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Foreword

Statistical physics, over more than a century, has developed powerful techniques

to analyze systems consisting of many interacting “particles.” In the last fif-

teen years, it has become increasingly clear that the very same techniques can

be applied successfully to problems in engineering such communications, signal

processing, or computer science.

Unfortunately there are several hurdles which one encounters when one tries

to make use of these methods.

First, there is the language. Statistical mechanics has developed over the last

150 years with the aim of providing models and deriving predictions for various

physical phenomenon, such as magnetism or the behavior of gases. This long

history, together with the specific areas of their original application, has resulted

in a rich language whose origins and meaning are not always clear to someone

just starting in the field. It therefore takes a considerable effort to learn this

language.

Second, except for extremely simple models, the “calculations” which are nec-

essary are often long and daunting and frequently use little tricks and conventions

somewhat outside the realm what one usually picks up in a calculus class. A good

way of overcoming this difficulty is to start with a familiar example, casting it

in terms of statistical physics notation, and by then going through some basic

calculations.

Third, and connected to the second point, not all methods and tricks used in

the calculations are mathematically rigorous. Some of the most powerful tech-

niques, such as the cavity method, currently do not have a rigorous mathematical

justification. In the “right hands” they can do miracles and give predictions which

are currently not possible to derive with any classical method. But a newcomer

to the field might quickly despair in trying to figure out what parts are mathe-

matical rigorous and what parts are “most likely correct” but cannot currently

be justified. Both worlds are valuable. The cavity or replica method give predic-

tions which would be very difficult to guess. These predictions can then be used

as a starting point for a rigorous proof. But it is important to cleanly separate

the two worlds.

Our aim in writing these notes is not to give an exhaustive account of all there

is to know about statistical mechanics ideas applied to engineering problems.
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Indeed, several excellent books which take a much more in-depth look already

exist. We in particular recommend [1, 2].

Our aim was to write the simplest non-trivial account of the most useful sta-

tistical mechanics methods so as to ease the transition for anyone interested in

this strange put powerful world. Therefore, whenever we were faced with an op-

tion between completeness and simplicity, we chose simplicity. On purpose our

language changes progressively throughout the text. Whereas at the beginning

we try to avoid as much jargon as possible, we progressively start talking like a

physicist. Most of the literature uses this language, so you better get used to it.

We decided to structure our notes around three important problems, namely

error correcting codes, compressive sensing, and the random K-SAT problem.

Although we will introduce basic versions of each of these problems, we only

introduce what is necessary for our purpose. It goes without saying that there

are myriad of versions and extensions, none of which we discuss. In fact, we hope

that the reader is already somewhat familiar with these topics and accepts that

these are important problems worth while studying. Using the basic versions of

these problems we explain how they can be cast in a statistical physics framework

and how standard concepts and techniques from statistical physics can be used

to study these problems. This allows us to introduce the necessary terminology

step by step, just when it is needed.

The notes are further partitioned into three parts. In the first part, com-

prised of Chapters 1-4, we introduce the problems, some of the language, and we

rewrite these problems in the language of statistical physics. In the first chapter

of the second part, namely Chapter 5, we then introduce the main protagonist,

a message-passing algorithm which is also know as the belief-propagation algo-

rithm. The remaining chapters of the second part, namely Chapters 6-12, contain

the analysis of the performance of our three problems under this low-complexity

algorithm. We will see that, in many cases, even this simple combination yields

excellent performance. Finally, in the third part, consisting of Chapters 15-17,

we get to the perhaps most surprising part of our story. Our aim will be to study

the fundamental behavior of these three problems without the restriction to low

complexity algorithms. I.e., how well would these systems work under optimal

processing. The surprise is that the same quantities which appeared in our study

of low-complexity suboptimal message-passing algorithms will play center stage

also for this seemingly completely unrelated question.

Although we follow essentially the same pattern for each of the three problems,

we will see that they are not all equally difficult.

Error correcting coding is perhaps easiest, and in principle most of the question

one might be interested in can be answered rigorously. In this case we are dealing

with large graphically models which are locally “tree like.” It is therefore perhaps

not so surprising that message-passing algorithms work well in this setting and

that the performance can be analyzed.

Compressive sensing follows a similar pattern but introduces a few more wrin-

kles. In particular, the story of compressive sensing is leading to the so-called
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AMP algorithm. The surprising fact here is that message-passing works very

well, and that its performance can be predicted, despite that the relevant graph-

ical model is not sparse at all but rather is a complete tree. The key observation

is that every single edge contributes very little to the global performance. AMP

can still be analyzed rigorously but the required computations are quite lengthy.

We will give an outline of the whole story, but we will not discuss every single

step in detail. Once the basic idea is clear, the interested reader should be able

to fill in missing details by studying the pointers to the literature.

The hardest problem is without doubt the random K-SAT problem. We will

only be able to present a partial picture. Many interesting and very basic ques-

tions remain open.

Many people have helped us in creating these notes. In the Spring of 2011 we

gave a series of lectures on these topics at EPFL to mostly a graduate student

population. We would like to thank Marc Vuffray, Mahdi Jafari, Amin Karbasi,

Masoud Alipour, Marc Desgroseilliers, Vahid Aref, Andrei Giurgiui, Amir Hesam

Salavati for typing up initial notes for some lectures. In addition we would like

to thank Mike Bardet who typed up further material as well as Hamed Hassani

who has since contributed material to several of the chapters.

