
Statistical Physics for
Communications, Signal
Processing, and Computer
Science

EPFL

Nicolas Macris and Rüdiger Urbanke

Contents

Foreword page 1

Part I Models and their Statistical Physics Formulations 5

1 Models and Questions: Coding, Compressive Sensing, and Satisfiability 7

1.1 Coding 7

1.2 Compressive sensing 13

1.3 Satisfiability 18

1.4 Overview of coming attractions 22

1.5 Notes 23

2 Basic Notions of Statistical Mechanics 25

2.1 Lattice gas and Ising models 26

2.2 Gibbs distribution from maximum entropy 29

2.3 Free energy and variational principle 32

2.4 Marginals, correlation functions and magnetization 34

2.5 Thermodynamic limit and notion of phase transition 36

2.6 Spin glass models - random Gibbs distributions 38

2.7 Gibbs distribution from Boltzmann’s principle 39

2.8 Notes 44

3 Formulation of Problems as Spin Glass Models 46

3.1 Coding as a spin glass model 47

3.2 Channel symmetry and gauge transformations 51

3.3 Conditional entropy and free energy in coding 52

3.4 Compressive Sensing as a spin glass model 54

3.5 Free energy and conditional entropy in compressive sensing 57

3.6 K-SAT as a spin glass model 58

3.7 Notes 60

4 Curie-Weiss Model 62

4.1 Curie-Weiss model 63

4.2 Variational expression of the free energy 64

4.3 Average magnetization 65

iv Contents

4.4 Phase diagram and phase transitions 67

4.5 Analysis of the fixed point equation 70

4.6 Ising model on a tree 73

4.7 Phase transitions in the Ising model on Zd 73

4.8 Notes 74

Part II Analysis of Message Passing Algorithms 77

5 Marginalization and Belief Propagation 79

5.1 Factor graph representation of Gibbs distributions 80

5.2 Marginalization on trees 81

5.3 Marginalization via Message Passing 85

5.4 Decoding via Message Passing 89

5.5 Message Passing in Compressed Sensing 91

5.6 Message passing in K-SAT 94

6 Coding: Belief Propagation and Density Evolution 99

6.1 Message-Passing Rules for Bit-wise MAP Decoding 99

6.2 Scheduling on general Tanner graphs 102

6.3 Message Passing and Scheduling for the BEC 103

6.4 Two Basic Simplifications 104

6.5 Concept of Computation Graph 106

6.6 Density Evolution 108

6.7 Analysis of DE Equations for the BEC 111

6.8 Analysis of DE equations for general BMS channels 113

6.9 Exchange of limits 119

6.10 BP versus MAP thresholds 120

7 Interlude: message passing for the Sherrington-Kirkpatrick Spin Glass 123

7.1 Sherrington-Kirkpatrick model and belief propagation approach 124

7.2 From belief propagation to Thouless-Anderson-Palmer equations 127

7.3 Evolution equations for TAP iterations - replica symmetric equation 131

7.4 Exact solution of the SK model 133

7.5 Notes 135

8 Compressive Sensing: Approximate Message Passing and State Evolu-

tion 138

8.1 LASSO for the Scalar Case 139

8.2 The vector case: preliminaries 142

8.3 Quadratic Approximation 143

8.4 Derivation of the AMP Algorithm 145

8.5 AMP algorithm for the LASSO 148

8.6 Heuristic Derivation of State Evolution 150

8.7 Performance of AMP 153

Contents v

8.8 Relations between λ-AMP, α-AMP and LASSO 155

8.9 A variant of AMP for the MMSE estimator 156

9 Random K-SAT: introduction to decimation algorithms 162

9.1 Analysis of a stochastic process by differential equations 163

9.2 The Unit-Clause Propagation Algorithm 165

9.3 Belief Propagation Guided Decimation 169

9.4 A convenient parametrization of the BP equations 174

9.5 Notes 177

10 Maxwell Construction 180

10.1 The Original Maxwell Construction 180

10.2 Curie-Weiss Model 183

10.3 Coding: The Maxwell Construction for the BEC 185

10.4 Compressive Sensing 191

10.5 Random K-SAT 191

10.6 Discussion 191

Part III Advanced Topics: from Algorithms to Optimality 195

11 Variational Formulation and the Bethe Free Energy 197

11.1 The Gibbs measure on trees 199

11.2 The free energy on trees 201

11.3 Bethe free energy for general graphical models 203

11.4 Application to coding 205

11.5 Application to compressive sensing 207

11.6 Application to K-SAT 207

12 Replica Symmetric Free Energy Functionals 209

12.1 Coding 210

12.2 Explicit Case of the BEC 212

12.3 Back to the Maxwell Construction 214

12.4 Compressive Sensing 215

12.5 K-SAT 215

12.6 Notes 217

13 Interpolation Method 220

13.1 Guerra bounds for Poissonian degree distributions 220

13.2 RS bound for coding 220

13.3 RS and RSB bounds for K sat 220

13.4 Application to spatially coupled models: invariance of free energy,

entropy ect... 220

14 Spatial Coupling and Nucleation Phenomenon 221

vi Contents

14.1 Coding 222

14.2 Compressive Sensing 230

14.3 K-SAT 235

15 Cavity Method: Basic Concepts 243

15.1 Notion of Pure State 244

15.2 The Level-One Model 246

15.3 Message passing, Bethe free energy and complexity one level up 247

15.4 Application to K-SAT 253

15.5 Replica Symmetry Broken Analysis for K-SAT 254

15.6 Dynamical and Condensation Thresholds 256

16 Cavity Method: Survey Propagation 259

16.1 Survey propagation equations 259

16.2 Connection with the energetic cavity method 259

16.3 RSB analysis and sat-unsat threshold 259

16.4 Survey propagation guided decimation 259

Notes 261

References 262

Foreword

Statistical physics, over more than a century, has developed powerful techniques

to analyze systems consisting of many interacting “particles.” In the last fif-

teen years, it has become increasingly clear that the very same techniques can

be applied successfully to problems in engineering such communications, signal

processing, or computer science.

Unfortunately there are several hurdles which one encounters when one tries

to make use of these methods.

First, there is the language. Statistical mechanics has developed over the last

150 years with the aim of providing models and deriving predictions for various

physical phenomenon, such as magnetism or the behavior of gases. This long

history, together with the specific areas of their original application, has resulted

in a rich language whose origins and meaning are not always clear to someone

just starting in the field. It therefore takes a considerable effort to learn this

language.

Second, except for extremely simple models, the “calculations” which are nec-

essary are often long and daunting and frequently use little tricks and conventions

somewhat outside the realm what one usually picks up in a calculus class. A good

way of overcoming this difficulty is to start with a familiar example, casting it

in terms of statistical physics notation, and by then going through some basic

calculations.

Third, and connected to the second point, not all methods and tricks used in

the calculations are mathematically rigorous. Some of the most powerful tech-

niques, such as the cavity method, currently do not have a rigorous mathematical

justification. In the “right hands” they can do miracles and give predictions which

are currently not possible to derive with any classical method. But a newcomer

to the field might quickly despair in trying to figure out what parts are mathe-

matical rigorous and what parts are “most likely correct” but cannot currently

be justified. Both worlds are valuable. The cavity or replica method give predic-

tions which would be very difficult to guess. These predictions can then be used

as a starting point for a rigorous proof. But it is important to cleanly separate

the two worlds.

Our aim in writing these notes is not to give an exhaustive account of all there

is to know about statistical mechanics ideas applied to engineering problems.

2 Foreword

Indeed, several excellent books which take a much more in-depth look already

exist. We in particular recommend [1, 2].

Our aim was to write the simplest non-trivial account of the most useful sta-

tistical mechanics methods so as to ease the transition for anyone interested in

this strange put powerful world. Therefore, whenever we were faced with an op-

tion between completeness and simplicity, we chose simplicity. On purpose our

language changes progressively throughout the text. Whereas at the beginning

we try to avoid as much jargon as possible, we progressively start talking like a

physicist. Most of the literature uses this language, so you better get used to it.

We decided to structure our notes around three important problems, namely

error correcting codes, compressive sensing, and the random K-SAT problem.

Although we will introduce basic versions of each of these problems, we only

introduce what is necessary for our purpose. It goes without saying that there

are myriad of versions and extensions, none of which we discuss. In fact, we hope

that the reader is already somewhat familiar with these topics and accepts that

these are important problems worth while studying. Using the basic versions of

these problems we explain how they can be cast in a statistical physics framework

and how standard concepts and techniques from statistical physics can be used

to study these problems. This allows us to introduce the necessary terminology

step by step, just when it is needed.

The notes are further partitioned into three parts. In the first part, com-

prised of Chapters 1-4, we introduce the problems, some of the language, and we

rewrite these problems in the language of statistical physics. In the first chapter

of the second part, namely Chapter 5, we then introduce the main protagonist,

a message-passing algorithm which is also know as the belief-propagation algo-

rithm. The remaining chapters of the second part, namely Chapters 6-9.3, contain

the analysis of the performance of our three problems under this low-complexity

algorithm. We will see that, in many cases, even this simple combination yields

excellent performance. Finally, in the third part, consisting of Chapters 11-13,

we get to the perhaps most surprising part of our story. Our aim will be to study

the fundamental behavior of these three problems without the restriction to low

complexity algorithms. I.e., how well would these systems work under optimal

processing. The surprise is that the same quantities which appeared in our study

of low-complexity suboptimal message-passing algorithms will play center stage

also for this seemingly completely unrelated question.

Although we follow essentially the same pattern for each of the three problems,

we will see that they are not all equally difficult.

Error correcting coding is perhaps easiest, and in principle most of the question

one might be interested in can be answered rigorously. In this case we are dealing

with large graphically models which are locally “tree like.” It is therefore perhaps

not so surprising that message-passing algorithms work well in this setting and

that the performance can be analyzed.

Compressive sensing follows a similar pattern but introduces a few more wrin-

kles. In particular, the story of compressive sensing is leading to the so-called

Foreword 3

AMP algorithm. The surprising fact here is that message-passing works very

well, and that its performance can be predicted, despite that the relevant graph-

ical model is not sparse at all but rather is a complete tree. The key observation

is that every single edge contributes very little to the global performance. AMP

can still be analyzed rigorously but the required computations are quite lengthy.

We will give an outline of the whole story, but we will not discuss every single

step in detail. Once the basic idea is clear, the interested reader should be able

to fill in missing details by studying the pointers to the literature.

The hardest problem is without doubt the random K-SAT problem. We will

only be able to present a partial picture. Many interesting and very basic ques-

tions remain open.

Many people have helped us in creating these notes. In the Spring of 2011 we

gave a series of lectures on these topics at EPFL to mostly a graduate student

population. We would like to thank Marc Vuffray, Mahdi Jafari, Amin Karbasi,

Masoud Alipour, Marc Desgroseilliers, Vahid Aref, Andrei Giurgiui, Amir Hesam

Salavati for typing up initial notes for some lectures. In addition we would like

to thank Mike Bardet who typed up further material as well as Hamed Hassani

who has since contributed material to several of the chapters.

Nicolas Macris, Lausanne, 2013

Rüdiger Urbanke

Part I

Models and their Statistical
Physics Formulations

1 Models and Questions: Coding,
Compressive Sensing, and
Satisfiability

We start by introducing three problems: error correcting coding, compressive

sensing, as well as constraint satisfaction. Although these three problems are

quite different, we will see that essentially the same tools from statistical physics

can be used to gain insight into their behavior as well as to make quantitative

predictions. These three problems will serve as our running examples.

TO COMPLETE

1.1 Coding

Error correcting codes

Codes are used in order to reliably transmit information across a noisy channel.

