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Problem 1. The following problem concerns a technique known as run length coding.
Along with being a useful technique, it should make you look carefully into the sense in
which Huffman coding is optimal. A source produces a sequence of independent binary
digits with probabilities P (0) = 0.9 and P (1) = 0.1. We shall encode this sequence in
two stages, first counting the number of 0’s between successive 1’s in the source output,
and then encoding these counts into binary code words. The first stage of encoding maps
source sequences into intermediate digits by the following rule:

Intermediate Digits
Source Sequence (# of zeros)

1 0
01 1
001 2
0001 3

...
...

00000001 7
00000000 8

Thus the following sequence is encoded as follows:

1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1
0, 2, 8, 2, 0, 4

The final stage of encoding assigns a code word of length 1 to the intermediate digit 8 and
codewords of length 4 to the other intermediate digits.

(a) Justify that the overall code is uniquely decodable.

(b) Find the average number N̄ of source digits per intermediate digit.

(c) Find the average number M̄ of encoded binary digits per intermediate digit.

(d) Show, by appeal to the law of large numbers, that for a very long source sequence
of source digits, the ratio of the number of encoded binary digits to the number of
source digits will with high probability be close to M̄/N̄ . Compare this ratio to the
average number of code letters per source letter for a Huffman code encoding four
source digits at a time.

Problem 2. Let pXY (x, y) be given by

@
@X
Y

0 1
0 1/3 1/3
1 0 1/3



Find

(a) H(X), H(Y ).

(b) H(X|Y ), H(Y |X).

(c) H(X, Y ).

(d) H(Y )−H(Y |X).

(e) I(X;Y ).

(f) Draw a Venn diagram for the quantities in (a) through (e).

Problem 3. Let X be a random variable taking values in M points a1, . . . , aM , and let
PX(aM) = α. Show that

H(X) = α log
1

α
+ (1− α) log

1

1− α
+ (1− α)H(Y )

where Y is a random variable taking values in M −1 points a1, . . . , aM−1 with probabilities
PY (aj) = PX(aj)/(1− α); 1 ≤ j ≤M − 1. Show that

H(X) ≤ α log
1

α
+ (1− α) log

1

1− α
+ (1− α) log(M − 1)

and determine the condition for equality.

Problem 4. Let X, Y, Z be discrete random variables. Prove the validity of the following
inequalities and find the conditions for equality:

(a) I(X, Y ;Z) ≥ I(X;Z).

(b) H(X, Y |Z) ≥ H(X|Z).

(c) H(X, Y, Z)−H(X, Y ) ≤ H(X,Z)−H(X).

(d) I(X;Z|Y ) ≥ I(Z;Y |X)− I(Z;Y ) + I(X;Z).

Problem 5. For a stationary process X1, X2, . . . , show that

(a)
1

n
H(X1, . . . , Xn) ≥ H(Xn|Xn−1, . . . , X1).

(b)
1

n
H(X1, . . . , Xn) ≤ 1

n− 1
H(X1, . . . , Xn−1).

Problem 6. Let {Xi}∞i=−∞ be a stationary stochastic process. Prove that

H(X0|X−1, . . . , X−n) = H(X0|X1, . . . , Xn).

That is: the conditional entropy of the present given the past is equal to the conditional
entropy of the present given the future.

Problem 7. Show, for a Markov chain, that

H(X0|Xn) ≥ H(X0|Xn−1), n ≥ 1.

Thus, initial state X0 becomes more difficult to recover as time goes by.
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