Nicolas Macris, Lausanne, 2013

Rüdiger Urbanke





Part I

Models and their Statistical
Physics Formulations





1 Models and Questions: Coding,
Compressive Sensing, and
Satisfiability

We start by introducing three problems: error correcting coding, compressive

sensing, as well as constraint satisfaction. Although these three problems are

quite different, we will see that essentially the same tools from statistical physics

can be used to gain insight into their behavior as well as to make quantitative

predictions. These three problems will serve as our running examples.

1.1 Coding

Error correcting codes

Codes are used in order to reliably transmit information across a noisy channel.

Let us start with a basic definition. A binary block code C of length n is a

collection of binary n-tuples, C = {x(1), . . . , x(M)}, where x(i), 1 ≤ i ≤ M, is

called a codeword, and where the components of each codeword are elements of

F2 = ({0, 1},⊕,×), the binary field. The totale number of codewords is |C| =M
and the rate of the code is defined as log2 |C|

n .

We will soon talk about various channel models, i.e., various mathematical

models which describe how information is “perturbed” during the transmission

process. In this respect it is good to know that for a large class of such models we

can achieve optimal performance (in terms of the rate we can reliably transmit)

by limiting ourselves to a simple class of codes, called linear codes.

A linear binary block code is a subspace of Fn2 , the vector space of dimension

n over the field F2. Equivalently, a binary block code C is linear iff for any two

codewords x(i) and x(j), x(i) − x(j) ∈ C. In particular x(i) − x(i) = 0 ∈ C. Since

C is a subspace, it has a dimension, call it k, 0 ≤ k ≤ n. Hence |C| = 2k, and the

rate of C is equal to k
n .

All codes which we consider in this course are binary and linear. Therefore, in

the sequel we sometimes omit these qualifiers. It will be convenient to represent

a linear binary code C of length n and dimension k as the kernel (or null space)

of an (n− k)× n binary matrix of rank n− k. Such a matrix is called a parity-

check matrix and is usually denoted by H. Every binary linear code has such a

representation. So equivalently, we may write

C =
{
x ∈ Fn2 : Hx> = 0>

}
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for some suitably chosen matrix H. The proof that at least one such matrix

exists is the topic of an exercise.

A few remarks might be in order. First, once we have convinced ourselves that

there is at least one such matrix, it is easy to see that there are exponentially

many (in n−k) such matrices since elementary row operations do not change the

row space and hence the code defined by the matrix. All these matrices define the

same code, and are equivalent in this sense. But the representation of the code

in terms of a bipartite graph, which we will introduce shortly, and the related

message-passing algorithm, do depend on the specific matrix we choose and so

our choice of matrix is important.

Second, and somewhat connected to the first point, rather than first defining

a code C and then finding a suitable parity-check matrix H, we typically specify

directly the matrix H and hence indirectly the code C.
It can then happen that this matrix does not have full row rank, i.e., that its

rank is strictly less than n − k. What this means is that the code C contains

more codewords than 2k. Since this will happen rarely, and since having more

codewords than planned is in fact a good thing, we will ignore this possibility

and only count on having 2k codewords at our disposal.

The factor graph associated to the parity-check matrix H (of a code C)

Assume that we have a code C defined by the (n − k) × n binary parity-check

matrix H. We can associate to H the following bipartite graph G. The graph

G has vertices V ∪ C, where V = {x1, . . . , xn} is the set of n variable nodes

corresponding to the n bits (and hence to the n columns of H), and where

C = {c1, . . . , cn−k} is the set of n− k check nodes, each node corresponding to

one row of H. There is an edge between xi and cj if and only if Hji = 1.

example 1 (Factor Graph) Consider the following parity-check matrix,

H =

 1 0 0 1

0 1 1 1

0 0 1 1

 .
The factor graph corresponding to H is shown in Fig. 1.1. �

Figure 1.1 The factor graph corresponding to the parity-check matrix of Example 1.
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Gallager’s ensemble and the configuration model

A common theme in these notes is that instead of studying specific instances of a

problem we define an ensemble of instances i.e., a set of instances endowed with

a probability distribution. We then study the average behavior of this ensemble,

and once the average is determined, we know that there must be at least one

element of the ensemble with a performance at least as good as this average.

In fact, in many cases, with a little extra effort one can often show that most

elements in the ensemble behave almost as good as the ensemble average.

For coding, we focus on a specific ensemble of codes called the (dv, dc)-regular

Gallager ensemble introduced by Gallager in 1961, [3, 4]. Rather than specifying

the codes directly we specify their factor graphs. The ensemble is characterized

by the triple of integers (n, dv, dc), such that m = ndvdc is also an integer. The

parameter n is the length of the code, dv is the variable node degree, and dc is

the check node degree.

To precisely describe the ensemble we explain how to sample from it. Pick n

variable nodes and ndvdc check nodes. Each variable node has dv sockets and each

check node has r sockets. Number the dvn variable sockets in an arbitrary but

fixed way from 1 till dvn. Do the same with the dvn check node sockets. Pick a

permutation π uniformly at random from the set of permutations on dvn letters.

For s ∈ {1, . . . dvn} insert an edge which connects variable node socket s to check

node socket π(s) ∈ {1, . . . dvn}.
If, after construction, we delete sockets (and retain the connections between

variable and check nodes) then we get a bipartite graph which is the factor

graph representing our code. To this bipartite graph we can of course associate a

parity-check matrix H. But note that in this model there can be multiple edges

between nodes. A moments thought shows that the parity-check matrix H has

a 1 at row i and column j if there are an odd number of connections between

variable i and constraint j. Otherwise it has a 0 at this position. In practice

multiple connections are not desirable and more sophisticated graph generation

algorithms are employed. But for our purpose the typically small number of

multiple connections will not play a role. In particular, it does not play a role if

we are interested in the behavior of such codes for very large instances.

