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Problem 1.

(a) We have

Pr[U(1) 6= Un | Un = un] = Pr[U(1) 6= un | Un = un]
(∗)
= Pr[U(1) 6= un]

= 1− Pr[U(1) = un] = 1−
n∏
i=1

Pr[U(1)i = ui] = 1−
n∏
i=1

pU(ui),

where (∗) follows from the independence of U(1) and Un.

(b) An encoding failure happens if and only if U(m) 6= Un for every m = 1, 2, . . . ,M .
Therefore,

Pr[“failure” | Un = un] = Pr[U(m) 6= Un,∀m = 1, . . . ,M | Un = un]

= Pr[U(m) 6= un,∀m = 1, . . . ,M | Un = un]

= Pr[U(m) 6= un,∀m = 1, . . . ,M ]

=
M∏
m=1

(
1−

n∏
i=1

pU(ui)

)
=

(
1−

n∏
i=1

pU(ui)

)M

(c) Note that if un ∈ T nε (pU), then
∏n

i=1 pU(ui) ≥ 2−nH(U)(1+ε), which implies

Pr[“failure” | Un = un] =
(

1−
n∏
i=1

pU(ui)
)M
≤
(
1− 2−nH(U)(1+ε)

)M
(∗)
≤ exp

(
−M2−nH(U)(1+ε)

)
= exp

(
−2nR−nH(U)(1+ε)

)
.

where (∗) follows from the hint. Therefore, we have

Pr[“failure” | Un ∈ T nε (pU)] =
Pr[“failure” , Un ∈ T nε (pU)]

Pr[Un ∈ T nε (pU)]

=

∑
un∈T nε (pU )

Pr[“failure” , Un = un]

Pr[Un ∈ T nε (pU)]

=

∑
un∈T nε (pU )

Pr[“failure” | Un = un] Pr[Un = un]

Pr[Un ∈ T nε (pU)]

≤
∑

un∈T nε (pU )
exp

(
−2nR−nH(U)(1+ε)

)
Pr[Un = un]

Pr[Un ∈ T nε (pU)]

= exp
(
−2nR−nH(U)(1+ε)

) ∑un∈T nε (pU )
Pr[Un = un]

Pr[Un ∈ T nε (pU)]

= exp
(
−2nR−nH(U)(1+ε)

) Pr[Un ∈ T nε (pU)]

Pr[Un ∈ T nε (pU)]

= exp
(
−2nR−nH(U)(1+ε)

)
.



(d) Assume R > H(U), then there exists ε > 0 such that R > H(U)(1 + ε). We have

Pr[“failure”] = Pr[“failure” , Un ∈ T nε (pU)] + Pr[“failure” , Un 6∈ T nε (pU)]

= Pr[“failure” | Un ∈ T nε (pU)] Pr[Un ∈ T nε (pU)] + Pr[“failure” , Un 6∈ T nε (pU)]

≤ Pr[“failure” | Un ∈ T nε (pU)] + Pr[Un 6∈ T nε (pU)]

≤ exp
(
−2nR−nH(U)(1+ε)

)
+ Pr[Un 6∈ T nε (pU)].

Since R > H(U)(1 + ε) both terms in the above go to 0 as n → ∞. Hence,
Pr[“failure”]→ 0 as n gets large.

Problem 2. Let the input distribution be p. We thus have

p(−1) + p(0) + p(1) = 1 p(−1) ≥ 0, p(0) ≥ 0, p(1) ≥ 0

(since p is a distribution) and, to satisfy E[b(X)] ≤ β we must have

p(−1) + p(1) = 1− p(0) ≤ β.

Moreover,

I(X;Y ) = H(Y )−H(Y |X)

(a)
= H(Y )− p(0)

(b)

≤ 1− p(0)

(c)

≤ max{1, β}.

where (a) follows because given {X = −1} or {X = 1} there is no uncertainity in Y
while given {X = 0}, Y is uniformly distributed in {−1, 1}, (b) holds since Y is binary
with equality if p(−1) + 1

2
p(0) = p(1) + 1

2
p(0) = 1

2
(which happens if we choose p(1) =

p(−1) = 1
2
(1 − p(0))) and (c) holds because of the cost constraint and is equality if we

choose p(0) = max{1− β, 0}. Hence, the capacity is

C =

{
β, if β ≤ 1

1, if β > 1
.

Problem 3.

h(X) =
1

2
log(2πeσ2

x)

h(Y ) =
1

2
log(2πeσ2

y)

h(X, Y ) =
1

2
log((2πe)2 det(K)) =

1

2
log((2πe)2(σ2

xσ
2
y − ρ2σ2

xσ
2
y)

I(X, Y ) = h(X) + h(Y )− h(X, Y ) =
1

2
log

1

1− ρ2

Note that the result does not depend on σx, σy, which says that normalization does not
change the mutual information.

