ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 22 Homework 9 Information Theory and Coding Nov. 17, 2015

PROBLEM 1. Let $\{f_i : \mathbb{R} \to \mathbb{R}\}_{1 \leq i \leq n}$ be a set of convex functions on \mathbb{R} and $c_i \geq 0$ for all $i \in \{1, 2, ..., n\}$.

- (a) Show that the function $f: x \mapsto \sum_{i=1}^n c_i f_i(x)$ is convex.
- (b) Show that the function $g:(x_1,x_2,\ldots,x_n)\mapsto \sum_{i=1}^n c_i f_i(x_i)$ is convex.

PROBLEM 2. Let $\{f_i(x)\}_{i\in I}$ be a set of convex real-valued functions defined over a convex domain D. Assuming that $f(x) = \sup_{i\in I} f_i(x)$ is finite for all $x \in D$, show that f(x) is convex.

PROBLEM 3. Let $f: U \to \mathbb{R}$ be a convex function on U and assume that there exists $a, b \in \mathbb{R}$ such that $a \leq f(x) \leq b$ for all $x \in U$. Let h be an increasing convex function defined on the interval [a, b]. Show that the function $g = h \circ f$ is convex on U.

PROBLEM 4. A function f(v) is defined on a convex region R of a vector space. Show that f(v) is convex iff the function $f(\lambda v_1 + (1 - \lambda)v_2)$ is a convex function of λ , $0 \le \lambda \le 1$, for all $v_1, v_2 \in R$.

Problem 5.

(a) Show that $I(U;V) \ge I(U;V|T)$ if T, U, V form a Markov chain, i.e., conditional on U, the random variables T and V are independent.

Fix a conditional probability distribution p(y|x), and suppose $p_1(x)$ and $p_2(x)$ are two probability distributions on \mathcal{X} .

For $k \in \{1,2\}$, let I_k denote the mutual information between X and Y when the distribution of X is $p_k(\cdot)$.

For $0 \le \lambda \le 1$, let W be a random variable, taking values in $\{1, 2\}$, with

$$\Pr(W = 1) = \lambda, \quad \Pr(W = 2) = 1 - \lambda.$$

Define

$$p_{W,X,Y}(w,x,y) = \begin{cases} \lambda p_1(x) p(y|x) & \text{if } w = 1\\ (1-\lambda) p_2(x) p(y|x) & \text{if } w = 2. \end{cases}$$

- (b) Express I(X;Y|W) in terms of I_1 , I_2 and λ .
- (c) Express p(x) in terms of $p_1(x)$, $p_2(x)$ and λ .
- (d) Using (a), (b) and (c) show that, for every fixed conditional distribution $p_{Y|X}$, the mutual information I(X;Y) is a concave \cap function of p_X .

PROBLEM 6. Suppose Z is uniformly distributed on [-1,1], and X is a random variable, independent of Z, constrained to take values in [-1,1]. What distribution for X maximizes the entropy of X+Z? What distribution of X maximizes the entropy of XZ?

PROBLEM 7. Show that among all non-negative random variables with mean λ the exponential random variable has the largest differential entropy. Hint: let $p(x) = e^{-x/\lambda}/\lambda$ be the density of the exponential random variable and let q(x) be some other density with mean λ . Consider D(q||p) and mimic the proof in class for the maximal entropy of the Gaussian.

PROBLEM 8. Consider an additive noise channel with input $x \in \mathbb{R}$, and output

$$Y = x + Z$$

where Z is a real random variable independent of the input x, has zero mean and variance equal to σ^2 .

In this problem we prove in two different ways that the Gaussian channel has the smallest capacity among all additive noise channels of a given noise variance. Let \mathcal{N}_{σ^2} denote the Gaussian density with zero mean and variance σ^2 .

FIRST METHOD

Let X be a Gaussian random variable with zero-mean and variance P. Let \mathcal{N}_P denote its density $\mathcal{N}_P(x) = \frac{1}{\sqrt{2\pi P}} e^{-\frac{x^2}{2P}}$.

- (a) Show that $I(X;Y) = H(X) H(X \alpha Y|Y)$ for any $\alpha \in \mathbb{R}$.
- (b) Show that $H(X \alpha Y) \leq \frac{1}{2} \log 2\pi e E((X \alpha Y)^2)$ for any $\alpha \in \mathbb{R}$.
- (c) Deduce from (a) and (b) that

$$I(X;Y) \ge H(X) - \frac{1}{2}\log 2\pi eE((X - \alpha Y)^2)$$

for any $\alpha \in \mathbb{R}$.

- (d) Show that $E((X \alpha Y)^2) \ge \frac{\sigma^2 P}{\sigma^2 + P}$ with equality if and only if $\alpha = \frac{P}{P + \sigma^2}$.
- (e) Deduce from (c) and (d) that

$$I(X;Y) \ge \frac{1}{2}\log\left(1 + \frac{P}{\sigma^2}\right)$$

and conclude that the Gaussian channel has the smallest capacity among all additive noise channels of a given noise variance.

SECOND METHOD

(a) Denote the input probability density by p_X . Verify that

$$I(X;Y) = \iint p_X(x)p_Z(y-x) \ln \frac{p_Z(y-x)}{p_Y(y)} dxdy \quad \text{nats.}$$

where p_Y is the density of the output when the input has density p_X .

(b) Now set $p_X = \mathcal{N}_P$. Verify that

$$\frac{1}{2}\ln(1+P/\sigma^2) = \iint p_X(x)p_Z(y-x)\ln\frac{\mathcal{N}_{\sigma^2}(y-x)}{\mathcal{N}_{P+\sigma^2}(y)}\,dxdy.$$

(c) Still with $p_X = \mathcal{N}_P$, show that

$$\frac{1}{2}\ln(1 + P/\sigma^2) - I(X;Y) \le 0.$$

[Hint: use (a) and (b) and $\ln t \le t - 1$.]

(d) Show that an additive noise channel with noise variance σ^2 and input power P has capacity at least $\frac{1}{2}\log_2(1+P/\sigma^2)$ bits per channel use. Conclude that the Gaussian channel has the smallest capacity among all additive noise channels of a given noise variance.