The above way of specifying the ensemble is inspired by the configuration

model of random graphs, see [5]. This is why we call it the configuration model.

This particular ensemble is a special case of what is called a low-density parity-

check (LDPC) ensemble. This name is easily explained. The ensemble is low-

density since the number of edges grows linearly in the block length. This is

distinct from what is typically called the Fano random ensemble where each

entry of the parity-check matrix is chosen uniformly at random from {0, 1}, so

that the number of edges grows like the square of the block length. It is further

a parity-check ensemble since it is defined by describing the parity-check matrix.

We will see that a reasonable decoding algorithm consists of sending messages
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along the edges of the graph. So few edges means low complexity and, even more

importantly, we will see that the algorithm works better if the graph is sparse.

For many real systems, LDPC codes are the codes of choice. They have a very

good trade-off between complexity and performance and they are well suited for

implementations. “Real” LDPC codes are often further optimized. For example,

instead of using regular degrees we might want to choose nodes of different

degrees and the connections are often chosen with care in order to minimize

complexity and to maximize performance. We will ignore these refinements in

the sequel. The most important trade-offs are already apparent for the relatively

simple regular Gallager ensemble.

Encoding, Transmission, and Decoding

The three operations involved in the coding problem are encoding, transmission

over a channel, and decoding. Let us briefly discuss each of them.

Encoding: Given C, a binary linear block code of dimension k, we can encode

k bits of information by our choice of codeword, i.e., by choosing one out of the

2k possibilities. More precisely, we have an information word u, u ∈ Fk2 , and

an encoding function g, g : Fk2 → C, which maps each information word into a

codeword.

Although this function is of crucial importance for real systems, it only plays

a minor role for our purpose. This is true since, as we will discuss in more detail

later on, for “typical” channels, by symmetry the performance of the system is

independent of the transmitted codeword. We therefore typically assume that

the all-zero codeword (which is always contained in a binary linear code) was

transmitted. Also, in terms of complexity, the encoding operation is not a diffi-

cult task. One possible option is to write the linear binary code C in the form

C = {Gu : u ∈ Fk2}, where G is the so-called generator matrix and where u is

a binary column vector of length k which contains the information bits. In this

form, encoding corresponds to a multiplication of a vector of length k with a n×k
binary matrix and can hence be implemented in O(k × n) binary operations. In

practice the code is often chosen to have some additional structure so that this

operation can even be performed in O(n) operations. We will hence ignore the

issue of encoding in the sequel.

Transmission over a Channel: We assume that we pick a codeword x uni-

formly at random from the code C. We now transmit x over a “channel”. The

actual channel is a physical device which takes bits as inputs, converts them into

a physical quantity, such as an electric or optical signal, transmits this signal over

a suitable medium, such as a cable or optical fiber, and then converts the physical

signal back into a number which we can processed, perhaps equal to a voltage

which is measured or the number of photons which were detected. Of course,

during the transmission the signal itself is distorted. This distortion is either due
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to imperfections of the system or due to unpredictable processes such as thermal

noise. Instead of considering this potentially very complicated process we use

a typically simple mathematical model which describes the end-to-end effect of

all these physical processes on the signal. We call this model the “channel model.”

Channel Model: Formally, the channel has the input alphabet X = {0, 1} and

an output alphabet Y. E.g., two common cases are Y = {0, 1} and Y = R. We

assume that the channel is memoryless, which means that it acts on each bit

independently. We further assume that there is no feedback from the output of

the channel back to the input. In this case the channel is uniquely characterized

by a transition probability p(y | x) where y ∈ Yn is the output and where

p(y | x) =

n∏
i=1

p(yi | xi). (1.1)

Note that we get this product form from the assumptions that the channel is

memoryless (acts bit-wise) and that we have no feedback.

The following three channels are the most important examples, both from a

theoretical perspective, but also because they form the basis of real-world chan-

nels: These are the binary erasure channel (BEC), the binary symmetric channel

(BSC) and the binary additive white Gaussian noise channel (BAWGNC).

X Y

1− ε

1− ε

ε

ε

0

1

0

1

?

Figure 1.2 Binary erasure and symmteric channels with parameter ε.

BEC. The BEC is a very special channel with Y = {0, ?, 1}. As depicted in

Fig. 1.2, the transmitted bit is either correctly received at the channel output

with probability 1 − ε or erased by the channel with probability ε and thus,

nothing is received at the channel output. The erased bits are denoted by “?”.

For example, if x = 1 is transmitted in the BEC, then the set of possible channel

observation is {1, ?}. we may write somewhat formally for the transition proba-

bility p(y|x) = (1− ε)δ(y − x) + εδ(y − ?).

BSC. The output of the BESC is binary Y = {0, 1}. As seen on Fig. 1.2 the bit

is transmitted correctly with probability 1− ε or flipped with probability ε. The

transition probability is p(y|x) = (1− ε)δ(y − x) + εδ(y − (1− x)).
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BAWGNC. The output is a real number Y = R. When x ∈ {0, 1} is sent the

received signal is y = x + z with z a Gaussian random number with zero mean

and variance σ2. With these conventions the “signal to noise ratio” is σ−2 and

the transition probability p(y|x) = (
√

2πσ)−1e−
(y−x)2

2σ2 .