Let us start with a basic definition. A binary block code C of length n is a

collection of binary n-tuples, C = {x(1), . . . , x(M)}, where x(i), 1 ≤ i ≤ M, is

called a codeword, and where the components of each codeword are elements of

F2 = ({0, 1},⊕,×), the binary field. The totale number of codewords is |C| =M
and the rate of the code is defined as log2 |C|

n .

We will soon talk about various channel models, i.e., various mathematical

models which describe how information is “perturbed” during the transmission

process. In this respect it is good to know that for a large class of such models we

can achieve optimal performance (in terms of the rate we can reliably transmit)

by limiting ourselves to a simple class of codes, called linear codes.

A linear binary block code is a subspace of Fn2 , the vector space of dimension

n over the field F2. Equivalently, a binary block code C is linear iff for any two

codewords x(i) and x(j), x(i) − x(j) ∈ C. In particular x(i) − x(i) = 0 ∈ C. Since

C is a subspace, it has a dimension, call it k, 0 ≤ k ≤ n. Hence |C| = 2k, and the

rate of C is equal to k
n .

All codes which we consider in this course are binary and linear. Therefore, in

the sequel we sometimes omit these qualifiers. It will be convenient to represent

a linear binary code C of length n and dimension k as the kernel (or null space)

of an (n− k)× n binary matrix of rank n− k. Such a matrix is called a parity-

check matrix and is usually denoted by H. Every binary linear code has such a

8 Models and Questions: Coding, Compressive Sensing, and Satisfiability

representation. So equivalently, we may write

C =
{
x ∈ Fn2 : Hx> = 0>

}
for some suitably chosen matrix H. The proof that at least one such matrix

exists is the topic of an exercise.

A few remarks might be in order. First, once we have convinced ourselves that

there is at least one such matrix, it is easy to see that there are exponentially

many (in n−k) such matrices since elementary row operations do not change the

row space and hence the code defined by the matrix. All these matrices define the

same code, and are equivalent in this sense. But the representation of the code

in terms of a bipartite graph, which we will introduce shortly, and the related

message-passing algorithm, do depend on the specific matrix we choose and so

our choice of matrix is important.

Second, and somewhat connected to the first point, rather than first defining

a code C and then finding a suitable parity-check matrix H, we typically specify

directly the matrix H and hence indirectly the code C.
It can then happen that this matrix does not have full row rank, i.e., that its

rank is strictly less than n − k. What this means is that the code C contains

more codewords than 2k. Since this will happen rarely, and since having more

codewords than planned is in fact a good thing, we will ignore this possibility

and only count on having 2k codewords at our disposal.

The factor graph associated to the parity-check matrix H (of a code C)

Assume that we have a code C defined by the (n − k) × n binary parity-check

matrix H. We can associate to H the following bipartite graph G. The graph

G has vertices V ∪ C, where V = {x1, . . . , xn} is the set of n variable nodes

corresponding to the n bits (and hence to the n columns of H), and where

C = {c1, . . . , cn−k} is the set of n− k check nodes, each node corresponding to

one row of H. There is an edge between xi and cj if and only if Hji = 1.

example 1 (Factor Graph) Consider the following parity-check matrix,

H =

 1 0 0 1

0 1 1 1

0 0 1 1

 .
The factor graph corresponding to H is shown in Fig. 1.1. �

Gallager’s ensemble and the configuration model

A common theme in these notes is that instead of studying specific instances of a

problem we define an ensemble of instances i.e., a set of instances endowed with

a probability distribution. We then study the average behavior of this ensemble,

and once the average is determined, we know that there must be at least one

1.1 Coding 9

Figure 1.1 The factor graph corresponding to the parity-check matrix of Example 1.

element of the ensemble with a performance at least as good as this average.

In fact, in many cases, with a little extra effort one can often show that most

elements in the ensemble behave almost as good as the ensemble average.

For coding, we focus on a specific ensemble of codes called the (dv, dc)-regular

Gallager ensemble introduced by Gallager in 1961, [3, 4]. Rather than specifying

the codes directly we specify their factor graphs. The ensemble is characterized

by the triple of integers (n, dv, dc), such that m = ndvdc is also an integer. The

parameter n is the length of the code, dv is the variable node degree, and dc is

the check node degree.

To precisely describe the ensemble we explain how to sample from it. Pick n

variable nodes and ndvdc check nodes. Each variable node has dv sockets and each

check node has r sockets. Number the dvn variable sockets in an arbitrary but

fixed way from 1 till dvn. Do the same with the dvn check node sockets. Pick a

permutation π uniformly at random from the set of permutations on dvn letters.

For s ∈ {1, . . . dvn} insert an edge which connects variable node socket s to check

node socket π(s) ∈ {1, . . . dvn}.
If, after construction, we delete sockets (and retain the connections between

variable and check nodes) then we get a bipartite graph which is the factor

graph representing our code. To this bipartite graph we can of course associate a

parity-check matrix H. But note that in this model there can be multiple edges

between nodes. A moments thought shows that the parity-check matrix H has

a 1 at row i and column j if there are an odd number of connections between

variable i and constraint j. Otherwise it has a 0 at this position. In practice

multiple connections are not desirable and more sophisticated graph generation

algorithms are employed. But for our purpose the typically small number of

multiple connections will not play a role. In particular, it does not play a role if

we are interested in the behavior of such codes for very large instances.

The above way of specifying the ensemble is inspired by the configuration

model of random graphs, see [5]. This is why we call it the configuration model.

This particular ensemble is a special case of what is called a low-density parity-

check (LDPC) ensemble. This name is easily explained. The ensemble is low-

density since the number of edges grows linearly in the block length. This is

distinct from what is typically called the Fano random ensemble where each

entry of the parity-check matrix is chosen uniformly at random from {0, 1}, so

that the number of edges grows like the square of the block length. It is further

10 Models and Questions: Coding, Compressive Sensing, and Satisfiability

a parity-check ensemble since it is defined by describing the parity-check matrix.

We will see that a reasonable decoding algorithm consists of sending messages

along the edges of the graph. So few edges means low complexity and, even more

importantly, we will see that the algorithm works better if the graph is sparse.

For many real systems, LDPC codes are the codes of choice. They have a very

good trade-off between complexity and performance and they are well suited for

implementations. “Real” LDPC codes are often further optimized. For example,

instead of using regular degrees we might want to choose nodes of different

degrees and the connections are often chosen with care in order to minimize

complexity and to maximize performance. We will ignore these refinements in

the sequel. The most important trade-offs are already apparent for the relatively

simple regular Gallager ensemble.

Encoding, Transmission, and Decoding

The three operations involved in the coding problem are encoding, transmission

over a channel, and decoding. Let us briefly discuss each of them.

Encoding: Given C, a binary linear block code of dimension k, we can encode

k bits of information by our choice of codeword, i.e., by choosing one out of the

2k possibilities. More precisely, we have an information word u, u ∈ Fk2 , and

an encoding function g, g : Fk2 → C, which maps each information word into a

codeword.

Although this function is of crucial importance for real systems, it only plays

a minor role for our purpose. This is true since, as we will discuss in more detail

later on, for “typical” channels, by symmetry the performance of the system is

independent of the transmitted codeword. We therefore typically assume that

the all-zero codeword (which is always contained in a binary linear code) was

transmitted. Also, in terms of complexity, the encoding operation is not a diffi-

cult task. One possible option is to write the linear binary code C in the form

C = {Gu : u ∈ Fk2}, where G is the so-called generator matrix and where u is

a binary column vector of length k which contains the information bits. In this

form, encoding corresponds to a multiplication of a vector of length k with a n×k
binary matrix and can hence be implemented in O(k × n) binary operations. In

practice the code is often chosen to have some additional structure so that this

operation can even be performed in O(n) operations. We will hence ignore the

issue of encoding in the sequel.

Transmission over a Channel: We assume that we pick a codeword x uni-

formly at random from the code C. We now transmit x over a “channel”. The

actual channel is a physical device which takes bits as inputs, converts them into

a physical quantity, such as an electric or optical signal, transmits this signal over

a suitable medium, such as a cable or optical fiber, and then converts the physical

signal back into a number which we can processed, perhaps equal to a voltage

1.1 Coding 11

which is measured or the number of photons which were detected. Of course,

during the transmission the signal itself is distorted. This distortion is either due

to imperfections of the system or due to unpredictable processes such as thermal

noise. Instead of considering this potentially very complicated process we use

a typically simple mathematical model which describes the end-to-end effect of

all these physical processes on the signal. We call this model the “channel model.”

Channel Model: Formally, the channel has the input alphabet X = {0, 1} and

an output alphabet Y. E.g., two common cases are Y = {0, 1} and Y = R. We

assume that the channel is memoryless, which means that it acts on each bit

independently. We further assume that there is no feedback from the output of

the channel back to the input. In this case the channel is uniquely characterized

by a transition probability p(y | x) where y ∈ Yn is the output and where

p(y | x) =

n∏
i=1

p(yi | xi). (1.1)

Note that we get this product form from the assumptions that the channel is

memoryless (acts bit-wise) and that we have no feedback.

The following three channels are the most important examples, both from a

theoretical perspective, but also because they form the basis of real-world chan-

nels: These are the binary erasure channel (BEC), the binary symmetric channel

(BSC) and the binary additive white Gaussian noise channel (BAWGNC).

X Y

1− ε

1− ε

ε

ε

0

1

0

1

?

Figure 1.2 Binary erasure and symmteric channels with parameter ε.

BEC. The BEC is a very special channel with Y = {0, ?, 1}. As depicted in

Fig. 1.2, the transmitted bit is either correctly received at the channel output

with probability 1 − ε or erased by the channel with probability ε and thus,

nothing is received at the channel output. The erased bits are denoted by “?”.

For example, if x = 1 is transmitted in the BEC, then the set of possible channel

observation is {1, ?}. we may write somewhat formally for the transition proba-

bility p(y|x) = (1− ε)δ(y − x) + εδ(y − ?).

BSC. The output of the BESC is binary Y = {0, 1}. As seen on Fig. 1.2 the bit

is transmitted correctly with probability 1− ε or flipped with probability ε. The

transition probability is p(y|x) = (1− ε)δ(y − x) + εδ(y − (1− x)).

12 Models and Questions: Coding, Compressive Sensing, and Satisfiability

BAWGNC. The output is a real number Y = R. When x ∈ {0, 1} is sent the

received signal is y = x + z with z a Gaussian random number with zero mean

and variance σ2. With these conventions the “signal to noise ratio” is σ−2 and

the transition probability p(y|x) = (
√

2πσ)−1e−
(y−x)2

2σ2 .

One might wonder if these three simple models even scratch the surface of the

rich class of channels that one would assume we encounter in practice. Fortu-

nately, the answer is yes. The branch of communications theory has built up a

rich theory of how more complicated scenarios can be dealt with assuming that

we know how to deal with these three simple models.

Decoding: Given the output y we want to map it back to a codeword x. Let x̂(y)

denote the function which corresponds to this decoding operation. What decoding

function shall we use? One option is to first pick a suitable criterion by which

we can measure the performance of a particular decoding function and then to

find decoding functions which optimize this criterion. The most common such

criteria are the block error probability P [x̂(y) 6= x], and the bit error probability
1
n

∑n
i=1 P [x̂(y)i 6= xi]. We will come back in Chapter 3 to the precise definition

of these error probabilities.

In practice, due to complexity constraints, it is typically not possible to im-

plement an optimal decoding function but we have to be content with a low-

complexity alternative. Of course, the closer we can pick it to optimal the better.

Shannon Capacity

So far we have defined codes, we have discussed the encoding problem, the process

of transmission, the decoding problem, and the two most standard criteria to

judge the performance of a particular decoder, namely the block and the bit

error probability.

