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Problem 1.

(a) By the chain rule we have

H(Xn, Zn) = H(Xn) +H(Zn|Xn)

= H(Zn) +H(X1|Zn) +H(Xn
2 |X1, Z

n).

(where Xn
2 = (X2, . . . , Xn)). Since (X1, Z

n) determines Xn
2 (because, X1 determines

X̂2 and, knowing (X̂2, Z2), X2 is known, then (X1, X2) determines X̂3 which, together
with Z3 determines X3, . . . ), H(Xn

2 |X1, Z
n) = 0. Therefore,

H(Zn) = H(Xn)−H(X1|Zn)

which (together with the fact that H(X1|Zn) ≤ H(X1) ≤ 1) implies

H(Xn)− 1 ≤ H(Zn) ≤ H(Xn)

Consequently

H(Z) = lim
n→∞

1

n
H(Zn) = lim

n→∞

1

n
H(Xn) = H(X).

(b) Once again using the chain rule,

H(Zn, Xn|Xn−1) = H(Zn|Xn−1) +H(Xn|Zn, Xn−1)

= H(Xn|Xn−1) +H(Zn|Xn),

and since H(Xn|Zn, Xn−1) = H(Zn|Xn) = 0 (for the reasons explained in (a)),

h2(pn) = H(Zn) ≥ H(Zn|Xn−1) = H(Xn|Xn−1).

(c) From (b) and since X is a stationary process we have

lim inf
n→∞

h2(pn) ≥ lim
n→∞

H(Xn|Xn−1) = H(X).

Moreover, there exists a subsequence of {pn : n = 1, 2, . . . }, say {pni : ni ∈ N, i =
1, 2, . . . } for which lim infn→∞ pn = limi→∞ pni . Thus, by the continuity of h2(·),

lim inf
n→∞

h2(pn) = lim
i→∞

h2(pni) = h2(lim inf
i→∞

pni) = h2(p).

Problem 2.

(a) Since the channel is memoryless and feedback-free transmission is assumed, from the
code construction, it is obvious that (enc1(m1), enc2(m2), Y

n) is an i.i.d. length-n se-
quence of (X1, X2, Y )’s drawn from distribution p(x1, x2, y) = p1(x1)p2(x2)p(y|x1, x2).
Therefore, for sufficiently large n, the probability of this sequence being ε-typical is
as high as desired.



(b) Now, (enc1(m̃1), enc2(m2), Y
n) is an i.i.d. sequence (of length n) whose components

are distributed according to p1(x1)p(y, x2) where p(y, x2) =
∑

x′1
p1(x

′
1)p2(x2)p(y|x′1, x2).

(c) Pr{(enc1(m̃1), enc2(m2), Y
n) ∈ T} is the probability of a length n i.i.d. sequence Xn

1

whose elements have distribution p1 being jointly ε-typical (with respect to the dis-
tribution p1(x1)p(y, x2|x1) where p(y, x2|x1) = p(x2)p(y|x1, x2)) with an independent
length n sequence of (X2, Y )’s drawn from distribution p(y, x2) (defined in (b)). Thus,

Pr{(enc1(m̃1), enc2(m2), Y
n) ∈ T} .= 2−nI(X1,X2Y ).

(In the course we have seen this result for two random variables X and Y ; it is obvious
that we can replace X by X1 and Y by (X2, Y ) to derive the above result).

(d) From (a) we know that the probability of the correct message m1 not being in the
list of typical m1’s at decoder 2 is small, say at most ε/2.

From (c), the probability of each incorrect m̃1 being on that list (at decoder 2) is
equal (up to sub-exponential factors) to 2−nI(X1;X2Y ). Since there are M − 1 ≤ 2nR1

such m̃1’s, the probability of having an incorrect message on the list is, by the union
bound, at most 2n[R1−I(X1;X2Y )] which is exponentially small in n provided that R1 <
I(X1;X2Y ). Thus, for large enough n, this probability is also smaller than ε/2.

Consequently, the average probability of decoding error at decoder 2 is at most ε
provided that R1 < I(X1, X2Y ).

By symmetry, the average probability of decoding error at decoder 1 is smaller than
ε if R2 < I(X2, X1, Y ).

Since the average probability of error (over the generation of codebooks) is small (for
rate pairs (R1, R2) satisfying R1 < I(X1;Y,X2) and R2 < I(X2;Y,X1)), there exists
a pair of codebooks of rates (R1, R2) in the ensemble for which the average error
probability is small, thus such (R1, R2)’s are achievable.

(e) Firstly note that since X1 and X2 are independent, I(X1;Y X2) = I(X1;Y |X2) (sim-
ilarly I(X2;Y X1) = I(X2;Y |X1)).

Since Y = X1 ×X2, conditioned on {X2 = 0}, Y contains no information about X1,
whereas conditioned on {X2 = 1}, Y = X1. Thus, assuming Pr{X1 = 1} = p1 and
Pr{X2 = 1} = p2,

I(X1;Y |X2) = Pr{X2 = 0}I(X1;Y |X2 = 0) + Pr{X2 = 1}I(X1;Y |X2 = 1)

= 0 + p2h2(p1)

where h2(·) is the binary entropy function. Similarly it follows that

I(X2;Y |X1) = p1h2(p2).