One might wonder if these three simple models even scratch the surface of the

rich class of channels that one would assume we encounter in practice. Fortu-

nately, the answer is yes. The branch of communications theory has built up a

rich theory of how more complicated scenarios can be dealt with assuming that

we know how to deal with these three simple models.

Decoding: Given the output y we want to map it back to a codeword x. Let x̂(y)

denote the function which corresponds to this decoding operation. What decoding

function shall we use? One option is to first pick a suitable criterion by which

we can measure the performance of a particular decoding function and then to

find decoding functions which optimize this criterion. The most common such

criteria are the block error probability P [x̂(y) 6= x], and the bit error probability
1
n

∑n
i=1 P [x̂(y)i 6= xi]. We will come back in Chapter 3 to the precise definition

of these error probabilities.

In practice, due to complexity constraints, it is typically not possible to im-

plement an optimal decoding function but we have to be content with a low-

complexity alternative. Of course, the closer we can pick it to optimal the better.

Shannon Capacity

So far we have defined codes, we have discussed the encoding problem, the process

of transmission, the decoding problem, and the two most standard criteria to

judge the performance of a particular decoder, namely the block and the bit

error probability.

It is now natural to ask what is the maximum rate at which we can hope

to transmit reliably, assuming that we pick the best possible codes and the

best possible decoder. Reliably here means that we can make the block or bit

probability of error as small as we desire. In fact, it turns out that the answer is

the same wheter we use the block error probability or the bit error probability.

In 1948 Shannon gave the answer and he called this maximum rate the capac-

ity of the channel. For binary-input memoryless output-symmetric channels the

capacity has a very simple form. If the input alpahbet is binary and the output

alphabet discrete, and if p(y | x), x ∈ X and y ∈ Y, denotes the transition

probabilities, then the capacity of the associated channel can be expressed (in

bits per channel use) as

H(p(·))−H(p(· | x = 0)) (1.2)

where H(q(·)) denotes the entropy associated to a discrete distribution q(y),
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y ∈ Y . By definition we have

H(q(·)) = −
∑
y∈Y

q(y) log2 q(y). (1.3)

Let us illustrate Shannon’s formula for the BEC(ε). For q(y) = p(y | x = 0)

we have q(0) = p(y = 0 | x = 0) = 1− ε, q(1) = p(y = 1 | x = 0) = 0, and q(?) =

p(y = ? | x = 0) = ε. Further, for q(y) = p(y) = 1
2p(y | x = 0) + 1

2p(y | x = 1)

we have p(0) = p(1) = 1
2 (1− ε) and p(?) = ε. Hence, H(p(·)) = 1− ε+ h2(ε) and

H(p(· | x = 0)) = h2(ε), where h2(ε) = −ε log2 ε − (1 − ε) log2(1 − ε) is the so

called binary entropy function. We conclude that the capacity of the BEC(ε) is

equal to 1− ε. The capacities of the BSC and BAWGNC are computed similarly

(see exercises).

That the capacity is at most 1 − ε for the BEC is intuitive. For large block-

lengths with high probability the fraction of non-erased positions is very close

to 1 − ε. So even if we knew a priori which positions will be erased and which

will be left untouched, we could not hope to transmit more than n(1 − ε) bits

over such a channel. What is perhaps a little bit surprising is that this quantity

is achievable, i.e., that we do not need to know a priori what positions will be

erased and still can transmit reliably at this rate.

Questions

Now where we know the basic problem and have discussed the ultimate limit of

what we can hope to achieve, the following questions seem natural to investigate.

• What are good and efficient decoding algorithms?

• If we pick a random such code from the ensemble, how well will it perform?

• In particular, is there going to be a threshold behavior so that for large in-

stances the code works up to some noise level but breaks down above this

level as it is indicated schematically in Fig. 1.3? How does this threshold

depend on the decoding algorithm?

• Assuming that there is a threshold behavior, how can we compute the thresh-

olds?

• How do these thresholds compare to the Shannon threshold?

We will be able to derive a fairly complete set of answers to all of the above

questions.

1.2 Compressive sensing

Basic problem

Here is the perhaps the simplest version of compressive sensing. Let xin ∈ Rn
representing an “input signal” that we want to capture. We assume that the
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P
(s

u
c
c
e
s
s
)

Channel Quality GoodBad

Figure 1.3 The probability of decoding error for a transmitted message versus the
channel quality. As the blocklength of the code gets larger, we expect to see a sharper
and sharper transition between range of the channel parameters where the system
“works” and where it “breaks down.”

number of non-zero components ‖xin‖0 = |{i|xini 6= 0, i = 1, . . . , n}| = k of the

signal is only a fraction of n; so k = κn with κ < 1 (and usually much smaller

than one). The signal is captured thanks to an m × n “measurement matrix”

A with real entries, 1 ≤ m < n. We set m = µn with µ < 1. Let y ∈ Rm be

given by y = Axin. We think of y as the result of m linear measurements, one

corresponding to each row of A. Our basic aim is to reconstruct the k-sparse

signal xin from the least possible measurements y.

We know that at least one solution exists, namely xin, because the measure-

ments y have been produced by this input signal. But since m < n, and in fact m

is typically much smaller, we cannot simply solve the undetermined linear sys-

tem of equations since the solution will not be unique. But we know in addition

that x is k-sparse, i.e. has only k non-zero entries entries with k < n, (but we

do not know which of these entries are non-zero). Therefore, we determine if the

set of possible signals, namely

{x : Ax = y and ‖x‖0 = k}. (1.4)

has cardinality one. If this is the case we may in principle be able to reconstruct

our signal unambiguously.