It is now natural to ask what is the maximum rate at which we can hope

to transmit reliably, assuming that we pick the best possible codes and the

best possible decoder. Reliably here means that we can make the block or bit

probability of error as small as we desire. In fact, it turns out that the answer is

the same wheter we use the block error probability or the bit error probability.

In 1948 Shannon gave the answer and he called this maximum rate the capac-

ity of the channel. For binary-input memoryless output-symmetric channels the

capacity has a very simple form. If the input alpahbet is binary and the output

alphabet discrete, and if p(y | x), x ∈ X and y ∈ Y, denotes the transition

probabilities, then the capacity of the associated channel can be expressed (in

bits per channel use) as

H(p(·))−H(p(· | x = 0)) (1.2)

1.2 Compressive sensing 13

where H(q(·)) denotes the entropy associated to a discrete distribution q(y),

y ∈ Y . By definition we have

H(q(·)) = −
∑
y∈Y

q(y) log2 q(y). (1.3)

Let us illustrate Shannon’s formula for the BEC(ε). For q(y) = p(y | x = 0)

we have q(0) = p(y = 0 | x = 0) = 1− ε, q(1) = p(y = 1 | x = 0) = 0, and q(?) =

p(y = ? | x = 0) = ε. Further, for q(y) = p(y) = 1
2p(y | x = 0) + 1

2p(y | x = 1)

we have p(0) = p(1) = 1
2 (1− ε) and p(?) = ε. Hence, H(p(·)) = 1− ε+ h2(ε) and

H(p(· | x = 0)) = h2(ε), where h2(ε) = −ε log2 ε − (1 − ε) log2(1 − ε) is the so

called binary entropy function. We conclude that the capacity of the BEC(ε) is

equal to 1 − ε. That the capacity is at most 1 − ε for the BEC is intuitive. For

large blocklengths with high probability the fraction of non-erased positions is

very close to 1− ε. So even if we knew a priori which positions will be erased and

which will be left untouched, we could not hope to transmit more than n(1− ε)
bits over such a channel. What is perhaps a little bit surprising is that this

quantity is achievable, i.e., that we do not need to know a priori what positions

will be erased and still can transmit reliably at this rate.

The capacities of the BSC and BAWGNC are computed similarly (see exer-

cises).

Questions

Now where we know the basic problem and have discussed the ultimate limit of

what we can hope to achieve, the following questions seem natural to investigate.

• What are good and efficient decoding algorithms?

• If we pick a random such code from the ensemble, how well will it perform?

• In particular, is there going to be a threshold behavior so that for large in-

stances the code works up to some noise level but breaks down above this

level as it is indicated schematically in Fig. 1.3? How does this threshold

depend on the decoding algorithm?

• Assuming that there is a threshold behavior, how can we compute the thresh-

olds?

• How do these thresholds compare to the Shannon threshold?

We will be able to derive a fairly complete set of answers to all of the above

questions.

1.2 Compressive sensing

Basic problem

Here is the perhaps the simplest version of compressive sensing. Let xin ∈ Rn
representing an “input signal” that we want to capture. We assume that the

14 Models and Questions: Coding, Compressive Sensing, and Satisfiability

P
(s

u
c
c
e
s
s
)

Channel Quality GoodBad

Figure 1.3 The probability of decoding error for a transmitted message versus the
channel quality. As the blocklength of the code gets larger, we expect to see a sharper
and sharper transition between range of the channel parameters where the system
“works” and where it “breaks down.”

number of non-zero components ‖xin‖0 = |{i|xin
i 6= 0, i = 1, . . . , n}| = k of the

signal is only a fraction of n; so k = κn with κ < 1 (and usually much smaller

than one). The signal is captured thanks to an m × n “measurement matrix”

A with real entries, 1 ≤ m < n. We set m = µn with µ < 1. Let y ∈ Rm be

given by y = Axin. We think of y as the result of m linear measurements, one

corresponding to each row of A. Our basic aim is to reconstruct the k-sparse

signal xin from the least possible measurements y.

We know that at least one solution exists, namely xin, because the measure-

ments y have been produced by this input signal. But since m < n, and in fact m

is typically much smaller, we cannot simply solve the undetermined linear sys-

tem of equations since the solution will not be unique. But we know in addition

that x is k-sparse, i.e. has only k non-zero entries entries with k < n, (but we

do not know which of these entries are non-zero). Therefore, we determine if the

set of possible signals, namely

{x : Ax = y and ‖x‖0 = k}. (1.4)

has cardinality one. If this is the case we may in principle be able to reconstruct

our signal unambiguously.

One way to ensure the unicity of the solution is to take a measurement ma-

trix A satisfying a Restricted Isometry Property. We say that A satisfies the

RIP(2k, δ) condition if one can find 0 ≤ δ < 1 such that

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2, for all 2k-sparse vectors x ∈ Rn. (1.5)

It is not difficult to see that when this condition is met, then (1.4) has a unique

solution given by

x̂0(y) = argminx:Ax=y‖x‖0. (1.6)

Indeed, first notice that evidently Ax̂0(y) = y so we only have to prove unicity.

Suppose x′ is another solution of (1.4). Then, since both x′ and x0(y) are k-

sparse, their difference is 2k-sparse. The left hand inequality of the RIP(2k, δ)

1.2 Compressive sensing 15

condition states (1− δ)‖x′ − x̂0(y)‖2 ≤ ‖Ax′ −Ax̂0(y)‖2 = ‖y − y‖2 = 0, which

of course implies x′ = x̂0(y).

Solving the optimization problem (1.6) essentially requires an exhaustive search

over
(
n
k

)
possible supports of the sparse vectors, which is intractable in practice.

One avenue for simplifying this problem is to replace the “`0 norm” in (1.6) with

the `1 norm. In other words we solve the convex optimization problem,

x̂1(y) = argminx:Ax=y‖x‖1. (1.7)

A fundamental theorem of Candes and Tao states that one can find δ′, 0 < δ′ < δ,

such that if A satisfies RIP(2k, δ′) the solution of this problem is unique and

identical to (1.6), [?].

This result shows that, for suitable measurement matrices, the `0 and `1 op-

timization problems are equivalent. Thus it suffices to solve the `1 problem. We

will not prove it here but only offer some intuition for it through a simple toy

example. Suppose that n = 2, so x = (x1, x2)T , and that we perform a single

measurement y = a1x1 + a2x2. This equation corresponds to the line on figure

FIGURE

Figure 1.4 The `p balls

1.4. We seek to find a point on this line, which minimizes (xp1 + xp2)1/p, p ≥ 0

where the case p = 0 is to be understood as the number of non-zero components

of (x1, x2). As shown on figure 1.4 the solution is found by “inflating” the “`p-

balls” around the origin until the line is touched. It is clear that for a generic line

the solution is the same for all 0 ≤ p ≤ 1. Note also that for 0 ≤ p ≤ 1 the solu-

tion only has a single non-zero component, so is “sparse”. For p > 1 the solution

changes with p and both components are non-zero. Note when p = 1 there are

non-generic measurement matrices corresponding to lines parallel to the faces of

the `1-ball for which the solution is not unique; but as discussed shortly such

cases will not bother us because the matrices will be chosen at random.

But what matrices satisfy the RIP condition ? It should come as no surprise

that a matrix satisfying teh RIP condition should have a number of lines m at

least as large as k. In fact one can show that necessarily m ≥ Cδk log n
k for a

suitable constant Cδ > 0 [?]. It is not easy to make deterministic constructions of

“good” measurement matrices approaching such bounds. The same is true with

other deterministic conditions yielding equivalence of the `0 and `1 optimization

16 Models and Questions: Coding, Compressive Sensing, and Satisfiability

problems. However the toy example suggests that in fact all we migth need are

“random measurement matrix”. This is indeed a fruitful idea, at least in the

asymptotic setting n,m→ +∞ with κ = k
n , µ = m

n fixed, very much in the spirit

of random coding. This is the route we will follow.

Ensembles of Measurement Matrices

While deterministic constructions of matrices satisfying the RIP condition are

difficult, they can be shown to exist thanks to the probabilistic method [?]. The

m × n matrix A will be taken from the Gaussian ensemble where the matrix

entries are independent identically distributed Gaussian variables of zero mean

and variance 1/m. This normalization is such that each column of A has an

expected `2 norm of 1. As in coding we will consider the assymptotic regime

n,m, k → +∞ with sparsity parameter κ = k
n and measurement fraction µ = m

n

fixed. One can then show that there exists positive numerical constants c1, c2 such

that for m ≥ c1δ
−2k log(enk) matrices from this ensemble satisfy the RIP(k, δ)

condition with overwhelming probability 1 − exp(−c2δ2m) where the constants

c1, c2 are numerical constants. More general ensembles are also possible.

The ensemble formulation for the measurement matrices, may also be extended

to the signal model. One of the simplest signal distributions assumes that the

components xi are independently identically distributed according to a law of

the form

p0(x) = (1− κ)δ(x) + κφ0(x) (1.8)

where φ0(x) is a continuous probability density. Depending on the model or

the application φ0(x) is known or unknown. The most realistic assumption for

applications is to consider that φ0(x) is unknown, and in that case we call Sκ
this class of signals.

Noisy measurements and LASSO

A somewhat more realistic version of the measurement model is

y = Ax+ z,

where z is a noise vector, typically assumed to consist of m iid zero-mean Gaus-

sian random variables with variance of σ2. Again our aim is to reconstruct an

k-sparse signal with as few measurements as possible. The matrix A is chosen

from the random Gaussian ensemble and the signal from the class Fκ.

If we ignored the sparsity constraint then it would be natural to pick the esti-

mate x̂(y) which solves the least-squares problem minx‖Ax− y‖22. This problem

is easily solved and the solution is well known x̂(y) = (ATA)−1AT y. But in

general this solution will not be k-sparse.

To enforce the sparsity constraint, we can add a second term to our objective

1.2 Compressive sensing 17

function, i.e., we can solve the following minimization problem,

x̂0(y) = argminx(‖Ax− y‖22 + λ‖x‖0), (1.9)

for a properly tuned parameter λ. Unfortunately this minimization problem is

intractable, again because it requires an exhaustive search over the
(
n
k

)
possible

supports of the sparse vectors.

We saw in the noiseless case that replacing the “`0 norm“ by the `1 norm

is a fruitful idea. We follow the same route here and consider the following

minimization problem

x̂1(y) = argminx(‖Ax− y‖22 + λ‖x‖1). (1.10)

This estimator is called the Least absolute Shrinkage and Selectio Operator (LASSO).

Again λ has to be chosen appropriately. This estimator can in principle be cal-

culated by standard convex optimizaton techniques, which is already a big im-

provement over exhaustive search.

Although the LASSO estimator is popular, its a priori justification is not so

straightforward. Our discussion suggests that in the noiseless limit it reduces to

the pure `1 estimator which we know gives for a certain range of parameters the

correct solution of the `0 problem. This is one possible justification. Interestingly,

the analysis of the LASSO in Chapter ?? the exact frontier for the `0-`1 equiv-

alence in the (κ, µ) plane. This frontier is known as the Donoho-Tanner curve

which they originally derived by completely different methods. In Chapter 3 we

also discuss a somewhat more Bayesian justification of the LASSO in a setting

where the signal distribution is not known, but only the parameter κ is assumed

to be known. All this is ample justification for studying the LASSO in detail.

Graphical representation

As for coding one can set up a graphical representation for the measurement

matrix. We associate to A a bipartite graph G with vertices V ∪ C, where V =

{x1, . . . , xn} is the set of variable nodes corresponding to the n signal components

and C = {c1, . . . , cm} is the set of check nodes each node corresponding to

a row (a measurement) of A. There is an edge between xi and cj if an only

if Aji 6= 0. For the random measurement matrices discussed above this will

essentially always be the case and therefore the graph is simply the complete

bipartite graph depicted on figure 1.5.

