, where the latter equality follows from the independence of X and Z. Therefore we have that $E\left(e^{s X}\right)=\frac{E\left(e^{s Y}\right)}{E\left(e^{s Z}\right)}$. Computing $E\left(e^{s Y}\right)$,

$$
\begin{aligned}
E\left(e^{s Y}\right) & =\int_{\infty}^{\infty} e^{s y} f_{Y}(y) d y \\
& =\int_{0}^{\infty} e^{s y} \mu e^{-\mu y} d y \\
& =\frac{\mu}{\mu-s} \quad \forall s \leq \mu
\end{aligned}
$$

The expectation is not defined for $s>\mu$ (as the integral blows up). Likewise, we evaluate $E\left(e^{s Z}\right)=\frac{1}{1-s}$ (defined for $s \leq 1$). Therefore for $s \leq \min (1, \mu)$, we can
evaluate $E\left(e^{s X}\right)$ as

$$
\begin{aligned}
E\left(e^{s X}\right) & =\frac{E\left(e^{s Y}\right)}{E\left(e^{s Z}\right)} \\
& =\mu \frac{1-s}{\mu-s} \\
& =\mu+(1-\mu) \frac{\mu}{\mu-s}
\end{aligned}
$$

Inverting the Laplace transform $E\left(e^{s X}\right)$ gives us the distribution of the X that gives an exponential distribution for Y. From inspection, we can deduce this distribution of X to be

$$
f_{X}(x)=\mu \delta(x)+(1-\mu) \mu e^{-\mu x} \quad x \geq 0
$$

Notice that the distribution is a convex combination of the exponential distribution and the distribution that puts all the mass on one point (in this case the point $x=0$).
(e) By taking $\mu=1 /(1+P)$, we see that there is a density on X which makes the density of Y an exponential with mean $1+P$. Furthermore, this density on X makes X non-negative, and, $E[X]=E[Y]-E[Z]=P$. Thus, the bound of part (c) can be achieved.

Problem 6.

(a)

$$
\begin{aligned}
F\left(p, r_{p}\right)-F(p, r) & =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) P(y \mid x) \log _{2} \frac{r_{p}(x \mid y)}{r(x \mid y)} \\
& =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) P(y \mid x) \log _{2} \frac{p(x) P(y \mid x)}{r(x \mid y) \sum_{x^{\prime} \in \mathcal{X}} p\left(x^{\prime}\right) P\left(y \mid x^{\prime}\right)} \\
& =D\left(P_{1} \| P_{2}\right) \geq 0
\end{aligned}
$$

where $P_{1}(x, y):=p(x) P(y \mid x)$ and $P_{2}(x, y):=r(x \mid y) \sum_{x^{\prime} \in \mathcal{X}} p\left(x^{\prime}\right) P\left(y \mid x^{\prime}\right)$.
(b) We can rewrite $F(p, r)$ as follows:

$$
\begin{equation*}
F(p, r)=\left(\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) P(y \mid x) \log _{2} r(x \mid y)\right)+\left(\sum_{x \in \mathcal{X}} p(x) \log _{2} \frac{1}{p(x)}\right) \tag{1}
\end{equation*}
$$

The first term in (1) is linear in p while the second term is strictly concave in p (since the function $t \longrightarrow t \log _{2} \frac{1}{t}$ is strictly concave). Therefore, $F(p, r)$ is strictly concave in p.
The first term in 1 is concave in r (since the function $\log _{2}$ is concave) and the second term is constant with respect to r. Therefore, $F(p, r)$ is concave in r.
(c) For every $x \in \mathcal{X}$, we have:

$$
\frac{\partial F\left(p, r_{k}\right)}{\partial p(x)}=\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} r_{k}(x \mid y)+\log _{2} \frac{1}{p(x)}-\frac{1}{\ln 2}
$$

A probability distribution p satisfies the Kuhn-Tucker conditions if and only if there exists a real number λ such that for all $x \in \mathcal{X}$, we have $\frac{\partial F\left(p, r_{k}\right)}{\partial p(x)} \leq \lambda$ with equality if $p(x)>0$. Therefore, for all $x \in \mathcal{X}$ we have:

$$
\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} r_{k}(x \mid y)-\log _{2}(p(x)) \leq \lambda^{\prime}
$$