Problem 4.

(a) All rates less than 1
2

log2(1 + P
σ2 ) are achievable.
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(b) The new noise Z1 − ρZ2 has zero mean and variance E((Z1 − ρZ2)
2) = σ2(1 − ρ2).

Therefore, all rates less than 1
2

log2(1 + P
σ2(1−ρ2)) are achievable.

(c) The capacity is C = max I(X;Y1, Y2) = max(h(Y1, Y2) − h(Z1, Z2)) = 1
2

log2(1 +
P

σ2(1−ρ2)). This shows that the scheme used in (b) is a way to achieve capacity.

Problem 5.

(a) We have

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− h(Z|X) = h(Y )− h(Z).

where the last equality is because Z is independent of X.

(b) In the natural log basis,

h(Z) = −
∫
fZ(z) ln fZ(z) dz =

∫ ∞
0

ze−z dz = 1 nats.

(c) Since Y = X + Z, the expectation of Y , E[Y ] equals E[X] + E[Z]. Since E[X] is
constrained to be less than or equal to P and E[Z] = 1, we see that E[Y ] ≤ P + 1.
SinceX is constrained to be non-negative and so is Z, we see that Y is also constrained
to be non-negative.
From Homework 9, Problem 7 we know that among non-negative random variables of
a given expectation λ, the one with density p(y) = e−y/λ/λ has the largest differential
entropy. This differential entropy in natural units is∫ ∞

0

e−y/λ

λ
[lnλ+ y/λ] dy = lnλ+ 1 nats.

Thus, the differential entropy of Y is less than 1 + lnE[Y ] ≤ 1 + ln(1 + P ), which
implies

C ≤ ln(1 + P ) nats

At this point, we do not know if Y can be made to have an exponential distribution
with mean 1 + P so we cannot know if this above inequality is an equality or not.

(d) The Laplace transform of the random variable Y is E(esY ) = E(es(X+Z)) = E(esX)E(esZ),
where the latter equality follows from the independence of X and Z. Therefore we

have that E(esX) = E(esY )
E(esZ)

. Computing E(esY ),

E(esY ) =

∫ ∞
∞

esyfY (y)dy

=

∫ ∞
0

esyµe−µydy

=
µ

µ− s
∀s ≤ µ

The expectation is not defined for s > µ (as the integral blows up). Likewise, we
evaluate E(esZ) = 1

1−s (defined for s ≤ 1). Therefore for s ≤ min(1, µ), we can
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evaluate E(esX) as

E(esX) =
E(esY )

E(esZ)

= µ
1− s
µ− s

= µ+ (1− µ)
µ

µ− s

Inverting the Laplace transform E(esX) gives us the distribution of the X that gives
an exponential distribution for Y . From inspection, we can deduce this distribution
of X to be

fX(x) = µδ(x) + (1− µ)µe−µx x ≥ 0

Notice that the distribution is a convex combination of the exponential distribution
and the distribution that puts all the mass on one point (in this case the point x = 0).

(e) By taking µ = 1/(1 + P ), we see that there is a density on X which makes the
density of Y an exponential with mean 1 +P . Furthermore, this density on X makes
X non-negative, and, E[X] = E[Y ]−E[Z] = P . Thus, the bound of part (c) can be
achieved.

Problem 6.

(a)

F (p, rp)− F (p, r) =
∑
x∈X

∑
y∈Y

p(x)P (y|x) log2

rp(x|y)

r(x|y)

=
∑
x∈X

∑
y∈Y

p(x)P (y|x) log2

p(x)P (y|x)

r(x|y)
∑

x′∈X p(x
′)P (y|x′)

= D(P1‖P2) ≥ 0,

where P1(x, y) := p(x)P (y|x) and P2(x, y) := r(x|y)
∑

x′∈X p(x
′)P (y|x′).

(b) We can rewrite F (p, r) as follows:

F (p, r) =
(∑
x∈X

∑
y∈Y

p(x)P (y|x) log2 r(x|y)
)

+
(∑
x∈X

p(x) log2

1

p(x)

)
. (1)

The first term in (1) is linear in p while the second term is strictly concave in p (since
the function t −→ t log2

1
t

is strictly concave). Therefore, F (p, r) is strictly concave
in p.

The first term in 1 is concave in r (since the function log2 is concave) and the second
term is constant with respect to r. Therefore, F (p, r) is concave in r.

