ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 31
Information Theory and Coding
Solutions to Final Exam

Problem 1.

(a) By the chain rule we have

$$
\begin{aligned}
H\left(X^{n}, Z^{n}\right) & =H\left(X^{n}\right)+H\left(Z^{n} \mid X^{n}\right) \\
& =H\left(Z^{n}\right)+H\left(X_{1} \mid Z^{n}\right)+H\left(X_{2}^{n} \mid X_{1}, Z^{n}\right)
\end{aligned}
$$

(where $X_{2}^{n}=\left(X_{2}, \ldots, X_{n}\right)$). Since $\left(X_{1}, Z^{n}\right)$ determines X_{2}^{n} (because, X_{1} determines \hat{X}_{2} and, knowing $\left(\hat{X}_{2}, Z_{2}\right), X_{2}$ is known, then $\left(X_{1}, X_{2}\right)$ determines \hat{X}_{3} which, together with Z_{3} determines $\left.X_{3}, \ldots\right), H\left(X_{2}^{n} \mid X_{1}, Z^{n}\right)=0$. Therefore,

$$
H\left(Z^{n}\right)=H\left(X^{n}\right)-H\left(X_{1} \mid Z^{n}\right)
$$

which (together with the fact that $H\left(X_{1} \mid Z^{n}\right) \leq H\left(X_{1}\right) \leq 1$) implies

$$
H\left(X^{n}\right)-1 \leq H\left(Z^{n}\right) \leq H\left(X^{n}\right)
$$

Consequently

$$
\mathcal{H}(Z)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(Z^{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X^{n}\right)=\mathcal{H}(X) .
$$

(b) Once again using the chain rule,

$$
\begin{aligned}
H\left(Z_{n}, X_{n} \mid X^{n-1}\right) & =H\left(Z_{n} \mid X^{n-1}\right)+H\left(X_{n} \mid Z_{n}, X^{n-1}\right) \\
& =H\left(X_{n} \mid X^{n-1}\right)+H\left(Z_{n} \mid X^{n}\right)
\end{aligned}
$$

and since $H\left(X_{n} \mid Z_{n}, X^{n-1}\right)=H\left(Z_{n} \mid X^{n}\right)=0$ (for the reasons explained in (a)),

$$
h_{2}\left(p_{n}\right)=H\left(Z_{n}\right) \geq H\left(Z_{n} \mid X^{n-1}\right)=H\left(X_{n} \mid X^{n-1}\right)
$$

(c) From (b) and since X is a stationary process we have

$$
\liminf _{n \rightarrow \infty} h_{2}\left(p_{n}\right) \geq \lim _{n \rightarrow \infty} H\left(X_{n} \mid X^{n-1}\right)=\mathcal{H}(X)
$$

Moreover, there exists a subsequence of $\left\{p_{n}: n=1,2, \ldots\right\}$, say $\left\{p_{n_{i}}: n_{i} \in \mathbb{N}, i=\right.$ $1,2, \ldots\}$ for which $\liminf _{n \rightarrow \infty} p_{n}=\lim _{i \rightarrow \infty} p_{n_{i}}$. Thus, by the continuity of $h_{2}(\cdot)$,

$$
\liminf _{n \rightarrow \infty} h_{2}\left(p_{n}\right)=\lim _{i \rightarrow \infty} h_{2}\left(p_{n_{i}}\right)=h_{2}\left(\liminf _{i \rightarrow \infty} p_{n_{i}}\right)=h_{2}(p)
$$

Problem 2.