If one wishes one may atribute a ”random weight“ to the edges, but we will

seldom need to do so. Therefore, unlike coding, here the graph is always the

same. At this point this graphical construction may seem slightly trivial and

arbitrary, but it will turn out to be a very useful way of thinking. The reason is

that, much as in coding theory, we will develop iterative algorithms exchanging

messages along the edges in order to reconstruct the signal. For example, this

immediately suggests that the complexity of these algorithms scales like O(n2)

18 Models and Questions: Coding, Compressive Sensing, and Satisfiability

FIGURE

Figure 1.5 The factor graph corresponding to the random gaussian 2× 4 measurement
matrix

because there are nm = n2µ edges. Nevertheless each edge has a random weight

of order ±1/
√
n and this will allow us to reduce the complexity to O(n).

Questions

Consider the regime where n tends to infinity and κ = k/n, µ = m/n constant.

• For given κ what fraction µ of measurements do we need so that with high

probability we can recover xin from the measurement y if we have no lim-

itations on complexity?

• If we restrict ourselves to the low-complexity LASSO algorithm, how many

measurements do we need then?

• Are there ways of designing compressive sensing schemes which achieve the

theoretical limits under low-complexity algorithms?

1.3 Satisfiability

SAT problem

Suppose that we are given a set of n Boolean variables {x1, . . . , xn}. Each variable

xi can take on the values 0 and 1, where 0 means “false” and 1 means “true”.

We define a literal to be either a variable xi or its negation x̄i. A clause is a

disjunction of literals, e.g.,

c = x1 ∨ x2 ∨ x̄3

where the operation “∨” denotes the Boolean “or” operation. An assignment

is an assignment of values to the Boolean variables, e.g., x1 = 0, x2 = 1, and

x3 = 0. Such an assignment will either make a clause to be satisfied or not

satisfied. For example the clause x1 ∨ x2 ∨ x̄3 with assignment x1 = 0, x2 = 1,

and x3 = 0 evaluates to 1, i.e., the clause is satisfied. A SAT formula, call it F ,

is a conjunction of a set of clauses. For example, consider the SAT formula

F = (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x̄4) ∧ x3.

where “∧” is the Boolean “and” operation.

1.3 Satisfiability 19

The basic SAT problem is defined as follows. Given a SAT formula F , de-

termine the satisfiability of F , i.e., determine if there exists an assignment on

{x1, . . . , xn} so that F is satisfied. This is the SAT decision problem. If such an

assignment exists we might also want to find an explicit solution.

Why on earth would anyone be interested in studying this question? Perhaps

surprisingly, many real-world problems map naturally into a SAT problem. For

example designing circuits, optimizing compilers, verifying programs, or schedul-

ing can be phrased in this way. The bad news is that Cook proved in 1973 that

it is unlikely that there exists an algorithm which solves all instances of this

problem in polynomial time (in n). More precisely, the SAT decision problem is

NP-complete.

We say that a formula F is a K-SAT formula if every clause involves exactly

K literals. E.g., (x1 ∨x2 ∨ x̄3)∧ (x2 ∨x3 ∨ x̄4) is a 3-SAT formula. The following

facts are known. The 2-SAT decision problem is easily solved in a polynomial

number of steps. Problem 1.6 discusses a simple algorithm called unit-clause

propagation which solves a 2-SAT decision problem in at most 2n steps and

produces a satisfying assignment if one exists. On the other hand for K ≥ 3 the

K-SAT decision problem is NP-complete.

Graphical representation of SAT formulas

Given a SAT formula F , we associate to it a bipartite graph G. The vertices

of the graph are V ∪ C, where V = {x1, . . . , xn} are the Boolean variables and

C = {c1, . . . , cm} are the m clauses. There is an edge between xi and cj if and

only if xi or x̄i is contained in the clause cj . Further we draw a “solid line” if cj
contains xi and a “dashed line” if cj contains x̄i.

example 2 (Factor Graph of SAT Formula) As an example, the graphical

presentation of F = (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x3 ∨ x̄4) is shown in Fig. 1.6. �

Figure 1.6 The factor graph corresponding to the SAT formula of Example 2.

Ensemble of random K-SAT Formulas

Just like in the coding and compressed sensing problems, rather than looking

at individual SAT formulas, we will define an ensemble of such formulas and we

will then study the probability that a formula from this ensemble is satisfiable.

In particular, we will stick to the behavior of random K-SAT formulas.

20 Models and Questions: Coding, Compressive Sensing, and Satisfiability

The ensemble F(n,m,K) is characterized by 3 parameters: K is the number

of literals per clause, n is the number of Boolean variables, and m is the number

of clauses. Notice that with K variables we can form
(
n
K

)
2K clauses by taking K

variables among x1, . . . , xn and then negating them or not. We define F(n,m,K)

by showing how to sample from it. To this end, pick m clauses c1, . . . , cm inde-

pendently, where each clause is chosen uniformly at random with replacement

from the
(
n
K

)
2K possible clauses. Then form F as the conjunction of these m

clauses. In other words, the ensemble F(n,m,K) is the uniform probability dis-

tribution over the set of all possible formulas F constructed out of n Boolean

variables by choosing m clauses.

Threshold behavior

Now let us consider the following experiment. Fix K ≥ 2 (e.g., K = 3) and draw

a formula F from the F(n,m,K) ensemble. Is such a formula satisfiable with

high probability? It turns out that the most important parameter that affects

the answer is α = m
n . This ratio is called the clause density. Like in coding and

compressed sensing we are interested in the asymptotic regime where n,m→ +∞
and α is fixed.

Fig. 1.7 shows the probability of satisfiability of F as a function of both n and

α. As we see from this figure, as n becomes larger the transition of the probability

of satisfiability becomes sharper and sharper. This is a strong indication that

there exists a threshold behavior, i.e., there exists a real number αs(K) such

that

lim
n→∞

P [F is satisfied] =

{
1, α < αs(K),

0, α > αs(K).
(1.11)

Here P [−] is the uniform probability distribution of the ensemble F(n,m,K).

As the density α increases one has more and more clauses to satisfy, so it

intuitively quite clear that the probability of satisfaction decreases as a function

of α. However the existence of a sharp threshold is much less evident, let alone

its computation. Such a threshold behavior was conjectured nearly two decades

ago based on experiments []. For many years this was proved only for K = 2

for which αs(2) = 1. For K ≥ 3 Friedgut proved that there exists a sequence

αs(K,n), n ∈ N, such that for all ε > 0

lim
n→∞

P [F is satisfied] =

{
1, α < (1− ε)αs(K,n),

0, α > (1 + ε)αs(K,n).
(1.12)

This result leaves open the possibility that the sequence of thresholds αs(K,n)

does not converge to a definite value as n→ +∞. The proof of a sharp threshold

behavior (1.11) was proved recently in [] for K large enough (but finite), but for

small K’s (except K = 2) a proof is still a challenging problem.

The underpinnings of this proof for large K’s rest on the statistical mechanics

methods which also give the means to compute αs(K) (for example it is known

1.3 Satisfiability 21

that αs(3) ≈ 4.259 to three decimal places). As we will see these methods yield

much more information than just the threshold value. We will uncover various

other threshold behaviors, related not only to the satisfiability of random for-

mulas, but also to the nature of the solution space. Understanding the nature of

these threshold behaviors in K-SAT is an order of magnitude more difficult than

in coding theory and compressed sensing, and forms part of the more advanced

material in chapters 15, 16.

Random max-K-SAT

In the K-SAT decision problem, one is given a formula and is asked to determine

if this formula is satisfiable or not. An important variation on this theme is

the max-K-SAT problem. In this problem one is interested in determining the

maximum possible number of satisfied clauses where the maximum is taken over

all possible 2n assignments of variables x1, . . . , xn ∈ {0, 1}n. Of course it is

equivalent to determine the minimum possible number of violated clauses where

the minimum is taken over all assignments of variables. In later chapters we

will adopt this perspective which makes the contact with traditional statistical

mechanics questions clearer.

We will be interested in the random version of max-K-SAT which we know for-

mulate more precisely. Take a formula at random from the ensemble F(n,m,K).

This formula contains m clauses labelled c1, . . . , cm. If we let 1c(x) be the indi-

cator function over assignments that satisfy clause c (i.e the function evaluates

to 1 if x satisfies c and 0 if x does not satisfy c) then the maximum possible

number of satisfied clauses is

max
x

m∑
i=1

1ci(x)

In the random max-K-SAT problem we want to compute

lim
m→+∞

1

m
E
[
max
x

m∑
i=1

1ci(x)
]

(1.13)

where the expectation is taken over the ensemble F(n,m,K) (the existence of teh

limit has been proven by methods that we will study in Chapter ??). Equivalently

we want to compute the average of the minimum possible number of violated

clauses

e(α) ≡ lim
m→+∞

1

m
E
[
min
x

m∑
i=1

(1− 1ci(x))
]

(1.14)

We define the max-K-sat threshold as

αs,max(K) = sup{α|e(α) = 0} (1.15)

We will give a non-rigorous computation of (1.14) and (1.15) in chapters 15,

22 Models and Questions: Coding, Compressive Sensing, and Satisfiability

16. In fact, the proof methods [] for the sharp threshold behavior (1.11) have

their origin in such statistical mechanics computations.

Intuitively one expects that αs,max(K) = αs(K). It is clear that one must have

αs(K) ≤ αs,max(K). However the converse bound is not immediate because one

could conceivably have a finite interval]αs(K), αs,max(K)[where e(α) = 0 but

at the same time a sublinear fraction of unsatisfied clauses. Nevertheless it is

widely believed this does not happen and that αs(K) = αs,max(K). At least we

know that this is true for K = 2 and for large enough (finite) K [] .

Questions

Here is a set of questions we are interested in:

• Does this problem exhibit a threshold behavior?

• If so, can we determine this threshold αK?

• Are there low-complexity algorithms which are capable of finding satisfying

assigments, assuming such assignments exist?

• If so, up to what clause density do they work with high probability?

P
(s
a
ti
s
fi
a
b
il
it
y
)

Figure 1.7 The probability that a formula generated from the random K-SAT
ensemble is satisfied versus the clause density α.

Perhaps surprisingly, many of the above questions do not yet have a rigorous

answer and the satisfiability problem is by far the hardest of our three examples.

Nevertheless we will have non-trivial things to say about this problem and if one

admits non-rigorous methods, the problem is fairly well understood.

1.4 Overview of coming attractions

TO DO

1.5 Notes 23

1.5 Notes

Here we should put some further historical info as well as reference to the liter-

ature.

Problems

1.1 Capacity of the BSC and BAWGNC. Apply formula (1.2) to compute

the Shannon capacity of the two channels.

1.2 Configuration Model. The aim of this problem is to write a program

that can sample a random graph from the configuration model. Your program

should take as input the parameters n, m, dv, and dc, it should then check that

the input is valid, and finally return a bipartite graph according to the config-

uration model. Think about the data structure. If we run algorithms on such a

graph it is necessary to loop over all nodes, refer to edges of each node, be able to

address the neighbor of a node via a particular edge and store values associated

to nodes and edges.

1.3 Norms and pseudo-norms. Let ‖x‖p = (
∑n
i=1 |xi|p)1/p for p > 0.

Let also ‖x‖0 =](non zero x1, . . . , xn) and ‖x‖∞ = maxi |xi|. Show first that

‖x‖0 = limp→0 ‖x‖p and ‖x‖∞ = limp→+∞ ‖x‖p. Explain why ‖ · ‖p is a norm

for 1 ≤ p ≤ +∞ and is not a norm for 0 ≤ p < 1 (this is why for 0 ≤ p < 1 we

call it a pseudo-norm). Hint: refer to the figure 1.4.

