Exercise Set 3 : 10-11 March 2016 Calcul Quantique

Exercise 1 Production of Bell states

a) Check the following identity using Dirac's notation:

$$|B_{xy}\rangle = (CNOT)(H \otimes I)|x\rangle \otimes |y\rangle.$$

where $x, y \in \{0, 1\}$ and $|B_{xy}\rangle$ are the Bell states.

- b) Represent the corresponding circuit.
- c) Represent the circuit corresponding to the inverse identity:

$$|x\rangle \otimes |y\rangle = (H \otimes I)(CNOT)|B_{xy}\rangle$$

Exercise 2 Construction of a multi-control-U.

Verify that the multi-control-U:

can be realized with the Toffoli gate (control-control-NOT) a simple simple control-U.

Exercise 3 Construction of the Toffoli gate from a control-NOT (Indication: long calculation).

Verify that the control-control-NOT also called Toffoli gate:

$$|c_1\rangle \longrightarrow |c_1\rangle |c_2\rangle \longrightarrow |c_2\rangle |c_2\rangle \longrightarrow |t \oplus c_1c_2\rangle$$

is equivalent to the following circuit made of CNOT, H, T and S

Exercise 4 Unitary representation of a reversible computation.

Classically a Boolean function f with inputs $(x_1, \ldots, x_n) \in \{0, 1\}^n$ and output in $\{0, 1\}$ can be computed reversibly as

$$\tilde{f}(x_1,\ldots,x_n;y)=(x_1,\ldots,x_n;y\oplus f(x_1,\ldots,x_n))$$

where $y \in \{0, 1\}$ is a single storage bit.

This can be implemented in a quantum circuit thanks to the following unitary operation

$$U_f|x_1,\ldots,x_n;y\rangle = |x_1,\ldots,x_n;y\oplus f(x_1,\ldots,x_n)\rangle\rangle$$

- a) What is the Hilbert space relevant for this implementation. Prove that U_f is indeed a unitary matrix.
- b) Generalize this discussion to the case where the output of f in $\{0,1\}^m$ (there are m output bits).