(a) Since the channel is memoryless and feedback-free transmission is assumed, from the code construction, it is obvious that $\left(\operatorname{enc}_{1}\left(m_{1}\right), \mathrm{enc}_{2}\left(m_{2}\right), Y^{n}\right)$ is an i.i.d. length- n sequence of $\left(X_{1}, X_{2}, Y\right)$'s drawn from distribution $p\left(x_{1}, x_{2}, y\right)=p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) p\left(y \mid x_{1}, x_{2}\right)$. Therefore, for sufficiently large n, the probability of this sequence being ϵ-typical is as high as desired.
(b) Now, $\left(\mathrm{enc}_{1}\left(\tilde{m}_{1}\right), \mathrm{enc}_{2}\left(m_{2}\right), Y^{n}\right)$ is an i.i.d. sequence (of length n) whose components are distributed according to $p_{1}\left(x_{1}\right) p\left(y, x_{2}\right)$ where $p\left(y, x_{2}\right)=\sum_{x_{1}^{\prime}} p_{1}\left(x_{1}^{\prime}\right) p_{2}\left(x_{2}\right) p\left(y \mid x_{1}^{\prime}, x_{2}\right)$.
(c) $\operatorname{Pr}\left\{\left(\operatorname{enc}_{1}\left(\tilde{m}_{1}\right), \operatorname{enc}_{2}\left(m_{2}\right), Y^{n}\right) \in T\right\}$ is the probability of a length n i.i.d. sequence X_{1}^{n} whose elements have distribution p_{1} being jointly ϵ-typical (with respect to the distribution $p_{1}\left(x_{1}\right) p\left(y, x_{2} \mid x_{1}\right)$ where $\left.p\left(y, x_{2} \mid x_{1}\right)=p\left(x_{2}\right) p\left(y \mid x_{1}, x_{2}\right)\right)$ with an independent length n sequence of (X_{2}, Y)'s drawn from distribution $p\left(y, x_{2}\right)$ (defined in (b)). Thus,

$$
\operatorname{Pr}\left\{\left(\operatorname{enc}_{1}\left(\tilde{m}_{1}\right), \operatorname{enc}_{2}\left(m_{2}\right), Y^{n}\right) \in T\right\} \doteq 2^{-n I\left(X_{1}, X_{2} Y\right)} .
$$

(In the course we have seen this result for two random variables X and Y; it is obvious that we can replace X by X_{1} and Y by $\left(X_{2}, Y\right)$ to derive the above result).
(d) From (a) we know that the probability of the correct message m_{1} not being in the list of typical m_{1} 's at decoder 2 is small, say at most $\epsilon / 2$.
From (c), the probability of each incorrect \tilde{m}_{1} being on that list (at decoder 2) is equal (up to sub-exponential factors) to $2^{-n I\left(X_{1} ; X_{2} Y\right)}$. Since there are $M-1 \leq 2^{n R_{1}}$ such \tilde{m}_{1} 's, the probability of having an incorrect message on the list is, by the union bound, at most $2^{n\left[R_{1}-I\left(X_{1} ; X_{2} Y\right)\right]}$ which is exponentially small in n provided that $R_{1}<$ $I\left(X_{1} ; X_{2} Y\right)$. Thus, for large enough n, this probability is also smaller than $\epsilon / 2$.
Consequently, the average probability of decoding error at decoder 2 is at most ϵ provided that $R_{1}<I\left(X_{1}, X_{2} Y\right)$.
By symmetry, the average probability of decoding error at decoder 1 is smaller than ϵ if $R_{2}<I\left(X_{2}, X_{1}, Y\right)$.
Since the average probability of error (over the generation of codebooks) is small (for rate pairs $\left(R_{1}, R_{2}\right)$ satisfying $R_{1}<I\left(X_{1} ; Y, X_{2}\right)$ and $R_{2}<I\left(X_{2} ; Y, X_{1}\right)$), there exists a pair of codebooks of rates $\left(R_{1}, R_{2}\right)$ in the ensemble for which the average error probability is small, thus such $\left(R_{1}, R_{2}\right)$'s are achievable.
(e) Firstly note that since X_{1} and X_{2} are independent, $I\left(X_{1} ; Y X_{2}\right)=I\left(X_{1} ; Y \mid X_{2}\right)$ (similarly $\left.I\left(X_{2} ; Y X_{1}\right)=I\left(X_{2} ; Y \mid X_{1}\right)\right)$.
Since $Y=X_{1} \times X_{2}$, conditioned on $\left\{X_{2}=0\right\}, Y$ contains no information about X_{1}, whereas conditioned on $\left\{X_{2}=1\right\}, Y=X_{1}$. Thus, assuming $\operatorname{Pr}\left\{X_{1}=1\right\}=p_{1}$ and $\operatorname{Pr}\left\{X_{2}=1\right\}=p_{2}$,

$$
\begin{aligned}
I\left(X_{1} ; Y \mid X_{2}\right) & =\operatorname{Pr}\left\{X_{2}=0\right\} I\left(X_{1} ; Y \mid X_{2}=0\right)+\operatorname{Pr}\left\{X_{2}=1\right\} I\left(X_{1} ; Y \mid X_{2}=1\right) \\
& =0+p_{2} h_{2}\left(p_{1}\right)
\end{aligned}
$$