1.4 Least square estimator. Show that the minimizer of ‖y − Ax‖22 is the

least square estimator x̂(y) = (ATA)−1AT y.

1.5 Poisson Model. An important model of bipartite random graphs is the

Poisson model. For example the random K-SAT problem is often formulated on

this graph ensemble. Pick two integers, n and m. As before, there are n variable

nodes and m check nodes. Further, let K be the degree of a check node. For

each check node pick K variables uniformly at random either with or without

repetition and connect this check node to these variable nodes. For each edge

store in addition a binary value chosen according to a Bernoulli(1/2) random

variable.

This is called the Poisson model because the node degree distribution on the

variable nodes converges to a Poisson distribution for large n. This is also the case

for the formulation in 1.3. The two formulation are equivalent in the asymptotic

limit.

Write a program that takes n,m,K as input parameters and outputs a graph

instance from the Poisson model. Again, think of the data structure.

1.6 Unit Clause Propagation for Random 3-SAT Instances. The aim

of this problem is to test a simple algorithm for soving SAT instances. Generate

24 Models and Questions: Coding, Compressive Sensing, and Satisfiability

random instances of the Poisson model. Pick n = 105 and let K = 3. Let α

be a non-negative real number. It will be somewhere in the range [0, 5]. Let

m = bαnc. For a given α generate many random bipartite graphs according to

the Poisson model. Interpret such bipartite graphs as random instances of a 3-

SAT problem. This means, the variables nodes are the Boolean variables and the

check nodes represent each a clause involving 3 variables. Associate to each edge

a Boolean variable indicating whether in this clause we have the variable itself

or its negation.

For each instance you generate, try to find a satisfying assignment in the fol-

lowing greedy manner. This is called the unit clause propagation algorithm:

(i) If there is a check node in the graph of degree one (this corresponds to a

unit-clause), then choose one among such check nodes uniformly at random. Set

the variable to satisfy it. Remove the clause from the graph together with the

connected variable and remove or shorten other clauses connected to this vari-

able (if the variable satisfies other clauses they are removed while if not they are

shortened).

(ii) If no such check exists, pick a variable node uniformly at random from the

graph and sample a Bernoulli(1/2) random variable, call it X. Remove this vari-

able node from the graph. For each edge emanating from the variable node do

the following. If X agrees with the variable associated to this edge then remove

not only the edge but the associated check node and all its outgoing edges. If

not, then remove only the edge.

Continue the above procedure until there are no variable nodes left. If, at the

end of the procedure, there are no check nodes left in the graph (by definition

all variable nodes are gone) then we have found a satisfying assignment and we

declare success. If not, then the algorithm failed, although the instance itself

might very well be satisfiable.

Plot the empirical probability of success for this algorithm as a function of α.

You should observe a threshold behavior. Roughly at what value of α does the

probability of success change from close to 1 to close to 0?

2 Basic Notions of Statistical
Mechanics

Gibbs distributions play a fundamental role in the analysis of the models intro-

duced in Chapter 1. These distributions can be viewed as purely mathematical

objects which arise quite naturally in the context of coding, compressed sensing

and satisfiability, as we will see in Chapter 3. However, much insight and useful

analogies can be gained by understanding why Gibbs distributions are natural

and ubiquitous for macroscopic physical systems. It is the goal of this chapter to

expound on the second point. This will also enable us to introduce some of the

language and standard notions and settings of statistical mechanics.

Statistical mechanics describes the macroscopic (large scale) behavior of sys-

tems that are composed of a very large number of “elementary” degrees of free-

dom. For example condensed matter systems are composed of around 1023 atoms,

molecules, magnetic moments or spins, etc. Similarly, we are interested in the be-

havior of our models when the number of transmitted bits, of signal components

or literals is very large.

In physical systems a precise knowledge and description of the microscopic dy-

namics of each degree of freedom (say solving 1023 Newton differential equations

for the positions and velocities of molecules) in a macroscopic system is impos-

sible. Fortunately this is not required for the understanding of the macroscopic

properties of the system. The general approach of statistical mechanics is to re-

place the full microscopic dynamical description by a probabilistic one based on

appropriate probability distributions. It also turns out that the precise nature

of teh microscopic dynamics is largely irrelevant (for example whether it is de-

terministic or random) except for the existence of quantities that are conserved

under the dynamics (e.g. the energy). In fact even the existence of a dynamics

is not needed, or at least it is not explicitely needed. This is important because

in our models no dynamics is a priori given, and if for some reason we would

choose one, presumably this choice would not be unique.

Let us briefly warn the reader that this approach also has its limits. For phys-

ical systems the “universal” probabilistic description - given by Gibbs distribu-

tions - is valid only once the so-called thermodynamic equilibrium is reached.1

1 It is not easy to precisely define thermal equilibrium but intuitively this means the
temperature is homogeneous so that there are no heat currents, the pressure is

homogeneous so that there are no mechanical stresses, and the chemical potential is

homogeneous so that there are no particle currents and chemical reactions.

26 Basic Notions of Statistical Mechanics

Systems that are not in thermodynamic equilibrium are said to be out of equilib-

rium. Their fundamental probabilistic description(s) (assuming it exists) is not

yet elucidated. Such systems range from the simplest stationary heat or electric

flows all the way to living systems!

Thermodynamic equilibrium can somehow be defined as a state of “maximal

disorder” but still compatible with whatever “conserved quantity” which might

be relevant. This gives us a clue into the nature of the Gibbs distributions: these

are the distributions that maximize an entropy functional (Shannon’s entropy)

under the constraints provided by the conserved quantities. The notion of con-

served quantity might not be familiar to the reader. This should not be a problem

because the most important one - and the only one that is relevant to us - is

the energy function or Hamiltonian of the system. The engineer or the computer

scientist may think of this quantity as some sort of cost function. We already

encountered one such cost function in the max-K-SAT problem, namely the

minimum possible number of violated clauses. In compressed sensing the mean

square errors penalized or not by the `0 or `1 norms are also cost functions.

To lay the foundations on a concrete footing we will first describe “toy models”

of statistical mechanics, which have turned out to be among its most important

paradigms. Then we give the simplest possible derivation of the Gibbs distri-

bution from a “maximum entropy principle”. We then introduce the standard

notions of free energy, marginals, correlation functions, thermodynamic limit and

briefly discuss the concept of phase transition. There is no unique way to intro-

duce Gibbs distributions and the main body of this chapter goes along a short

path. But one should note that this path uses the notion of Shannon entropy

which itself is not an obvious primary object for physical systems. The founding

fathers of statistical mechanics deduced Gibbs distributions from more primary

principles. The interested reader will find a derivation along such lines in the last

section; but the impatient reader can skip this section without harm.

2.1 Lattice gas and Ising models

The lattice gas and Ising models - or more generally spin systems - are very

simple to formulate but have taught us surprisingly much about statistical me-

chanics and their importance cannot be understated. There is an immense body

of theory that is known about such systems which we will completely omit here

(some of it is briefly reviewed in Chapter 4, Sect. 4.7). These models will serve

us well to get to rapid and concrete derivation of the Gibbs distribution. This

section introduces the Hamiltonians first in the traditional language of statistical

mechanics; then a factor graph representation is also discussed.

2.1 Lattice gas and Ising models 27

J

Λxi = 1

xi = 0

Figure 2.1 Left: a particle configuration in the lattice gas model. Full circles represent
occupied sites xi = 1 and empty circles unocupied sites xi = 0. At most one particle
occupies a lattice site. Right: a magnetic configuration in the Ising model. Positive
signs indicate “up spins” si = +1 and negative signs “down spins” si = −1.

Lattice gas model

Consider a discrete d-dimensional grid (see Fig. 2.1; naturally, d = 3 is an impor-

tant case but other values of d are of also of great relevance both theoretically

and practically). Particles (e.g. atoms) occupy the vertices of this grid and at

most one atom can be present on any single vertex. We call V the set of vertices

and E the set of edges. The configuration of the system is described by a vector

x = (x1, · · · , x|V |) where xi = 1 if an atom is present at vertex i and xi = 0 if

vertex i is empty. To describe the system, let us introduce an energy function.

In physics it is usually called the Hamiltonian, in computer science it is more

common to say cost function. We define

H(x) = −
∑
{i,j}∈E

Jijxixj −
∑
i∈V

µixi. (2.1)

Each edge {i, j} is counted once in the sum. Here only neighboring atoms interact

and that the interaction “energy” is −Jij .
In the canonical model Jij = J and µi = µ are constant, with J < 0 corre-

sponding to repulsive interaction and J > 0 to attractive interaction between

neighboring atoms. The real number µ is an energy cost associated to the pres-

ence or absence of a particle (this might be a chemical affinity or a chemical

potential; or for example if a two dimensional grid models the surface of some

material which absorbs some vapour one may think of µ as a binding energy

between the atoms of the vapour and the surface).

28 Basic Notions of Statistical Mechanics

Canonical Ising model

The canonical Ising model is one of the oldest models and one of the best studied.

We will refer to it frequently. In this model the degrees of freedoms describe

“magnetic moments” localized at the sites of a crystal. For our case these sites

are the vertices of the square lattice. The magnetic moments are modeled by

so-called Ising spins si = ±, i ∈ V , which are binary variables taking values in

{+1,−1}. More precisely, the Hamiltonian is

H(s) = −
∑
{i,j}∈E

Jijsisj −
∑
i∈V

hisi. (2.2)

where s = (s1, . . . , s|V |). Again in the canonical Ising model Jij = J and hi = h

are constant throughout the lattice. For J > 0 neighboring spins have a tendency

to align in the same direction (ferromagnetic interaction) while for J < 0 they

have a tendency to be in opposite directions (antiferromagnetic interaction).

Mathematically speaking the lattice-gas and Ising models are equivalent. One

can go from one to the other simply by performing the change of variable

xi =
1

2
(1− si), or si = 1− 2xi

and redefining the interaction constants.

General Ising models

It is common to formulate the Ising model on general graphs G = (V,E) with

vertex set V , |V | = n and edge set E (vertices will be denoted by i, 1 ≤ i ≤ n,

and edges by (i, j)). Motivations for such a generalisation are diverse and rich.

In statistical or condensed matter physics the graph may be a regular grid or

lattice representing an underlying crystalline structure. It may also represent

an approximation of continuous space in various dimensions. But there are also

important applications of the model in other disciplines e.g. image processing,

social networks, neural networks, learning. For such applications the graph does

not necessarily have a spatial structure and may be just arbitrary. A general

Ising model has the Hamiltonian 2.2 where now the vertex and edge sets, V and

E, refer to the general graph G.

example 3 The canonical Ising model has G = Zd ∩ B, where d is the di-

mension, and B is a box of some finite side-length. Here the edges (i, j) ∈ E of

the graph consist of all nearest neighbord pairs, |i− j| = 1. Further, Jij = J for

(i, j) ∈ E. The model is called ferromagnetic when J > 0 and anti-ferromagnetic

when J < 0.

example 4 The Curie-Weiss model has for G the complete graph on n

vertices. There are n(n − 1)/2 edges with an associated interaction constant

Jij = J/n, with J > 0 constant. In addition the (external) magnetic field is

2.2 Gibbs distribution from maximum entropy 29

FIGURE

Figure 2.2 Left: factor graph of the canonical Ising model. Right: factor graph of a
spin system with pair and plaquette interactions.

taken constant hi = h. This an important exactly solvable toy model which we

treat in detail in Chapter 4.

example 5 The Ising model on a tree has for G a tree graph i.e. a graph

without loops. of finite depth D with vertex degree k for all vertices except those

at the leafs (which have degree one). An exactly solvable case that we analyze

in Chapter 4 is defined on a regular (constant degree) symmetric tree of finite

depth, with constant interaction and magnetic field strengths.