One way to ensure the unicity of the solution is to take a measurement ma-

trix A satisfying a Restricted Isometry Property. We say that A satisfies the

RIP(2k, δ) condition if one can find 0 ≤ δ < 1 such that

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2, for all 2k-sparse vectors x ∈ Rn. (1.5)

It is not difficult to see that when this condition is met, then (1.4) has a unique

solution given by

x̂0(y) = argminx:Ax=y‖x‖0. (1.6)

Indeed, first notice that evidently Ax̂0(y) = y so we only have to prove unicity.

Suppose x′ is another solution of (1.4). Then, since both x′ and x0(y) are k-

sparse, their difference is 2k-sparse. The left hand inequality of the RIP(2k, δ)
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condition states (1− δ)‖x′ − x̂0(y)‖2 ≤ ‖Ax′ −Ax̂0(y)‖2 = ‖y − y‖2 = 0, which

of course implies x′ = x̂0(y).

Solving the optimization problem (1.6) essentially requires an exhaustive search

over
(
n
k

)
possible supports of the sparse vectors, which is intractable in practice.

One avenue for simplifying this problem is to replace the “`0 norm” in (1.6) with

the `1 norm. In other words we solve the convex optimization problem,

x̂1(y) = argminx:Ax=y‖x‖1. (1.7)

A fundamental theorem of Candes and Tao states that one can find δ′, 0 < δ′ < δ,

such that if A satisfies RIP(2k, δ′) the solution of this problem is unique and

identical to (1.6), [?].

This result shows that, for suitable measurement matrices, the `0 and `1 op-

timization problems are equivalent. Thus it suffices to solve the `1 problem. We

will not prove it here but only offer some intuition for it through a simple toy

example. Suppose that n = 2, so x = (x1, x2)T , and that we perform a single

measurement y = a1x1 + a2x2. This equation corresponds to the line on figure

FIGURE

Figure 1.4 The `p balls

1.4. We seek to find a point on this line, which minimizes (xp1 + xp2)1/p, p ≥ 0

where the case p = 0 is to be understood as the number of non-zero components

of (x1, x2). As shown on figure 1.4 the solution is found by “inflating” the “`p-

balls” around the origin until the line is touched. It is clear that for a generic line

the solution is the same for all 0 ≤ p ≤ 1. Note also that for 0 ≤ p ≤ 1 the solu-

tion only has a single non-zero component, so is “sparse”. For p > 1 the solution

changes with p and both components are non-zero. Note when p = 1 there are

non-generic measurement matrices corresponding to lines parallel to the faces of

the `1-ball for which the solution is not unique; but as discussed shortly such

cases will not bother us because the matrices will be chosen at random.

But what matrices satisfy the RIP condition ? It should come as no surprise

that a matrix satisfying teh RIP condition should have a number of lines m at

least as large as k. In fact one can show that necessarily m ≥ Cδk log n
k for a

suitable constant Cδ > 0 [?]. It is not easy to make deterministic constructions of

“good” measurement matrices approaching such bounds. The same is true with

other deterministic conditions yielding equivalence of the `0 and `1 optimization
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problems. However the toy example suggests that in fact all we migth need are

“random measurement matrix”. This is indeed a fruitful idea, at least in the

asymptotic setting n,m→ +∞ with κ = k
n , µ = m

n fixed, very much in the spirit

of random coding. This is the route we will follow.

Ensembles of Measurement Matrices

While deterministic constructions of matrices satisfying the RIP condition are

difficult, they can be shown to exist thanks to the probabilistic method [?]. The

m × n matrix A will be taken from the Gaussian ensemble where the matrix

entries are independent identically distributed Gaussian variables of zero mean

and variance 1/m. This normalization is such that each column of A has an

expected `2 norm of 1. As in coding we will consider the assymptotic regime

n,m, k → +∞ with sparsity parameter κ = k
n and measurement fraction µ = m

n

fixed. One can then show that there exists positive numerical constants c1, c2 such

that for m ≥ c1δ
−2k log( enk ) matrices from this ensemble satisfy the RIP(k, δ)

condition with overwhelming probability 1 − exp(−c2δ2m) where the constants

c1, c2 are numerical constants. More general ensembles are also possible.

The ensemble formulation for the measurement matrices, may also be extended

to the signal model. One of the simplest signal distributions assumes that the

components xi are independently identically distributed according to a law of

the form

p0(x) = (1− κ)δ(x) + κφ0(x) (1.8)

where φ0(x) is a continuous probability density. Depending on the model or

the application φ0(x) is known or unknown. The most realistic assumption for

applications is to consider that φ0(x) is unknown, and in that case we call Sκ
this class of signals.

Noisy measurements and LASSO

A somewhat more realistic version of the measurement model is

y = Ax+ z,

where z is a noise vector, typically assumed to consist of m iid zero-mean Gaus-

sian random variables with variance of σ2. Again our aim is to reconstruct an

k-sparse signal with as few measurements as possible. The matrix A is chosen

from the random Gaussian ensemble and the signal from the class Fκ.

If we ignored the sparsity constraint then it would be natural to pick the esti-

mate x̂(y) which solves the least-squares problem minx‖Ax− y‖22. This problem

is easily solved and the solution is well known x̂(y) = (ATA)−1AT y. But in

general this solution will not be k-sparse.