where $h_{2}(\cdot)$ is the binary entropy function. Similarly it follows that

$$
I\left(X_{2} ; Y \mid X_{1}\right)=p_{1} h_{2}\left(p_{2}\right) .
$$

Suppose $p_{1}=p_{2}=p$, then all rates $\left(R_{1}, R_{2}\right)$ satisfying

$$
R_{1}<p h_{2}(p) \quad R_{2}<p h_{2}(p)
$$

are achievable. In particular, $p h_{2}(p) \geq \frac{1}{2}$ for some $p \geq \frac{1}{2}$ (it evaluates to $\frac{1}{2}$ at $p=\frac{1}{2}$ but it is increasing, so it will go above $\frac{1}{2}$ as p increases). The set of achievable rate pairs corresponding to such p 's violate $R_{1}+R_{2}<1$.

Problem 3.

(a) For large enough $n,\left(X^{n}, Y^{n}\right)$ is jointly ϵ-typical with respect to the distribution $p(x, y)$. Thus, the chance of the true sequence X^{n} not appearing on Bob's list vanishes as n gets large.
(b) For an ϵ-typical sequence $y^{n}, p\left(y^{n}\right) \leq 2^{-n(1-\epsilon) H(Y)}$. Similarly, for jointly ϵ-typical sequences $\left(x^{n}, y^{n}\right), p\left(x^{n}, y^{n}\right) \geq 2^{-n(1+\epsilon) H(X, Y)}$. We, then, have

$$
\begin{aligned}
2^{-n(1-\epsilon) H(Y)} & \geq p\left(y^{n}\right) \\
& =\sum_{x^{n}} p\left(x^{n}, y^{n}\right) \\
& \geq \sum_{\substack{x^{n}, x^{n}: \in T_{\epsilon}}} p\left(x^{n}, y^{n}\right) \\
& \geq\left|\left\{x^{n}:\left(x^{n}, y^{n}\right) \in T_{\epsilon}\right\}\right| 2^{-n(1+\epsilon) H(X, Y)},
\end{aligned}
$$

where T_{ϵ} denotes the set of jointly typical $\left(x^{n}, y^{n}\right.$)'s. Therefore, by noticing that $(1+\epsilon) H(X, Y)-(1-\epsilon) H(Y)=(1+\epsilon) H(X \mid Y)+2 \epsilon H(Y)$, for an ϵ-typical y^{n},

$$
\left|\left\{x^{n}:\left(x^{n}, y^{n}\right) \in T_{\epsilon}\right\}\right| \leq 2^{n[(1+\epsilon) H(X \mid Y)+2 \epsilon H(Y)]} \approx 2^{n H(X \mid Y)}
$$

(c) Given a typical sequence y^{n}, x^{n} appears on Bob's list if $\left(x^{n}, y^{n}\right)$ is typical and $\operatorname{label}\left(x^{n}\right)=\operatorname{label}\left(x_{0}^{n}\right)$ (where x_{0}^{n} is the true sequence which we assume to be typical as well - otherwise Bob will not receive any label from Alice). The number of wrong sequences is thus

$$
N_{w}\left(x_{0}^{n}, y^{n}\right):=\sum_{\substack{x^{n} x^{n} \\\left(x^{n}, y^{n}\right) \in T_{\epsilon} \\ x^{n} \neq x_{0}^{n}}} \mathbf{1}\left\{\operatorname{label}\left(x^{n}\right)=\operatorname{label}\left(x_{0}^{n}\right)\right\} .
$$

Since the labels are assigned independently and uniformly from $\left\{1, \ldots, 2^{n R}\right\}$,

$$
E\left[\mathbf{1}\left\{\operatorname{label}\left(x^{n}\right)=\operatorname{label}\left(x_{0}^{n}\right)\right\}\right]=\operatorname{Pr}\left\{\operatorname{label}\left(x^{n}\right)=\operatorname{label}\left(x_{0}^{n}\right)\right\}=2^{-n R} \quad\left(\text { if } x^{n} \neq x_{0}^{n}\right)
$$

Consequently, using (b) we have:

$$
E\left[N_{w}\left(x_{0}^{n}, y^{n}\right)\right]=\left|\left\{x^{n}:\left(x^{n}, y^{n}\right) \in T_{\epsilon}\right\} \backslash\left\{x_{0}^{n}\right\}\right| 2^{-n R} \leq 2^{-n[R-(H(X \mid Y)+\delta)]}
$$

for some $\delta=\delta(\epsilon)$ which goes to 0 as $\epsilon \rightarrow 0$.
(d) A decoding error will happen if either $\left(X^{n}, Y^{n}\right)$ are atypical or they are typical but Bob's list has more than one element. In other words,

$$
\operatorname{Pr}\{\text { error }\}=\operatorname{Pr}\left\{\left(X^{n}, Y^{n}\right) \notin T_{\epsilon}\right\}+\operatorname{Pr}\left\{\left(X^{n}, Y^{n}\right) \in T_{\epsilon}, N_{w}\left(X^{n}, Y^{n}\right) \geq 1\right\} .
$$

