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PrROBLEM 1. Note that Fy = E; U Ey U Ej.

(a) (1) For disjoint events, P (Ey) = P (Ey) + P (Es) + P (E3), so P (Ey) = 3/4.

(2) For independent events, 1 — P (Fjy) is the probability that none of the events
occur, which is the product of the probabilities that each one doesn’t occur.
Thus 1 — P (Ey) = (3/4)° and P (E,) = 37/64.

(3) If E1 = E2 = Eg, then EO = El and P(Eo) = 1/4

(b) (1) From the following Venn diagram, P (Ej) is clearly maximized when the events
are disjoint, so max P (Ey) = 3/4.
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(2) The intersection of each pair of sets has probability 1/16. As seen in the Venn
diagram below, P (Fy) is maximized if all these pairwise intersections are iden-
tical, in which case P (Ey) = 3(1/4 —1/16) 4 1/16 = 5/8. One can also use the
formula P(Ey) = P(E,) + P(Es) + P(Es) — P(Ey N Ey) — P(Ey N Ey) — P(E>
E3)+P(EiNE>NE3), and notice that all the terms except the last is fixed by the
problem, and the last term cannot be made more than min; ; P(E;NE;) = 1/16.

(c) Same considerations as in (b)(2) yields the upper bound P(Fy) < 3p—2p* As P(E,) =
1, we find that p > 1/2.

PROBLEM 2. Let L be the event that the loaded die is picked and H the event that the
honest die is picked. Let A; be the event that 7 is turned up on the first roll, and B; be the
event that ¢ is turned up on the second roll. We are given that P (L) = 1/3, P (H) = 2/3;
P(A|L)=2/3; P(A;|L)=1/15 2<i<6;P(A;|H)=1/6 1<i<6. Then

P (L, A) P(A | L) P(L) 2

P(L|A)= P (4) :P(AML)P(L)—O—P(AMH)P(H) 3




This is the probability that the loaded die was picked conditional on the first roll showing
a 1. For two rolls we make the assumption from the physical mechanism involved in rolling
a die that the outcome on the two successive rolls of a given die are independent. Thus

P(ABy | L)=(2/3)* and P (A,B; | H) = (1/6)2. Tt follows as before that
8
P(L|ABy) = 9
PROBLEM 3. Since A, B, C, D form a Markov chain their probability distribution is given
by
p(a)p(bla)p(c|b)p(d]c) (1)
(a) Yes: Summing (1) over d shows that A, B, C have the probability distribution
p(a)p(bla)p(c|b).

(b) Yes: The reverse of a Markov chain is also a Markov chain. Applying this to A, B,
C', D and using part (a) we get that D, C', B is a Markov chain. Reversing again we
get the desired result.

Alternatively summing (1) over a (noting that > p(a)p(bla) = p(b)) shows B -e
C e D.
(¢) Yes: Since A, B, C, D is a Markov chain, given C', D is independent of B, and thus
p(d|c) = p(d|(b,c)). So (1) can be written as
pla, (b,¢),d) = p(a)p((b, c)|a)p(d(b, c)).
(d) Yes, by a similar (in fact easier) reasoning as (c).

PROBLEM 4. No. Take for example A = D and let A be independent of the pair (B, C).
Then both A, B, C' and B, C, A (same as B, C, D) are Markov chains. But A, B, C, D

is not: A is not independent of D when B and C' are given.

PROBLEM 5.
(a)
BIX +Y] = (2 +y)Pxy(z,y)

z,Y

= Z rPxy(z,y) + Z yPxy (z,y)

=Y wPx(z)+ > yPr(y)
= E[X] + E[Y].

Note that independence is not necessary here and that the argument extends to non-
discrete variables if the expectation exists.

(b)
E[XY] = ZwyPXy(x, Y)

= 3" ayPx(2)Pr(y)

=Y xPx(z) ) yPr(y)

— E[X] E]Y].



()

Note that the statistical independence was used on the second line. Let X and Y take
on only the values £1 and 0. An example of uncorrelated but dependent variables is

1
Pxy (1,0) = Pxy (0,1) = Pxy (—1,0) = Pxy (0,—1) = T
An example of correlated and dependent variables is

1
Pxy (1,1) = Pxy (—1,-1) = 3

Using (a), we have

oy = E[(X - E[X]+Y — E[Y])’]
= E[(X — B[X])’] + 2B[(X - E[X])(Y - E[Y])] + E[(Y — E[Y])?].

The middle term, from (a), is 2(E[XY]— E[X]E[Y]). For uncorrelated variables that
is zero, leaving us with 0%,y = 0% + 0%

PROBLEM 6. We solve the problem for a general vehicle with n wheels.

(a)

(b)

()

Out of n! possible orderings (n — 1)! has the tyre 1 in its original place. Thus tyre 1
is installed in its original position with probability 1/n.

All tyres end up in their original position in only 1 of the n! orders. Thus the
probability of this event is 1/n!.

Let X; be the indicator random variable that tyre ¢ is installed in its original position,
so that the number of tyres installed in their original positions is N = Y " X;.
By (a), E[X;] = 1/n. By the linearity of expectation, E[N] = n(1/n) = 1. Note that
the linearity of the expectation holds even if the X;’s are not independent (as it is in
this case).

Let A; be the event that the 7th tyre remains in its original position. Then, the event
we are interested in is the complement of the event | J; A; and thus has probability
1 —Pr(|J; Ai). Furthermore, by the inclusion/exclusion formula,

i i 11<ig 11 <i2<i3

The jth sum above consists of (") terms, each term having the value P(A;N---NA;).
Note that this is the probability of the event that tyres 1 through j have remained
in their original positions, and equals (n — j)!/n!. Consequently,

. _n - (n_j)!_n Vi1
re(Ja) = e (1) 52 - S en

% J=1 7=1
and the event that no tyre remains in its original position has probability

-e(Ja) =3 5

= 7

(For the case n = 4, the value is 3/8.)



PROBLEM 7.

(a) Let A; denote the event that X; # X. The event that X does not appear in the
inventory is thus

A=AnN---NA,.

Note that the events Ay, ..., A, are not independent—because they involve the com-
mon random variable X. However, they become independent when conditioned on
the value of X, with P(A;|X =) =1 — p(x). Thus,

PAIX =) = (1 - p(x))".

Consequently P(A) =>__p(x)(1 —p(z))"..

(b) With p the uniform distribution on n items, the above value for P(A) equals (1 —
1/n)".

(c) For n large, (1 — 1/n)™ approaches 1/e ~ 37%.