To enforce the sparsity constraint, we can add a second term to our objective
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function, i.e., we can solve the following minimization problem,

x̂0(y) = argminx(‖Ax− y‖22 + λ‖x‖0), (1.9)

for a properly tuned parameter λ. Unfortunately this minimization problem is

intractable, again because it requires an exhaustive search over the
(
n
k

)
possible

supports of the sparse vectors.

We saw in the noiseless case that replacing the “`0 norm“ by the `1 norm

is a fruitful idea. We follow the same route here and consider the following

minimization problem

x̂1(y) = argminx(‖Ax− y‖22 + λ‖x‖1). (1.10)

This estimator is called the Least absolute Shrinkage and Selectio Operator (LASSO).

Again λ has to be chosen appropriately. This estimator can in principle be cal-

culated by standard convex optimizaton techniques, which is already a big im-

provement over exhaustive search.

Although the LASSO estimator is popular, its a priori justification is not so

straightforward. Our discussion suggests that in the noiseless limit it reduces to

the pure `1 estimator which we know gives for a certain range of parameters the

correct solution of the `0 problem. This is one possible justification. Interestingly,

the analysis of the LASSO in Chapter 10 the exact frontier for the `0-`1 equiv-

alence in the (κ, µ) plane. This frontier is known as the Donoho-Tanner curve

which they originally derived by completely different methods. In Chapter 3 we

also discuss a somewhat more Bayesian justification of the LASSO in a setting

where the signal distribution is not known, but only the parameter κ is assumed

to be known. All this is ample justification for studying the LASSO in detail.

Graphical representation

As for coding one can set up a graphical representation for the measurement

matrix. We associate to A a bipartite graph G with vertices V ∪ C, where V =

{x1, . . . , xn} is the set of variable nodes corresponding to the n signal components

and C = {c1, . . . , cm} is the set of check nodes each node corresponding to

a row (a measurement) of A. There is an edge between xi and cj if an only

if Aji 6= 0. For the random measurement matrices discussed above this will

essentially always be the case and therefore the graph is simply the complete

bipartite graph depicted on figure 1.5.

If one wishes one may atribute a ”random weight“ to the edges, but we will

seldom need to do so. Therefore, unlike coding, here the graph is always the

same. At this point this graphical construction may seem slightly trivial and

arbitrary, but it will turn out to be a very useful way of thinking. The reason is

that, much as in coding theory, we will develop iterative algorithms exchanging

messages along the edges in order to reconstruct the signal. For example, this

immediately suggests that the complexity of these algorithms scales like O(n2)
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FIGURE

Figure 1.5 The factor graph corresponding to the random gaussian 2 × 4 measurement
matrix

because there are nm = n2µ edges. Nevertheless each edge has a random weight

of order ±1/
√
n and this will allow us to reduce the complexity to O(n).

Questions

Consider the regime where n tends to infinity and κ = k/n, µ = m/n constant.

• For given κ what fraction µ of measurements do we need so that with high

probability we can recover xin from the measurement y if we have no lim-

itations on complexity?

• If we restrict ourselves to the low-complexity LASSO algorithm, how many

measurements do we need then?

• Are there ways of designing compressive sensing schemes which achieve the

theoretical limits under low-complexity algorithms?

1.3 Satisfiability

SAT problem

Suppose that we are given a set of n Boolean variables {x1, . . . , xn}. Each variable

xi can take on the values 0 and 1, where 0 means “false” and 1 means “true”.

We define a literal to be either a variable xi or its negation x̄i. A clause is a

disjunction of literals, e.g.,

c = x1 ∨ x2 ∨ x̄3

where the operation “∨” denotes the Boolean “or” operation. An assignment

is an assignment of values to the Boolean variables, e.g., x1 = 0, x2 = 1, and

x3 = 0. Such an assignment will either make a clause to be satisfied or not

satisfied. For example the clause x1 ∨ x2 ∨ x̄3 with assignment x1 = 0, x2 = 1,

and x3 = 0 evaluates to 1, i.e., the clause is satisfied. A SAT formula, call it F ,

is a conjunction of a set of clauses. For example, consider the SAT formula

F = (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x̄4) ∧ x3.

where “∧” is the Boolean “and” operation.
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The basic SAT problem is defined as follows. Given a SAT formula F , de-

termine the satisfiability of F , i.e., determine if there exists an assignment on

{x1, . . . , xn} so that F is satisfied. This is the SAT decision problem. If such an

assignment exists we might also want to find an explicit solution.

Why on earth would anyone be interested in studying this question? Perhaps

surprisingly, many real-world problems map naturally into a SAT problem. For

example designing circuits, optimizing compilers, verifying programs, or schedul-

ing can be phrased in this way. The bad news is that Cook proved in 1973 that

it is unlikely that there exists an algorithm which solves all instances of this

problem in polynomial time (in n). More precisely, the SAT decision problem is

NP-complete.

We say that a formula F is a K-SAT formula if every clause involves exactly

K literals. E.g., (x1 ∨x2 ∨ x̄3)∧ (x2 ∨x3 ∨ x̄4) is a 3-SAT formula. The following

facts are known. The 2-SAT decision problem is easily solved in a polynomial

number of steps. Problem 1.6 discusses a simple algorithm called unit-clause

propagation which solves a 2-SAT decision problem in at most 2n steps and

produces a satisfying assignment if one exists. On the other hand for K ≥ 3 the

K-SAT decision problem is NP-complete.

