# ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 

School of Computer and Communication Sciences

Problem 1. Channels with memory have higher capacity. Consider a binary symmetric channel with $Y_{i}=X_{i} \oplus Z_{i}$, where $\oplus$ is $\bmod 2$ addition, and $X_{i}, Y_{i} \in\{0,1\}$.

Suppose that $\left\{Z_{i}\right\}$ has constant marginal probabilities $\operatorname{Pr}\left\{Z_{i}=1\right\}=p=1-\operatorname{Pr}\left\{Z_{i}=\right.$ $0\}$, but that $Z_{1}, Z_{2}, \ldots, Z_{n}$ are not necessarily independent. Assume that $\left(Z_{1}, \ldots, Z_{n}\right)$ is independent of the input $\left(X_{1}, \ldots, X_{n}\right)$. Let $C=\log 2-H(p, 1-p)$. Show that

$$
\max _{p_{X_{1}, X_{2}, \ldots, X_{n}}} I\left(X_{1}, X_{2}, \ldots, X_{n} ; Y_{1}, Y_{2}, \ldots, Y_{n}\right) \geq n C .
$$

Problem 2. Consider two discrete memoryless channels. The input alphabet, output alphabet, transition probabilities and capacity of the $k^{\prime}$ 'th channel is given by $\mathcal{X}_{k}, \mathcal{Y}_{k}, p_{k}$ and $C_{k}$ respectively $(k=1,2)$. The channels operate independently. A communication system has access to both channels, that is, the effective channel between the transmitter and receiver has input alphabet $\mathcal{X}_{1} \times \mathcal{X}_{2}$, output alphabet $\mathcal{Y}_{1} \times \mathcal{Y}_{2}$ and transition probabilities $p_{1}\left(y_{1} \mid x_{1}\right) p_{2}\left(y_{2} \mid x_{2}\right)$. Find the capacity of this channel.

Problem 3. Let $P_{1}$ and $P_{2}$ be two channels of input alphabet $\mathcal{X}_{1}$ and $\mathcal{X}_{2}$ and of output alphabet $\mathcal{Y}_{1}$ and $\mathcal{Y}_{2}$ respectively. Consider a communication scheme where the transmitter chooses the channel ( $P_{1}$ or $P_{2}$ ) to be used and where the receiver knows which channel were used. This scheme can be formalized by the channel $P$ of input alphabet $\mathcal{X}=$ $\left(\mathcal{X}_{1} \times\{1\}\right) \cup\left(\mathcal{X}_{2} \times\{2\}\right)$ and of output alphabet $\mathcal{Y}=\left(\mathcal{Y}_{1} \times\{1\}\right) \cup\left(\mathcal{Y}_{2} \times\{2\}\right)$, which is defined as follows:

$$
P\left(y, k^{\prime} \mid x, k\right)= \begin{cases}P_{k}(y \mid x) & \text { if } k^{\prime}=k \\ 0 & \text { otherwise }\end{cases}
$$

Let $X=\left(X_{k}, K\right)$ be a random variable in $\mathcal{X}$ which will be the input distribution to the channel $P$, and let $Y=\left(Y_{k}, K\right) \in \mathcal{Y}$ be the output distribution. Define $X_{1}$ as being the random variable in $\mathcal{X}_{1}$ obtained by conditioning $X_{k}$ on $K=1$. Similarly define $X_{2}, Y_{1}$ and $Y_{2}$. Let $\alpha$ be the probability that $K=1$.
(a) Show that $I(X ; Y)=h_{2}(\alpha)+\alpha I\left(X_{1} ; Y_{1}\right)+(1-\alpha) I\left(X_{2} ; Y_{2}\right)$.
(b) What is the input distribution $X$ that achieves the capacity of $P$ ?
(c) Show that the capacity $C$ of $P$ satisfies $2^{C}=2^{C_{1}}+2^{C_{2}}$, where $C_{1}$ and $C_{2}$ are the capacities of $P_{1}$ and $P_{2}$ respectively.

Problem 4. Show that a cascade of $n$ identical binary symmetric channels,

$$
X_{0} \rightarrow \mathrm{BSC} \# 1 \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n-1} \rightarrow \mathrm{BSC} \# \mathrm{n} \rightarrow X_{n}
$$

each with raw error probability $p$, is equivalent to a single BSC with error probability $\frac{1}{2}\left(1-(1-2 p)^{n}\right)$ and hence that $\lim _{n \rightarrow \infty} I\left(X_{0} ; X_{n}\right)=0$ if $p \neq 0,1$. Thus, if no processing is allowed at the intermediate terminals, the capacity of the cascade tends to zero.

Problem 5. Consider a memoryless channel with transition probability matrix $P_{Y \mid X}(y \mid x)$, with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. For a distribution $Q$ over $\mathcal{X}$, let $I(Q)$ denote the mutual information between the input and the output of the channel when the input distribution is $Q$. Show that for any two distributions $Q$ and $Q^{\prime}$ over $\mathcal{X}$,
(a)

$$
I\left(Q^{\prime}\right) \leq \sum_{x \in \mathcal{X}} Q^{\prime}(x) \sum_{y \in \mathcal{Y}} P_{Y \mid X}(y \mid x) \log \left(\frac{P_{Y \mid X}(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} P_{Y \mid X}\left(y \mid x^{\prime}\right) Q\left(x^{\prime}\right)}\right)
$$

(b)

$$
C \leq \max _{x} \sum_{y \in \mathcal{Y}} P_{Y \mid X}(y \mid x) \log \left(\frac{P_{Y \mid X}(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} P_{Y \mid X}\left(y \mid x^{\prime}\right) Q\left(x^{\prime}\right)}\right)
$$

where $C$ is the capacity of the channel. Notice that this upper bound to the capacity is independent of the maximizing distribution.