General binary spin systems

One can also go beyond the hypothesis of pairwise interactions and consider

multispin interactions. For example on a square grid the four spins of elementary

plaquettes may interact through terms of the form −
∑

(i,j,k,l)∈P Jijklsisjsksl
where P is the set of all elementary plaquettes of the square grid and Jijkl is the

“plaquette interaction strength”.

The most general binary spin Hamiltonian can be cast in the form

H(s) = −
∑
A⊂V

JA
∏
i∈A

si (2.3)

where JA ∈ R and the sum over A ⊂ V carries over all possible subsets of V

(the power set with 2|V | elements). The most general lattice gas has a similar

Hamiltonian. The Ising models then corresponds to the choice JA = h for A =

{i}, i ∈ V ; JA = J for all A = {i, j} ∈ E ⊂ V × V and JA = 0 otherwise.

The factor graph representation is a convenient representation for such sys-

tems. Here the factor graph is a bipartite graph with variable nodes associated

to spin variables s1, . . . , sn (or lattice gas variables x1, . . . , xn) and clause nodes

associated to subsets A ⊂ V with JA 6= 0. The factor graphs associated to the

Ising and lattice gas models on a grid, as well as the one with plaquette interac-

tions added are is shown on Fig. 2.2. Note that in general the factor graph itself

does not represent the underlying physical lattice but rather is a summary of the

various interactions present in the system.

In Chapter 3 it will become apparent that the LDPC codes and K-SAT models

have cost functions that are of the form 2.3.

2.2 Gibbs distribution from maximum entropy

The Gibbs distribution dates back to the very beginning of the 20th century

(see Section 2.7). But in the decade following Shannon 1948 paper, Jaynes, Bril-

30 Basic Notions of Statistical Mechanics

louin and others [?], [?] showed that one can derive Gibbs distributions from a

”maximum entropy principle“.

Let p(x) (or p(s)) be a probability distribution supposed to describe the

thermal equilibrium state of a macroscopic system with degrees of freedom

(x = (x1, . . . , xn) (or (s = (s1, . . . , sn)). Here one may keep in mind the lat-

tice gas, Ising or generalized spin systems for concreteness (with |V | = n), but

it will soon be clear that the development here is very generic. The question is:

how do we choose the probability distribution?

This probability distribution should describe typical configurations of the de-

grees of freedom. If the system were to be completely isolated from the rest of the

universe then certainly its energy would be conserved. There could also be other

relevant conserved quantities depending on the nature of the system but for our

purposes we can ignore more general cases. In reality the system has reached

thermal equilibrium through its interactions with the environment, so it is not

isolated and the energy is not strictly conserved. However in thermal equilibrium

there are no macroscopic fluxes between the system and its environnement, and

we can assume that the average energy is fixed. Thus p(x) should satisfy∑
x

p(x)H(x) = E (2.4)

where E is the average total energy. Of course there remain energy fluctuations

due to random exchanges between the system and the environnement but these

are expected to be of order m(d−1)/d.

Now, we postulate that the state of thermal equilibrium is a maximaly disor-

dered state (since e.g. there are no density or temperature gradients or no electric

currents etc) which maximizes the entropy but still satisfies the constraint (2.4).

For the entropy we take Shannon’s functional

S(p(·)) = −
∑
x

p(x) ln p(x) (2.5)

We use the letter S instead of H because the logarithm is neperian as is tradi-

tional in statistical mechanics.

This ”guess work“ leads us to the following principle: the distribution that

describes the thermal equilibrium state is the one that maximizes

S(p(·))− β
∑
x

p(x)H(x) (2.6)

Here β is a Lagrange multipier enforcing the constraint (2.4).

The Shannon entropy is a concave functional and other term is linear, therefore

the whole functional is concave so it has a unique maximizer. To find it we must

recall that there is one more constraint to enforce, namely
∑
x p(x) = 1 so we

introduce one more Lagrange multplier γ and maximize

S(p(·))− β
∑
x

p(x)H(x) + γ
∑
x

p(x)

2.2 Gibbs distribution from maximum entropy 31

Setting the derivative with respect to to p(x′) (for any fixed x′) to zero we find

p(x) = eγ−1e−βH(x)

The constant γ is fixed by the normalization condition and we find for the max-

imizer of (2.6)

pG(x) =
e−βH(x)

Z
(2.7)

where

Z =
∑
x

e−βH(x) (2.8)

The distribution (2.7) is called the Gibbs distribution and Z the partition function

(or sometimes the sum over states).

What is the interpretation of of the Lagrange multiplier β? For physical sys-

tems β−1 = kBT where T is the temperature of the system and kB a constant

(called the Boltzmann constant) such that kBT has units of energy. We briefly

explain why in the next paragraph. But of course for our problems (coding, com-

pressed sensing, SAT) there is no ”physical temperature“ so the reader may well

think of β as a mathematical Lagrange parameter enforcing the constraint (2.4).

As we will see in Chapter 3 this parameter often has a natural interpretation

specific to each problem.

We define the Gibbs entropy

S(β) ≡ S(pG(·)) = −
∑
x

pG(x) ln pG(x) (2.9)

and the internal energy

E(β) ≡ −
∑
x

pG(x)H(x). (2.10)

as functions of β. A remark is in order here: we use an abuse of notation (as is

traditional in statistical mechanics and thermodynamics) and the argument of

S and E tells us whether we view them as functional, or functions of β or as we

will shortly see E. Note the relation

S(β) = lnZ + βE(β) (2.11)

Obviously then the Gibbs entropy is S(β) = βE(β) + lnZ; but to make contact

with the temperature we have to look at the entropy as a function of the average

energy E,

S(E) = β(E)E + lnZ(β(E)) (2.12)

where β(E) is computed by inverting the relation E(β) = E. Differentiating

32 Basic Notions of Statistical Mechanics

(2.12) with respect to E,

d

dE
S(E) =β +

(dβ
dE

)
E +

(d
dβ

lnZ
) dβ
dE

= β +
(dβ
dE

)
E − E(β(E))

dβ

dE

= β (2.13)

We have derived the relation d
dES(E) = β, and comparing with ”thermody-

namic identity“ d
dES(E) = 1

kBT
(T the temperature in degree Kelvin and kB

Boltzmann’s constant in Joules per degree Kelvin), we get the interpretation of

β = 1/kBT . One commonly says that β is the ”inverse temperature“.

2.3 Free energy and variational principle

On the way of our derivation of the Gibbs distribution we have encountered a

few important facts that we highlight in this section. But first we introduce a

notation that is standard in statistical mechanics.

Bracket notation

Let A(x) be any function of the configurations x of the system (these functions

are sometimes called observables). The average with respect to pG(x) is denoted

by the bracket 〈−〉,

〈A(x)〉 ≡ 1

Z

∑
x

A(x)e−βH(x) (2.14)

The normalization factor in such averages is always given by the partition func-

tion (2.8). It will become apparent in the next Chapter how convenient it is

to have a reserved notation for the Gibbs average 〈−〉, and distinguish it from

expectations E over other random objects.

Free energy

A notion of paramount importance is the free energy defined by

F (β) = − 1

β
lnZ (2.15)

We have the important relationship2 (equivalent to (2.11))

F (β) = E(β)− β−1S(β) (2.16)

2 This allows an interpretation of the free energy as the amount of energy that is not in a

disordered form, i.e in the form of heat. It is the amount of mechanical work that can be

extracted from the system, hence the name free.

2.3 Free energy and variational principle 33

Computating, exactly or approximately, the free energy is often a major goal

and when this is possible we learn a great deal about the model or system

at hand. In particular, from the free energy we deduce the internal energy by

differentiating βF (β) with respect to β,

E(β) = 〈H(x)〉

= − d

dβ
lnZ =

d

dβ
(βF (β)). (2.17)

Also, we can compute the Gibbs entropy by differentiating F (β) with respect to

1/β. Indeed,

S(β) = −〈ln pG(x)〉

= lnZ − β〈H(x)〉) = βF (β)− β d

dβ
(βF (β))

= −β2 d

dβ
F (β) =

d

d(1/β)
F (β) (2.18)

The ”energy fluctuations“ are obtained by differentiating twice lnZ. We leave

the derivation of the following identity to the reader,

〈H(x)2〉 − 〈H(x)〉2 =
d2

dβ2
(βF (β)) (2.19)

Gibbs variationnal principle

The free energy satisfies an important variational principle. Recall that we de-

duced the Gibbs distribution as the one which maximizes the functional (2.6).

This is the content of the so-called ”Gibbs variationnal principle“ which is usually

formalized as follows. Define the Gibbs free energy functional as

F(p(·)) ≡
∑
x

p(x)H(x)− β−1S(p(·)) (2.20)

This is a convex functional and for any distribution we have the lower bound

F(p(·)) ≥ F (β) (2.21)

with equality attained for p(·) = pG(·). This principle is often used to compute

lower bounds to the free energy by taking ”trial distributions“ for p(·). These

lower bounds sometimes turn out to be useful approximations or may even be

sharp.

It is instructive to cast the variational principle in a language that is familiar

in information theory or statistics. The Kulback-Leibler divergence between two

distributions p(·) and q(·) is

DKL(p||q) ≡
∑
x

p(x) ln
(p(x)

q(x)

)
(2.22)

34 Basic Notions of Statistical Mechanics

This functional satisfies DKL(p||q) ≥ 0 with equality when p = q (see exercises).

Now, note that for q = pG we have (using (2.7), (2.15) and (2.20))

DKL(p||pG) =
∑
x

p(x) ln
(p(x)

pG(x)

)
= −S(p)−

∑
x

p(x) ln pG(x)

= −S(p) + β
∑
x

p(x)H(x) + lnZ
∑
x

p(x)

= βF(p(·))− βF (β) (2.23)

The ”free energy difference“ between a trial distribution and the Gibbs dis-

tribution is equal (up to a factor β) to the Kullback-Leibler divergence. Also,

F(p(·)) ≥ F (β) and DKL(p||pG) ≥ 0 are one and the same inequality. It is fitting

that sometimes DKL(p||q) ≥ 0 is called the ”Gibbs inequality“.

2.4 Marginals, correlation functions and magnetization

Assume that a system is described by a Gibbs distribution. In practice, in order

to answer many basic questions, it is often sufficient to compute (exactly or ap-

proximately) the first few marginals or even only the averages of a few important

observables. In this section we collect a few related definitions and remarks.

Marginals

The definition of marginals is just the usual probabilistic one. More precisely the

”first order“ marginal, is defined as

νi(xi) =
∑
∼xi

pG(x) (2.24)

where
∑
∼xi means that we sum over all xj for j = 1, . . . i − 1, i + 1, . . . n. In

other words we sum over all variables except xi. The ”second order“ marginal is

νi,j(xi, xj) =
∑
∼xi,xj

pG(x). (2.25)

where we sum over all variables except xi, xj . Note that the marginals are nor-

malized probability distributions.

To illustrate the use of marginals, suppose that in the lattice gas model we

want to compute the averages of the total number of particles
∑
i∈V xi and

energy H(x). If the marginals are known we use (the reader should check these

identities)

〈xi〉 =
∑
xi

xiνi(xi), 〈xixj〉 =
∑
xi,xj

xixjνi,j(xi, xj) (2.26)

2.4 Marginals, correlation functions and magnetization 35

and once these averages are determined we easily get the averages of the two

observables∑
i∈V
〈xi〉, and E(β) =

∑
{i,j}∈E

Jij〈xixj〉 −
∑
i∈V

hi〈xi〉. (2.27)

Correlation functions

In the previous section we saw that the internal energy, energy fluctuations and

entropy can be computed by differentiating the free energy. Something similar

is also true for the averages (2.26). Consider the following perturbation of the

Hamiltonian where we add ”source terms“

H(x)→ H(x) +

n∑
i=1

λixi (2.28)

with λi ”small“ real numbers. It is sometimes the case that if we know how

to compute the free energy for the unperturbed Hamiltonian then we can also

compute it for small values of λi’s. When this optimistic situation is met, such

perturbations may be turned into a useful theoretical tool. Suppose we have

access to lnZ(λ), λ = (λ1, . . . , λn). We have

〈xi〉 =
∂

∂λi
lnZ(λ)|λ=0, 〈xixj〉 − 〈xi〉〈xj〉 =

∂2

∂λi∂λj
lnZ(λ)|λ=0. (2.29)

It is a general fact that higher order derivatives yield higher order cumulants.