Graphical representation of SAT formulas

Given a SAT formula F , we associate to it a bipartite graph G. The vertices

of the graph are V ∪ C, where V = {x1, . . . , xn} are the Boolean variables and

C = {c1, . . . , cm} are the m clauses. There is an edge between xi and cj if and

only if xi or x̄i is contained in the clause cj . Further we draw a “solid line” if cj
contains xi and a “dashed line” if cj contains x̄i.

example 2 (Factor Graph of SAT Formula) As an example, the graphical

presentation of F = (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x3 ∨ x̄4) is shown in Fig. 1.6. �

Figure 1.6 The factor graph corresponding to the SAT formula of Example 2.

Ensemble of random K-SAT Formulas

Just like in the coding and compressed sensing problems, rather than looking

at individual SAT formulas, we will define an ensemble of such formulas and we

will then study the probability that a formula from this ensemble is satisfiable.

In particular, we will stick to the behavior of random K-SAT formulas.
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The ensemble F(n,m,K) is characterized by 3 parameters: K is the number

of literals per clause, n is the number of Boolean variables, and m is the number

of clauses. Notice that with K variables we can form
(
n
K

)
2K clauses by taking K

variables among x1, . . . , xn and then negating them or not. We define F(n,m,K)

by showing how to sample from it. To this end, pick m clauses c1, . . . , cm inde-

pendently, where each clause is chosen uniformly at random from the
(
n
K

)
2K

possible clauses. Then form F as the conjunction of these m clauses. In other

words, the ensemble F(n,m,K) is the uniform probability distribution over the

set of all possible formulas F constructed out of n Boolean variables by choosing

m clauses. The cardinality of this set is
(

m
(nK)2K

)
.

Threshold behavior

Now let us consider the following experiment. Fix K ≥ 2 (e.g., K = 3) and draw

a formula F from the F(n,m,K) ensemble. Is such a formula satisfiable with

high probability? It turns out that the most important parameter that affects

the answer is α = m
n . This ratio is called the clause density. Like in coding and

compressed sensing we are interested in the asymptotic regime where n,m→ +∞
and α is fixed.

Fig. 1.7 shows the probability of satisfiability of F as a function of both n and

α. As we see from this figure, as n becomes larger the transition of the probability

of satisfiability becomes sharper and sharper. This is a strong indication that

there exists a threshold behavior, i.e., there exists a real number αs(K) such

that

lim
n→∞

P [F is satisfied] =

{
1, α < αs(K),

0, α > αs(K).
(1.11)

Here P [−] is the uniform probability distribution of the ensemble F(n,m,K).

As the density α increases one has more and more clauses to satisfy, so it

intuitively quite clear that the probability of satisfaction decreases as a function

of α. However the existence of a sharp threshold is much less evident, let alone

its computation. Such a threshold behavior was conjectured nearly two decades

ago based on experiments []. For many years this was proved only for K = 2

for which αs(2) = 1. For K ≥ 3 Friedgut proved that there exists a sequence

αs(K,n), n ∈ N, such that for all ε > 0

lim
n→∞

P [F is satisfied] =

{
1, α < (1− ε)αs(K,n),

0, α > (1 + ε)αs(K,n).
(1.12)

This result leaves open the possibility that the sequence of thresholds αs(K,n)

does not converge to a definite value as n→ +∞. The proof of a sharp threshold

behavior (1.11) was proved recently in [] for K large enough (but finite), but for

small K’s (except K = 2) a proof is still a challenging problem.

The underpinnings of this proof for large K’s rest on the statistical mechanics

methods which also give the means to compute αs(K) (for example it is known
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that αs(3) ≈ 4.259 to three decimal places). As we will see these methods yield

much more information than just the threshold value. We will uncover various

other threshold behaviors, related not only to the satisfiability of random for-

mulas, but also to the nature of the solution space. Understanding the nature of

these threshold behaviors in K-SAT is an order of magnitude more difficult than

in coding theory and compressed sensing, and forms part of the more advanced

material in chapters 18, 19.

Random max-K-SAT

In the K-SAT decision problem, one is given a formula and is asked to determine

if this formula is satisfiable or not. An important variation on this theme is

the max-K-SAT problem. In this problem one is interested in determining the

maximum possible number of satisfied clauses where the maximum is taken over

all possible 2n assignments of variables x1, . . . , xn ∈ {0, 1}n. Of course it is

equivalent to determine the minimum possible number of violated clauses where

the minimum is taken over all assignments of variables. In later chapters we

will adopt this perspective which makes the contact with traditional statistical

mechanics questions clearer.

We will be interested in the random version of max-K-SAT which we know for-

mulate more precisely. Take a formula at random from the ensemble F(n,m,K).

This formula contains m clauses labelled c1, . . . , cm. If we let 1c(x) be the indi-

cator function over assignments that satisfy clause c (i.e the function evaluates

to 1 if x satisfies c and 0 if x does not satisfy c) then the maximum possible

number of satisfied clauses is

max
x

m∑
i=1

1ci(x)

In the random max-K-SAT problem we want to compute

lim
m→+∞

1

m
E
[
max
x

m∑
i=1

1ci(x)
]

(1.13)

where the expectation is taken over the ensemble F(n,m,K) (the existence of teh

limit has been proven by methods that we will study in Chapter ??). Equivalently

we want to compute the average of the minimum possible number of violated

clauses

e(α) ≡ lim
m→+∞

1

m
E
[
min
x

m∑
i=1

(1− 1ci(x))
]

(1.14)

We define the max-K-sat threshold as

αs,max(K) = sup{α|e(α) = 0} (1.15)

We will give a non-rigorous computation of (1.14) and (1.15) in chapters 18,
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19. In fact, the proof methods [] for the sharp threshold behavior (1.11) have

their origin in such statistical mechanics computations.

