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Problem 1. Suppose we have a source that produces an independent and identically
distributed sequence U1U2 . . . according to pU . We design a source coder in the following
fashion:

• generate M = 2nR sequences
U(1) = U(1)1 . . . U(1)n
...
U(M) = U(M)1 . . . U(M)n
by drawing {U(m)i : 1 ≤ i ≤ n, 1 ≤ m ≤M} independently according to pU .

• encode U1 . . . Un as follows:
if there exists m such that U1 . . . Un = U(m) send the log2M = nR bit representation
of m else declare encoding failure.

(a) Conditioned on Un = un, what is the probability that U(1) 6= Un?

(b) Conditioned on Un = un, what is the probability of encoding failure?

(c) Show that Pr(“failure”|Un ∈ T nε (pU)) ≤ exp
(
−2nR−nH(U)(1+ε)

)
.

Hint: (1− x)M ≤ exp(−Mx)

(d) Show that if R > H(U) then Pr(error)→ 0 as n gets large.

Problem 2. A discrete memoryless channel has three input symbols: {−1, 0, 1}, and two
output symbols: {1,−1}. The transition probabilities are

p(−1| − 1) = p(1|1) = 1, p(1|0) = p(−1|0) = 0.5.

Find the capacity of this channel with cost constraint β, if the cost function is b(x) = x2.

Problem 3. Random variables X and Y are correlated Gaussian variables:(
X
Y

)
∼ N2

((
0
0

)
;K =

[
σ2
x ρσxσy

ρσxσy σ2
y

])
.

Find I(X;Y ).

Problem 4. Consider a vector Gaussian channel described as follows:

Y1 = x+ Z1

Y2 = Z2

where x is the input to the channel constrained in power to P ; Z1 and Z2 are jointly
Gaussian random variables with E[Z1] = E[Z2] = 0, E[Z2

1 ] = E[Z2
2 ] = σ2 and E[Z1Z2] =

ρσ2, with ρ ∈ [−1, 1], and independent of the channel input.

(a) Consider a receiver that discards Y2 and decodes the message based only on Y1. What
rates are achievable with such a receiver?



(b) Consider a receiver that forms Y = Y1− ρY2, and decodes the message based only on
Y . What rates are achievable with such a receiver?

(c) Find the capacity of the channel and compare it to the part (b).

Problem 5. Consider an additive noise channel Y = X + Z where X is the input of
the channel, Y is the output of the channel and Z is the noise. The set of inputs to the
channel are non-negative real numbers. Furthermore, the channel input is constrained in
its average value: a codeword x = (x1, . . . , xn) has to satisfy

1

n

n∑
i=1

xi ≤ P.

The noise Z is independent of the input X, and has the exponential distribution with
E[Z] = 1, i.e.,

fZ(z) =

{
exp(−z) z ≥ 0

0 else.

(a) The capacity of this channel is given by

C = max
X:E[X]≤P

X is non-negative

I(X;Y ).

Express the mutual information in terms of the differential entropy of Y and the
differential entropy of Z.

(b) What is the differential entropy of Z?

(c) For a random variable X that satisfies the input constraints, what are the constraints
on the range and the expectation of Y ? Find the maximum possible differential
entropy of Y subject to these constraints. Hence show that the capacity is upper
bounded by

C ≤ log(1 + P ).

(d) Find the distribution on X that gives an exponential distribution for Y = X + Z

fY (y) = µe−µy for y ≥ 0

[Use Laplace transforms to compute this distribution.]

(e) Conclude that the upper bound of part (c) is actually an equality, i.e.,

C = log(1 + P ).

Problem 6. Let P (y|x) be a channel of input alphabet X and of output alphabet Y , and
let p(x) be a distribution on X . Let r(x|y) be a conditional distribution on X given Y ,

i.e., for each x ∈ X and each y ∈ Y , r(x|y) ≥ 0 and
∑
x′∈X

r(x′|y) = 1. Define the functional

F (p, r) as follows:

F (p, r) =
∑
x∈X

∑
y∈Y

p(x)P (y|x) log2

r(x|y)

p(x)
.

Now for each input distribution p on X , define the conditional distribution rp as

rp(x|y) =
p(x)P (y|x)∑

x′∈X p(x
′)P (y|x′)

.

I.e., rp is the “true” conditional distribution of X given Y when p is the input distribution.
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(a) Use the positivity of divergence to show that for all conditional distributions r we
have F (p, r) ≤ F (p, rp) = I(X;Y ), and deduce that I(X;Y ) = max

r
F (p, r).

(b) Show that F (p, r) is concave in both p and r.

The fact that the capacity C is equal to max
p

max
r
F (p, r) suggests the following algorithm

to compute the capacity of the channel P :

1. Set p0 to be uniform in X , and set k = 0.

2. Set rk = argmax
r

F (pk, r) = rpk .

3. Set pk+1 = argmax
p

F (p, rk).

4. Set k = k + 1.

5. Go to step 2.

(c) Use the Kuhn-Tucker conditions to show that pk+1(x) =
αk(x)∑

x′∈X αk(x
′)

, where

log2 αk(x) =
∑
y∈Y

P (y|x) log2 rk(x|y).

This shows how to do step 3 of the algorithm.

(d) Show that C ≥ F (pk+1, rk) = log2

∑
x∈X

αk(x).

(e) Show that log2

αk(x)

pk(x)
=
∑
y∈Y

P (y|x) log2

P (y|x)∑
x′∈X P (y|x′)pk(x′)

.

(f) Let p∗ be the input distribution that achieves the capacity C of the channel P . Use
the result of Homework 8 Problem 5 to show that

C ≤
∑
x

p∗(x) log2

αk(x)

pk(x)
.

(g) Show that

C − F (pk+1, rk) ≤
∑
x∈X

p∗(x) log2

pk+1(x)

pk(x)
≤ max

x∈X
log2

pk+1(x)

pk(x)
.

This upper bound provides us with a stopping condition for the algorithm. I.e., we

can run the algorithm until max
x∈X

log2

pk+1(x)

pk(x)
≤ ε, where ε is some desired accuracy.

(h) Show that

n∑
k=0

(C − F (pk+1, rk)) ≤
∑
x∈X

p∗(x) log2

pn+1(x)

p0(x)
≤ log |X |.

Hint: p0 was chosen to be uniform.

(i) Deduce that the sequence F (pk+1, rk) converges to C and that the stopping condition

max
x∈X

log2

pk+1(x)

pk(x)
≤ ε is guaranteed to be met eventually.
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