In statistical mechanics these are called ”truncated correlation functions“. The

covariance 〈xixj〉 − 〈xi〉〈xj〉 is the ”two-point“ truncated correlation function,

and the average 〈xi〉 is sometimes called the ”one-point“ function. It is a good

exercise to compute the third order derivative (with respect to λi, λj , λk) to see

what kind of correlation function is obtained.

Note that for binary variables (i.e xi ∈ {0, 1} or si ∈ {+1,−1} as is the case

for a lattice gas, an Ising spin system, coding or SAT) the marginals νi(xi) can

be recovered from the averages 〈xi〉. For example, for xi ∈ {0, 1} we have 〈xi〉 =

0.νi(0) + 1.νi(1) = νi(1) and from the normalization condition νi(0) = 1− 〈xi〉.
For si ∈ {+1,−1} we have 〈si〉 = νi(1) − νi(−1) and 1 = νi(1) + νi(−1), thus

νi(1) = 1
2 (1+〈si〉), νi(−1) = 1

2 (1−〈si〉). Similarly one can reconstruct νi,j(xi, xj)

from one and two-point correlation functions (see exercises).

Magnetization

An observable that plays a specially important role in Ising spin systems is the

magnetization of a spin configuration m(s) = 1
n

∑
i∈V si. The average magneti-

zation (also simply called magnetization) is the expectation with respect to the

Gibbs distribution.

〈m(s)〉 =
1

n

∑
i∈V
〈si〉. (2.30)

36 Basic Notions of Statistical Mechanics

According to the remarks of the previous paragraph, when the Hamiltonian

contains a term h
∑
i∈V si the magnetization can be obtained as a derivative of

the free energy with respect to the magnetic field,

〈m(s)〉 = − 1

β

∂

∂h
lnZ = − ∂

∂h
f(β) (2.31)

In general one can always add an infinitesimal magnetic field to the Hamiltonian,

differentiate the free energy, and then take the additional magnetic field to zero.

As a last remark we note that for certain models with a symmetry between

sites it is often the case that 〈si〉 is independent of i, so that 〈m(s)〉 = 〈si〉.
For example if we replace the square grid by a complete graph in the Ising

model and take interaction constants independent of edges and vertices we have

a permutation symetry between sites, so 〈si〉 is obviously independent of i. This

is the Curie-Weiss model treated in chapter 4.

2.5 Thermodynamic limit and notion of phase transition

The regime of validity of statistical mechanics is the asymptotic limit of large

systems where the number of degrees of freedom tends to infinity, n→ +∞. This

is also the regime of interest in these notes for the coding, compressed sensing

and SAT problems. In the language of statistical mechanics this regime is called

the thermodynamic limit. This is also the limit in which phase transitions are

well defined. Here a first rather informal discussion of these concepts. They will

be defined more precisely on a case by case basis in later chapter.

Thermodynamic limit

For the models of interest here we expect that lnZ, S(β) and 〈H(x)〉 all scale

like n, for large n. Such quantities are called extensive. Their thermodynamic

limit, if it exists, is defined as

f(β) ≡ lim
n→+∞

1

n
lnZ, s(β) ≡ lim

n→+∞

1

n
S(β), e(β) ≡ lim

n→+∞
〈H(x)〉

(2.32)

Taking the limit of (2.11) we obtain that these quantities are related by

f(β) = e(β)− β−1s(β) (2.33)

Relations (2.17), (2.18), (2.19) are also true for the limiting quantities scaled by

1/n, provided one can permute d/dβ and limn→+∞. This is the case as long as

f(β), s(β) and e(β) are ”sufficiently smooth“ functions of β. The issue here is

a real one and is connected to the subject of phase transitions to which we will

come back.

Let us now discuss the issue of thermodynamic limit for the correlation func-

tions and the Gibbs distribution. One cannot simply use the definition (2.7) in

2.5 Thermodynamic limit and notion of phase transition 37

the limit n → +∞ since the numerator and denominator both tend to infinity

(generically exponentially fast). So what is the meaning of the Gibbs distribu-

tion in the thermodynamic limit? One way to proceed would be to compute the

limits of the marginals, e.g.

lim
n→+∞

νi(xi), lim
n→+∞

νi,j(xi, xj), lim
n→+∞

νi,j,k(xi, xj , xk), . . . (2.34)

and define the ”infinite volume“ Gibbs distribution as the distribution with this

set of marginals. Because of phase transition phenomena such limits are not

always defined in a unique way.

Phase transitions

Let us now say a few words about phase transitions, a subject to which we will

come back in due course. The free energy f(β) is always a continuous and convex

function of β. To see this note that for finite n, F (β)/n is analytic as a func-

tion of β, and also that F (β)/n is convex as can be seen from the positivity

of the variance of the Hamiltonian in (2.19). The limit of a continuous convex

function is continuous and convex, thus f(β) is continuous and convex. Values

of β where differentiability fails are called phase transition points. Points where

the first derivative of f(β) has a jump are called first order phase transition

points; those where the first derivative is continuous but the second derivative is

discontinuous are called second order phase transition points (such points form

a set of measure zero by a theorem of Alexandrov). Phase transitions of higher

order are also possible: a phase transition of n-th order is one where the n−1-th

derivatives of f(β) are all continuous and the n-th one is discontinuous. This

classification of phase transitions is due to Ehrenfest [?]. We stress that this is

not the only classification, nor the most modern one, but one that will suit us.

Temperature is not the only parameter with respect to which the free energy

can be non-differentiable. For example in the canonical Ising model (with hi = h

constant) there are phase transitions with respect to the magnetic field h. This

helps us understand the statement made above about the non-unicity of the

Gibbs distribution in thermodynamic limit. Indeed we saw that the magnetiza-

tion is obtained as derivative of the free energy with respect to h; thus if at a

first order phase transition point this derivative can take two distinct values this

means that one should define two one-point marginals and hence two Gibbs dis-

tributions, in thermodynamic limit. In Chapter 4 we solve explicitly a useful toy

model - the Curie-Weiss model - which will allow us to discuss phase transitions

more concretely. A mini-review of the phase transitions in the Ising and lattice

gas models is found as an aside at the end of that Chapter 4.

38 Basic Notions of Statistical Mechanics

2.6 Spin glass models - random Gibbs distributions

In the next chapter we will see that our three problems coding, compressive

sensing and satisfiability can be formulated as a particular type of statistical

mechanics models, the so-called spin glass models. In this paragraph we briefly

explain what spin glass models are in general.

One of the ambitions of statistical mechanics is to describe the great variety of

”phases” of condensed matter (a non-exhaustive list: gases, liquids, crystalline

solids, metals, insulators, semi-conductors, superconductors, superfluids, mag-

netic materials, liquid crystals, polymers, glasses, emulsions etc). One of the

oldest known but still badly understood and intriguing phase is ”glass”. Ordi-

nary glass is an amorphous material where the geometrical arrangement of atoms

is frozen as in a solid but at the same time is irregular as in a liquid; it is believed

that in a sense ordinary glass is a “frozen liquid” with such a huge viscosity that

it does not flow for all practical purposes. There also exist magnetic materials

whose magnetic degrees of freedom interact through irregular interactions with

varying signs and have a glassy behaviour. Here we will not say more about the

physical concept of “glass” which is often a mater of debate.

Spin glass models are Ising or generalized spin systems, see (2.2), (2.3), with

random interaction constants. Such models where first introduced by Anderson

and Edwards in the 1970’s in an attempt to capture the properties of magnetic

materials with interactions of ”varying” intensity and sign.

example 6 The usual Edwards-Anderson (EA) spin glass model has G =

Zd ∩B, where d is the dimension, and B is a box of some finite side-length, and

has random iid coupling constants Jij = ±J , where the sign is iid Bernoulli(1
2)

and hi = h is constant. The analysis of this model is still far from understood

nowadays.

example 7 The random field Ising model (RFIM) also has G = Zd∩B, where

d is the dimension, and B is a box of some finite side-length, has constant Jij = J

and random iid magnetic field hi = ±h with Bernoulli(1/2) signs. This is also a

very non-trivial model with many open questions.

example 8 The Sherrington-Kirkpatrick (SK) model has for G the complete

graph on n vertices with n(n − 1)/2 edges. The coupling constants Jij are iid

Bernoulli(1/2) in {− J√
n
,+ J√

n
} or Gaussian N (0, J

2

n), and the magnetic field is

generally taken constant hi = h. The analysis of this model in Chapter 7 will

play a somewhat important role for compressed sensing.

Variants of these models use other distributions for the interaction constants,

for example Gaussians. One can also take more complicated models with more

general interactions, e.g. JA’s in (2.3) may be random variables, or also replace

the regular grids by a random graph. The study of spin glass models has turned

out be very non-trivial and has been a source of many fundamental concepts in

statistical mechanics of so-called disordered systems. Fortunately, the spin glass

2.7 Gibbs distribution from Boltzmann’s principle 39

models that will be relevant for our three problems are defined on complete

or locally tree-like graphs and as we will see the absence of “low dimensional

geometry” makes them somehow much easier to study than the EA and RFIM.

easier to study. This is already the case for non-random versions as we will see

in Chapter 4.

The Gibbs distribution associated to a spin glass Hamiltonian has two lev-

els of randomness. First we have the randomness of the Hamiltonian itself, i.e.

the interaction constants or the underlying grid. Once they are sampled from a

specified ensemble we have a fixed instance of a Gibbs distribution which is a

probability distribution over the spin or lattice gas variables. So the study of spin

glass models is the study of ensembles of random Gibbs distributions. A word

about a terminology that comes from the manufacturing processes of materials

and has become standard is in order here. The random interaction constants of

the Hamiltonian are called quenched variables because once the instance (or the

sample) is specified they are fixed or ”frozen“ once for all. The spin or lattice gas

degrees of freedom are sometimes called annealed variables because they ”adapt“

themselves into their typical configurations. A word about notation is also in or-

der. It is very convenient to have two separate notations to distinguish averages

with respect to quenched and annealed variables. The expectations with respect

to the Gibbs distribution are always denoted by the same bracket 〈−〉 and those

with respect to the quenched variables by E with possible subscripts describing

the ensemble. Thus if A(x) is an observable (say the magnetization) the aver-

age over the annealed and quenched variables is E[〈A(x)〉]. The reader should

convince himself that it would be meaningless to permute the two expectations.

The quenched randomness is ubiquitous in many engineering problems where

one has to deal with particular instances that belong to a model ensemble. This

is the point of view that we took in the definition of the coding, compressive

sensing and satisfiability problems. As we will see in the next Chapter once

an instance of the ensemble is specified the Gibbs distribution appears more

or less naturally in the mathematical formulation. So in a sense the connections

between our models and the statistical mechanics of spin glasses is not surprising

but just very natural. In fact such connections have been with us since the 1970’s

for various computer science problems such as the travelling salesman or graph

partionning problems and also in neural networks (see references [?]).

2.7 Gibbs distribution from Boltzmann’s principle

This section is not needed for the main development of these notes and can

be skipped in a first reading.