Suppose p1 = p2 = p, then all rates (R1, R2) satisfying

R1 < ph2(p) R2 < ph2(p)

are achievable. In particular, ph2(p) ≥ 1
2
for some p ≥ 1

2
(it evaluates to 1

2
at p = 1

2

but it is increasing, so it will go above 1
2
as p increases). The set of achievable rate

pairs corresponding to such p’s violate R1 +R2 < 1.
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Problem 3.

(a) For large enough n, (Xn, Y n) is jointly ε-typical with respect to the distribution
p(x, y). Thus, the chance of the true sequenceXn not appearing on Bob’s list vanishes
as n gets large.

(b) For an ε-typical sequence yn, p(yn) ≤ 2−n(1−ε)H(Y ). Similarly, for jointly ε-typical
sequences (xn, yn), p(xn, yn) ≥ 2−n(1+ε)H(X,Y ). We, then, have

2−n(1−ε)H(Y ) ≥ p(yn)

=
∑
xn

p(xn, yn)

≥
∑
xn:

(xn,yn)∈Tε

p(xn, yn)

≥ |{xn : (xn, yn) ∈ Tε}|2−n(1+ε)H(X,Y ),

where Tε denotes the set of jointly typical (xn, yn)’s. Therefore, by noticing that
(1 + ε)H(X, Y )− (1− ε)H(Y ) = (1 + ε)H(X|Y ) + 2εH(Y ), for an ε-typical yn,

|{xn : (xn, yn) ∈ Tε}| ≤ 2n[(1+ε)H(X|Y )+2εH(Y )] ≈ 2nH(X|Y ).

(c) Given a typical sequence yn, xn appears on Bob’s list if (xn, yn) is typical and
label(xn) = label(xn0 ) (where xn0 is the true sequence which we assume to be typ-
ical as well – otherwise Bob will not receive any label from Alice). The number of
wrong sequences is thus

Nw(x
n
0 , y

n) :=
∑
xn:

(xn,yn)∈Tε
xn 6=xn0

1{label(xn) = label(xn0 )}.

Since the labels are assigned independently and uniformly from {1, . . . , 2nR},

E[1{label(xn) = label(xn0 )}] = Pr{label(xn) = label(xn0 )} = 2−nR (if xn 6= xn0 ).

Consequently, using (b) we have:

E[Nw(x
n
0 , y

n)] = |{xn : (xn, yn) ∈ Tε} \ {xn0}| 2−nR ≤ 2−n[R−(H(X|Y )+δ)],

for some δ = δ(ε) which goes to 0 as ε→ 0.

(d) A decoding error will happen if either (Xn, Y n) are atypical or they are typical but
Bob’s list has more than one element. In other words,

Pr{error} = Pr{(Xn, Y n) 6∈ Tε}+ Pr{(Xn, Y n) ∈ Tε, Nw(X
n, Y n) ≥ 1}.

The first term on the right-hand-side of the above goes to 0 as n gets large (indepen-
dent of R). For the second term we have

Pr{(Xn, Y n) ∈ Tε, Nw(X
n, Y n) ≥ 1}

= Pr{(Xn, Y n) ∈ Tε}Pr{Nw(X
n, Y n) ≥ 1|(Xn, Y n) ∈ Tε}

≤ Pr{Nw(X
n, Y n) ≥ 1|(Xn, Y n) ∈ Tε}

(∗)
≤ E[Nw(X

n, Y n)|(Xn, Y n) ∈ Tε]
≤ 2−n[R−H(X|Y )−δ],
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where (∗) follows from the Markov inequality.

Thus, if R > H(X|Y ) the second term also vanishes as n gets large which means Bob
will decide correctly with high probability.

Problem 4.

(a) Let x′ and y′ be two codewords in C ′ corresponding to information vectors u =
(u0, u1, . . . , uk−1) and v = (v0, . . . , vk−1) respectively. αx′ + βy′, α ∈ F, β ∈ F
corresponds to the encoding of αu+βv = (αu0+βv0, αu1+βv1, . . . , αuk−1+βvk−1),
hence is a codeword of C ′ as well.

(b) The number of zeros in (x1, . . . , xn) is the number of roots the polynomial u(D) = u0+
u1D+ · · ·+uk−2Dk−2 (note that uk−1 = 0) has among {α1, . . . , αn}. A polynomial of
degree at most k−2 has at most k−2 roots, and thus a weight of weight(x1, . . . , xn) ≥
n−(k−2) = n+2−k. Since uk−1 = 0, weight(uk−1, x1, . . . , xn) = weight(x1, . . . , xn) ≥
n+ 2− k.

(c) Since uk−1 6= 0, weight(uk−1, x1, . . . , xn) = 1 + weight(x1, . . . , xn). Now among
x1, . . . , xn at most k− 1 elements can be zero (since they are evaluations of a polyno-
mial of degree k−1), hence weight(x1, . . . , xn) ≥ n+1−k. Thus, weight(x′) ≥ n+2−k.

(d) From (a), (b) and (c) we have dmin(C ′) = minx′∈C′ weight(x
′) ≥ n + 2 − k. On the

other hand, the Singleton bound states that for any linear code of blocklength n+ 1
and dimension k, dmin ≤ n − k + 2. This shows the code C ′ has minimum distance
exactly equal to n− k + 2.
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