Intuitively one expects that αs,max(K) = αs(K). It is clear that one must have

αs(K) ≤ αs,max(K). However the converse bound is not immediate because one

could conceivably have a finite interval ]αs(K), αs,max(K)[ where e(α) = 0 but

at the same time a sublinear fraction of unsatisfied clauses. Nevertheless it is

widely believed this does not happen and that αs(K) = αs,max(K). At least we

know that this is true for K = 2 and for large enough (finite) K [] .

Questions

Here is a set of questions we are interested in:

• Does this problem exhibit a threshold behavior?

• If so, can we determine this threshold αK?

• Are there low-complexity algorithms which are capable of finding satisfying

assigments, assuming such assignments exist?

• If so, up to what clause density do they work with high probability?
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Figure 1.7 The probability that a formula generated from the random K-SAT
ensemble is satisfied versus the clause density α.

Perhaps surprisingly, many of the above questions do not yet have a rigorous

answer and the satisfiability problem is by far the hardest of our three examples.

Nevertheless we will have non-trivial things to say about this problem and if one

admits non-rigorous methods, the problem is fairly well understood.

1.4 Notes

Here we should put some further historical info as well as reference to the liter-

ature.
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Problems

1.1 Capacity of the BSC and BAWGNC. Apply formula (1.2) to compute

the Shannon capacity of the two channels.

1.2 Configuration Model. The aim of this problem is to write a program

that can sample a random graph from the configuration model. Your program

should take as input the parameters n, m, dv, and dc, it should then check that

the input is valid, and finally return a bipartite graph according to the config-

uration model. Think about the data structure. If we run algorithms on such a

graph it is necessary to loop over all nodes, refer to edges of each node, be able to

address the neighbor of a node via a particular edge and store values associated

to nodes and edges.

1.3 Norms and pseudo-norms. Let ‖x‖p = (
∑n
i=1 |xi|p)1/p for p > 0.

Let also ‖x‖0 = ](non zero x1, . . . , xn) and ‖x‖∞ = maxi |xi|. Show first that

‖x‖0 = limp→0 ‖x‖p and ‖x‖∞ = limp→+∞ ‖x‖p. Explain why ‖ · ‖p is a norm

for 1 ≤ p ≤ +∞ and is not a norm for 0 ≤ p < 1 (this is why for 0 ≤ p < 1 we

call it a pseudo-norm). Hint: refer to the figure 1.4.

1.4 Least square estimator. Show that the solution of the minimization

problem (??) is x̂(y) = (ATA)−1AT y.

1.5 Poisson Model. An important model of bipartite random graphs is the

Poisson model. For example the random K-SAT problem is often formulated on

this graph ensemble. Pick two integers, n and m. As before, there are n variable

nodes and m check nodes. Further, let K be the degree of a check node. For

each check node pick K variables uniformly at random either with or without

repetition and connect this check node to these variable nodes. For each edge

store in addition a binary value chosen according to a Bernoulli(1/2) random

variable.

This is called the Poisson model because the node degree distribution on the

variable nodes converges to a Poisson distribution for large n. This is also the case

for the formulation in 1.3. The two formulation are equivalent in the asymptotic

limit.

Write a program that takes n,m,K as input parameters and outputs a graph

instance from the Poisson model. Again, think of the data structure.

1.6 Unit Clause Propagation for Random 3-SAT Instances. The aim

of this problem is to test a simple algorithm for soving SAT instances. Generate

random instances of the Poisson model. Pick n = 105 and let K = 3. Let α

be a non-negative real number. It will be somewhere in the range [0, 5]. Let

m = bαnc. For a given α generate many random bipartite graphs according to

the Poisson model. Interpret such bipartite graphs as random instances of a 3-
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SAT problem. This means, the variables nodes are the Boolean variables and the

check nodes represent each a clause involving 3 variables. Associate to each edge

a Boolean variable indicating whether in this clause we have the variable itself

or its negation.

For each instance you generate, try to find a satisfying assignment in the fol-

lowing greedy manner. This is called the unit clause propagation algorithm:

(i) If there is a check node in the graph of degree one (this corresponds to a

unit-clause), then choose one among such check nodes uniformly at random. Set

the variable to satisfy it. Remove the clause from the graph together with the

connected variable and remove or shorten other clauses connected to this vari-

able (if the variable satisfies other clauses they are removed while if not they are

shortened).

(ii) If no such check exists, pick a variable node uniformly at random from the

graph and sample a Bernoulli(1/2) random variable, call it X. Remove this vari-

able node from the graph. For each edge emanating from the variable node do

the following. If X agrees with the variable associated to this edge then remove

not only the edge but the associated check node and all its outgoing edges. If

not, then remove only the edge.

Continue the above procedure until there are no variable nodes left. If, at the

end of the procedure, there are no check nodes left in the graph (by definition

all variable nodes are gone) then we have found a satisfying assignment and we

declare success. If not, then the algorithm failed, although the instance itself

might very well be satisfiable.

Plot the empirical probability of success for this algorithm as a function of α.

You should observe a threshold behavior. Roughly at what value of α does the

probability of success change from close to 1 to close to 0?