(c) For every x ∈ X , we have:

∂F (p, rk)

∂p(x)
=
∑
y∈Y

P (y|x) log2 rk(x|y) + log2

1

p(x)
− 1

ln 2
.
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A probability distribution p satisfies the Kuhn-Tucker conditions if and only if there

exists a real number λ such that for all x ∈ X , we have
∂F (p, rk)

∂p(x)
≤ λ with equality

if p(x) > 0. Therefore, for all x ∈ X we have:∑
y∈Y

P (y|x) log2 rk(x|y)− log2(p(x)) ≤ λ′,

where λ′ = λ+
1

ln 2
. This shows that

p(x) ≥ 2−λ
′
αk(x).

If p(x) > 0, we have p(x) = 2−λ
′
αk(x), and if p(x) = 0 we must also have p(x) =

2−λ
′
αk(x) = 0 since 2−λ

′
2
∑
y∈Y P (y|x) log2 rk(x|y) ≥ 0. We conclude that p(x) = 2−λ

′
αk(x)

in all cases. Therefore, 1 = 2−λ
′∑

x∈X αk(x), and λ′ = log2

∑
x∈X αk(x). We conclude

that the only distribution that satisfies the Kuhn-Tucker conditions is the one given by

p(x) =
αk(x)∑

x′∈X αk(x
′)

. On the other hand, the fact that F (p, rk) is concave in p shows

that it admits a maximum pk+1, which has to satisfy the Kuhn-Tucker conditions.

Therefore, pk+1(x) =
αk(x)∑

x′∈X αk(x
′)

.

(d) C ≥ F (pk+1, rk+1) since F (pk+1, rk+1) = I(X;Y )|pX=pk+1
. This implies that C ≥

F (pk+1, rk) since F (pk+1, rk+1) ≥ F (pk+1, rk). On the other hand, we have

F (pk+1, rk)

=
∑
x∈X

∑
y∈Y

αk(x)∑
x′∈X αk(x

′)
P (y|x) log2

rk(x|y)
∑

x′∈X αk(x
′)

αk(x)

=
∑
x∈X

αk(x)∑
x′∈X αk(x

′)

[∑
y∈Y

P (y|x) log2 rk(x|y)− log2(αk(x)) + log2

∑
x′∈X

αk(x
′)
]

= log2

∑
x′∈X

αk(x
′) +

∑
x∈X

αk(x)∑
x′∈X αk(x

′)

[
log2(αk(x))− log2(αk(x))

]
= log2

∑
x∈X

αk(x).

(e)

log2

αk(x)

pk(x)
= log2 αk(x)− log2 pk(x) =

∑
y∈Y

P (y|x) log2 rk(x|y)− log2 pk(x)

=
∑
y∈Y

P (y|x) log2

rk(x|y)

pk(x)
=
∑
y∈Y

P (y|x) log2

P (y|x)∑
x′∈X pk(x

′)P (y|x′)
.

(f) Given that log2

αk(x)

pk(x)
=
∑
y∈Y

P (y|x) log2

P (y|x)∑
x′∈X pk(x

′)P (y|x′)
, the inequality C ≤

∑
x∈X

p∗(x) log2

αk(x)

pk(x)
is a direct application of Homework 8 Problem 5.
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(g) From (d) and (f), we have:

C − F (pk+1, rk)

≤
∑
x∈X

p∗(x) log2

αk(x)

pk(x)
− log2

∑
x∈X

αk(x) =
∑
x∈X

p∗(x) log2

αk(x)

pk(x)
− log2

∑
x′∈X

αk(x
′)

=
∑
x∈X

p∗(x) log2

αk(x)

pk(x)
∑

x′∈X αk(x
′)

=
∑
x∈X

p∗(x) log2

pk+1(x)

pk(x)
≤ max

x∈X
log2

pk+1(x)

pk(x)
.

(h) We prove it by induction on n. The result is trivial for n = 0. Now assume that it is
true for n, and let us prove it for n+ 1:

n+1∑
k=0

(C − F (pk+1, rk)) = C − F (pn+2, rn+1) +
n∑
k=0

(C − F (pk+1, rk))

≤
∑
x∈X

p∗(x) log2

pn+2(x)

pn+1(x)
+
∑
x∈X

p∗(x) log2

pn+1(x)

p0(x)

=
∑
x∈X

p∗(x) log2

pn+2(x)

p0(x)
.

On the other hand, since pn+1(x) ≤ 1 for all x ∈ X , we have:∑
x∈X

p∗(x) log2

pn+1(x)

p0(x)
≤
∑
x∈X

p∗(x) log2

1

1/|X |
= log2 |X |.

(i) The sequence sn =
n∑
k=0

C − F (pk+1, rk) is increasing and upper-bounded, thus con-

vergent, which implies that the sequence C − F (pk+1, rk) = sk − sk−1 converges to
zero. Therefore, F (pk+1, rk) converges to C.
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