where $\lambda^{\prime}=\lambda+\frac{1}{\ln 2}$. This shows that

$$
p(x) \geq 2^{-\lambda^{\prime}} \alpha_{k}(x) .
$$

If $p(x)>0$, we have $p(x)=2^{-\lambda^{\prime}} \alpha_{k}(x)$, and if $p(x)=0$ we must also have $p(x)=$ $2^{-\lambda^{\prime}} \alpha_{k}(x)=0$ since $2^{-\lambda^{\prime}} 2^{\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} r_{k}(x \mid y)} \geq 0$. We conclude that $p(x)=2^{-\lambda^{\prime}} \alpha_{k}(x)$ in all cases. Therefore, $1=2^{-\lambda^{\prime}} \sum_{x \in \mathcal{X}} \alpha_{k}(x)$, and $\lambda^{\prime}=\log _{2} \sum_{x \in \mathcal{X}} \alpha_{k}(x)$. We conclude that the only distribution that satisfies the Kuhn-Tucker conditions is the one given by $p(x)=\frac{\alpha_{k}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}$. On the other hand, the fact that $F\left(p, r_{k}\right)$ is concave in p shows that it admits a maximum p_{k+1}, which has to satisfy the Kuhn-Tucker conditions. Therefore, $p_{k+1}(x)=\frac{\alpha_{k}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}$.
(d) $C \geq F\left(p_{k+1}, r_{k+1}\right)$ since $F\left(p_{k+1}, r_{k+1}\right)=\left.I(X ; Y)\right|_{p_{X}=p_{k+1}}$. This implies that $C \geq$ $F\left(p_{k+1}, r_{k}\right)$ since $F\left(p_{k+1}, r_{k+1}\right) \geq F\left(p_{k+1}, r_{k}\right)$. On the other hand, we have

$$
\begin{aligned}
& F\left(p_{k+1}, r_{k}\right) \\
& \quad=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \frac{\alpha_{k}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)} P(y \mid x) \log _{2} \frac{r_{k}(x \mid y) \sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}{\alpha_{k}(x)} \\
& \quad=\sum_{x \in \mathcal{X}} \frac{\alpha_{k}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}\left[\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} r_{k}(x \mid y)-\log _{2}\left(\alpha_{k}(x)\right)+\log _{2} \sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)\right] \\
& \quad=\log _{2} \sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)+\sum_{x \in \mathcal{X}} \frac{\alpha_{k}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}\left[\log _{2}\left(\alpha_{k}(x)\right)-\log _{2}\left(\alpha_{k}(x)\right)\right] \\
& \quad=\log _{2} \sum_{x \in \mathcal{X}} \alpha_{k}(x) .
\end{aligned}
$$

(e)

$$
\begin{aligned}
\log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)} & =\log _{2} \alpha_{k}(x)-\log _{2} p_{k}(x)=\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} r_{k}(x \mid y)-\log _{2} p_{k}(x) \\
& =\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} \frac{r_{k}(x \mid y)}{p_{k}(x)}=\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} \frac{P(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} p_{k}\left(x^{\prime}\right) P\left(y \mid x^{\prime}\right)} .
\end{aligned}
$$

(f) Given that $\log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)}=\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} \frac{P(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} p_{k}\left(x^{\prime}\right) P\left(y \mid x^{\prime}\right)}$, the inequality $C \leq$ $\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)}$ is a direct application of Homework 8 Problem 5.
(g) From (d) and (f), we have:

$$
\begin{aligned}
C & -F\left(p_{k+1}, r_{k}\right) \\
& \leq \sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)}-\log _{2} \sum_{x \in \mathcal{X}} \alpha_{k}(x)=\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)}-\log _{2} \sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right) \\
& =\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{\alpha_{k}(x)}{p_{k}(x) \sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}=\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{k+1}(x)}{p_{k}(x)} \leq \max _{x \in \mathcal{X}} \log _{2} \frac{p_{k+1}(x)}{p_{k}(x)} .
\end{aligned}
$$

(h) We prove it by induction on n. The result is trivial for $n=0$. Now assume that it is true for n, and let us prove it for $n+1$:

$$
\begin{aligned}
\sum_{k=0}^{n+1}\left(C-F\left(p_{k+1}, r_{k}\right)\right) & =C-F\left(p_{n+2}, r_{n+1}\right)+\sum_{k=0}^{n}\left(C-F\left(p_{k+1}, r_{k}\right)\right) \\
& \leq \sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{n+2}(x)}{p_{n+1}(x)}+\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{n+1}(x)}{p_{0}(x)} \\
& =\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{n+2}(x)}{p_{0}(x)}
\end{aligned}
$$

On the other hand, since $p_{n+1}(x) \leq 1$ for all $x \in \mathcal{X}$, we have:

$$
\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{n+1}(x)}{p_{0}(x)} \leq \sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{1}{1 /|\mathcal{X}|}=\log _{2}|\mathcal{X}| .
$$

(i) The sequence $s_{n}=\sum_{k=0}^{n} C-F\left(p_{k+1}, r_{k}\right)$ is increasing and upper-bounded, thus convergent, which implies that the sequence $C-F\left(p_{k+1}, r_{k}\right)=s_{k}-s_{k-1}$ converges to zero. Therefore, $F\left(p_{k+1}, r_{k}\right)$ converges to C.