The first term on the right-hand-side of the above goes to 0 as n gets large (independent of R). For the second term we have

$$
\begin{aligned}
& \operatorname{Pr}\left\{\left(X^{n}, Y^{n}\right) \in T_{\epsilon}, N_{w}\left(X^{n}, Y^{n}\right) \geq 1\right\} \\
& \quad=\operatorname{Pr}\left\{\left(X^{n}, Y^{n}\right) \in T_{\epsilon}\right\} \operatorname{Pr}\left\{N_{w}\left(X^{n}, Y^{n}\right) \geq 1 \mid\left(X^{n}, Y^{n}\right) \in T_{\epsilon}\right\} \\
& \quad \leq \operatorname{Pr}\left\{N_{w}\left(X^{n}, Y^{n}\right) \geq 1 \mid\left(X^{n}, Y^{n}\right) \in T_{\epsilon}\right\} \\
& \quad \stackrel{(*)}{\leq} E\left[N_{w}\left(X^{n}, Y^{n}\right) \mid\left(X^{n}, Y^{n}\right) \in T_{\epsilon}\right] \\
& \quad \leq 2^{-n[R-H(X \mid Y)-\delta]},
\end{aligned}
$$

where (*) follows from the Markov inequality.
Thus, if $R>H(X \mid Y)$ the second term also vanishes as n gets large which means Bob will decide correctly with high probability.

Problem 4.

(a) Let \mathbf{x}^{\prime} and \mathbf{y}^{\prime} be two codewords in \mathcal{C}^{\prime} corresponding to information vectors $\mathbf{u}=$ $\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$ and $\mathbf{v}=\left(v_{0}, \ldots, v_{k-1}\right)$ respectively. $\alpha \mathbf{x}^{\prime}+\beta \mathbf{y}^{\prime}, \alpha \in \mathbb{F}, \beta \in \mathbb{F}$ corresponds to the encoding of $\alpha \mathbf{u}+\beta \mathbf{v}=\left(\alpha u_{0}+\beta v_{0}, \alpha u_{1}+\beta v_{1}, \ldots, \alpha u_{k-1}+\beta v_{k-1}\right)$, hence is a codeword of \mathcal{C}^{\prime} as well.
(b) The number of zeros in $\left(x_{1}, \ldots, x_{n}\right)$ is the number of roots the polynomial $u(D)=u_{0}+$ $u_{1} D+\cdots+u_{k-2} D^{k-2}$ (note that $u_{k-1}=0$) has among $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. A polynomial of degree at most $k-2$ has at most $k-2$ roots, and thus a weight of weight $\left(x_{1}, \ldots, x_{n}\right) \geq$ $n-(k-2)=n+2-k$. Since $u_{k-1}=0, \operatorname{weight}\left(u_{k-1}, x_{1}, \ldots, x_{n}\right)=\operatorname{weight}\left(x_{1}, \ldots, x_{n}\right) \geq$ $n+2-k$.
(c) Since $u_{k-1} \neq 0$, $\operatorname{weight}\left(u_{k-1}, x_{1}, \ldots, x_{n}\right)=1+\operatorname{weight}\left(x_{1}, \ldots, x_{n}\right)$. Now among x_{1}, \ldots, x_{n} at most $k-1$ elements can be zero (since they are evaluations of a polynomial of degree $k-1$), hence weight $\left(x_{1}, \ldots, x_{n}\right) \geq n+1-k$. Thus, weight $\left(\mathbf{x}^{\prime}\right) \geq n+2-k$.
(d) From (a), (b) and (c) we have $d_{\min }\left(\mathcal{C}^{\prime}\right)=\min _{\mathbf{x}^{\prime} \in \mathcal{C}^{\prime}}$ weight $\left(\mathbf{x}^{\prime}\right) \geq n+2-k$. On the other hand, the Singleton bound states that for any linear code of blocklength $n+1$ and dimension $k, d_{\min } \leq n-k+2$. This shows the code \mathcal{C}^{\prime} has minimum distance exactly equal to $n-k+2$.