We will derive the Maxwell-Boltzmann or Gibbs distributions from two basic

principles. We first discuss these principles and then derive the Gibbs distribution

in the next section. We point out that there is not only one way of deriving Gibb’s

40 Basic Notions of Statistical Mechanics

distributions and not only one set of generally agreed upon principles which lead

to them. Rather, as with any physical law, is has to be “gussed” from a variety

of experiments, plausible assumptions and models, which all lead to a conclusion

that is then validated by experiments.

For concreteness the reader may keep in mind the lattice gas model in the

arguments of this section. We suppose that the particles have a dynamics with

“trajectories” xi(t), i = 1, . . . , n on the lattice parametrized by time t. As we

will see the rpecise nature of the dynamics will not concern us except for an

“ergodicity hypothesis”.

Uniform microcanonical measure

Let [0, T] be the time interval over which we measure an observable quantity

A(x(t)) and let τ be a characteristic microscopic time scale, for example the

time scale on which a single particle jumps from a position to a neighboring one.

In practice we have T � τ . We assume that a measurement returns an average

over time

1

T

∫ T

0

dt φ(x(t)), (2.35)

and that in the state of thermodynamic equilibrium this average is independent

of T for T � τ , and independent of the origin of time and initial condition (in

other words we can shift [0, T]→ [s, s+T] and the average is independent of s).

During the measurement interval the state of the system x(t) will wander

across the energy surface ΓE ⊂ {0, 1}|V | = {x | H(x) = E}. Let t(x)/T be the

fraction of time it spends in state x.

Our first principle states that for an isolated system, when T � τ , the fraction

of time t(x)/T spent in state x, is given by the uniform distribution on the energy

surface ΓE . In other words for t(x)/T we take,

µE(x) =
1(x ∈ ΓE)

W (E)
(2.36)

where the normalization factor is

W (E) =
∑

x∈{0,1}|V |
1(x ∈ ΓE). (2.37)

This distribution is called the microcanonical distribution. In words this assump-

tion states that if the system is isolated it spends an equal time in all states.

A fundamental consequence is that we can replace the time average (2.35) by

a configurational average,

1

T

∫ T

0

dtA(x(t)) ≈
∑

x∈{0,1}|V |
µE(x)A(x), T � τ (2.38)

Often equ. (2.38) is formalized and called the ergodic hypothesis. The ergodic

hypothesis states that the dynamics exactly satisfies this identity in the limit

2.7 Gibbs distribution from Boltzmann’s principle 41

T → +∞, for almost all initial conditions x(0) (note that the right hand side

does not depend on the initial condition) and all observables A(x).

This ergodic hypothesis has played a very important historical role but has

never been proved for macroscopic systems, and its physical relevance has often

been debated.3 In fact its precise validity is not so important, and ultimately we

just postulate that averages of a class reasonable of observables in an isolated

system can be computed from the uniform distribution.

Boltzmann’s principle

Consider the normalization of the microcanonical measure, W (E). Generically

this has exponential behavior in the number of degrees of freedom. It is therefore

to introduce the Boltzmann entropy as

SB(E) = lnW (E). (2.39)

We stress that this is a priori a purely combinatorial quantity: more about it

later.

example 9 Let us consider the lattice gas model introduced in the previous

example for the non-interacting case J = 0. Since the energy surface consists of

ΓE = {x |
∑
i∈V xi = E/µ} there must be E/µ lattice nodes with xi = 1 among

|V | = n of them (and the rest with xi = 0). Hence

W (E) =

(
n

E/µ

)
' exp

(
nh2

(E
µn

))
, (2.40)

where h2(·) is the binary entropy function. In the infinite size limit we have

s(e) = lim
n→∞
E/n=e

1

n
SB(E) = h2

(
e

µ

)
, (2.41)

where e = E/n and h2(u) = −u lnu−(1−u) ln(1−u) the binary entropy function.

Note that this is a concave function (for physically sensible Hamiltonians the

Boltzmann entropy is a concave function of e; this is not always the case in

computer science and coding problems with hard constraints).

There is a purely thermodynamic (and experimentally measurable) notion of

entropy elucidated in the 19-th century (along with the notions of heat and

work) by Carnot, Clausius, Joule, Helmholtz, Kelvin and others. For a system at

thermodynamic equilibrium with homogeneous temperature and pressure T and

p, the thermodynamic entropy Sthermo(E, V) is a function of the total energy E

and volume V satisfying

∂

∂E
Sthermo =

1

T
,

∂

∂V
Sthermo =

p

T
. (2.42)

3 It should be noted that this hypothesis is at the origin of a deep branch of mathematics,

“ergodic theory”, and has been proven to hold for systems with a few particles such as
billiard balls [?]

42 Basic Notions of Statistical Mechanics

S

Λ

∂S

Figure 2.3 The system S is embedded in a thermal bath V . The total system V is
considered as an isolated system and its total energy E is conserved. We compute the
induced measure on S.

From T and p one can in principle recover Sthermo. Note that the unit of Sthermo

are Joules per dgree Kelvin.

Boltzmann’s principle postulates equality of the thermodynamic and Boltzmann

entropies. The former is a physically measurable quantity and later is a mathe-

matical combinatorial quantity that can in principle be calculated. So,

Sthermo = kBSB, (2.43)

Here, kB is Boltzmann’s constant with units of Joules per degree Kelvin. If we

combine this identitywith the first equation in (2.42) then we get

∂SBoltz

∂E
=

1

kBT
. (2.44)

This fundamental principle makes the connection between statistical mechan-

ics and thermodynamics. In the next paragraph we will see that it is a crucial

ingredient in the derivation of the Gibbs distribution.

Derivation of the Gibbs distribution

The microcanonical distribution described earlier, only characterizes an isolated

system. However, real macroscopic systems are not isolated. One should also

notice that in practice, in order to reach thermal equilibrium it is necessary to

put systems in contact with a thermal bath, an infinite reservoir which is at a

constant temperature.

For simplicity, we take the lattice gas as our big reservoir and suppose it is

isolated with total energy E. The real system of interest is a much smaller but still

2.7 Gibbs distribution from Boltzmann’s principle 43

macroscopic system Σ ⊂ V (see Figure 2.3). We label the degrees of freedom in

Σ as (x1, . . . , xm) and those outside Σ by (xm+1, . . . , xn). The regime of interest

is 1 � m � n. We are interested in computing only averages of observables

which depend on the degrees of freedom of the smaller system Σ, A(x1, . . . , xm).

Of course we can compute them with the microcanonical distribution

µE(x1, . . . , xn) =
1((x1, . . . , xn) ∈ ΓE)

W (E)
. (2.45)

but clearly, since A depends only on x1, . . . , xm, we only need the marginal of

this distribution over the degrees of freedom of Σ.

We now show that the marginal of (??) is the Gibbs distribution with inverse

temperature 1
kBT

= ∂
∂ESB(E).

The marginal distribution for Σ reads systems is x1, . . . , xm reads

µind(x1, . . . , xm) =
∑

xm+1,...,xn

µE(x1, . . . , xn)

=

∑
xm+1,...,xn

1((x1, . . . , xn) ∈ ΓE)∑
x1,...,xn

1((x1, . . . , xn) ∈ ΓE)
. (2.46)

The total energy E is a sum of the energy inside Σ, the energy outside Σ and an

interaction part between the inside and the outside,

E = H(x1, . . . , xn)

= HΣ(x1, . . . , xm) +HV \Σ(xm+1, . . . , xn) +Hint,

GenericallyHΣ is of the order of m (the volume of Σ),HV \Σ is of order n−m (the

volume of the outside of Σ) and Hint is of order the surface of Σ. In d dimensions

the surface of Σ is of order m(d−1)/d << m << n − m, thus neglecting the

interaction term we conclude that if (x1, . . . , xn) belongs to the energy surface

ΓE then (xm+1, . . . , xn) belongs to the energy surface ΓE−HΣ(x1,...,xm). With

these remarks we obtain

µΣ(x1, . . . , xm) =

∑
xm+1,...,xn

1((xm+1, . . . , xn) ∈ ΓE−HΣ(x1,...,xm))∑
x1,...,xm

∑
xm+1,...,xn

1((xm+1, . . . , xn) ∈ ΓE−HΣ(x1,...,xm))

=
exp(SB(E −HS(x1, . . . , xm))∑

x1,...,xm
exp(SB(E −HΣ(x1, . . . , xm))

=
exp(SB(E)−HΣ(x1, . . . , xm) ∂

∂ESB + . . .)∑
x1,...,xm

exp(SB(E)−HS(x1, . . . , xm) ∂
∂ESB + . . .)

=
exp (−HΣ(x1, . . . , xm)/kBT)∑

x1,...,xm
exp (−HΣ(x1, . . . , xm)/kBT)

,

The second equality follows from the definition of the Boltzmann entropy. The

third equality uses a Taylor expansion to first order since E � HΣ(x1, . . . , xm)

since n� m). The last equality is the point where Boltzmann’s principle is used.

The final result is exactly the Gibbs distribution for Σ.

44 Basic Notions of Statistical Mechanics

2.8 Notes

If you visit Boltzmann’s grave in Vienna you will see the inscription S = k lnW .

Austrian physicist and philosopher. He was a professor of mathematics in Vienna.

He hanged himself.

Problems

2.1 Gibbs distribution. Give the details of the derivation leading to (2.7)

and (2.8).

2.2 Energy fluctuations. Derive relation (2.19).

2.3 Positivity of Kullback-Leibler divergence. Prove in two different ways

that DKL(p||q) ≥ 0 with equality if and only if p(x) = q(x) for all x. Hint: use

lnu ≤ u− 1 for u > 0 and also the convexity of f(u) = u lnu.

2.4 Correlation functions from derivatives of partition function. Check

the formulas (2.29) and also

∂3

∂λiλjλk
lnZ(λ)|λ=0 =〈xixjxk〉 − 〈xixj〉〈xk〉 − 〈xjxk〉〈xi〉

− 〈xixk〉〈xj〉+ 2〈xi〉〈xj〉〈xk〉

2.5 Marginals for Ising spins. Consider any spin system with binary vari-

ables si ∈ {+1,−1}. Express the marginals νi(si) and νi,j(si, sj) in terms of the

averages 〈si〉, 〈sj〉 and 〈sisj〉.

2.6 Ising model in one dimension: transfer matrix method. The aim of

this problem is to solve the one-dimensional Ising model by the transfer matrix

method. The Hamiltonian of the one-dimensional Ising model on a ring is

H = −J
n
2−1∑
i=−n2

sisi+1 − h
n
2∑

i=−n2

si − Js−n2 sn2

The last term accounts for the fact that the sites are on a ring. Consider the

transfer matrix

T =

(
eK+h e−K

e−K eK−h

)
(i) Show that the partition function can be expressed as ZN = tr (Tn) where tr

is the sum over eigenvalues (the trace).

(ii) Find the eigenvalues of T and show that the free energy per spin is in the

2.8 Notes 45

thermodynamic limit n→ +∞

f = −β−1 ln[eβJ cosh(βh) + (e2βJ sinh2(βh) + e−2βJ)1/2].

(iii) Compute the magnetization from the thermodynamic definition: m = − ∂
∂hf

and plot the curve m as a function of h for various values of β. Convince yourself

both on the plot and from the analytic formula that there is no sharp phase

transition for any temperature T > 0.

2.7 Ising model in one dimension: message passing method. In this

problem we solve the one-dimensional Ising model by a “message passing” or

“iterative” method. We consider the model on an open chain, which means that

the Hamiltonian is

H = −J
n
2−1∑
i=−n2

sisi+1 − h
n
2∑

i=−n2

si

We want to compute the average 〈si〉 in the thermodynamic limit n→ +∞. For

simplicity we consider the middle spin 〈s0〉 (it can be checked that limn→+∞〈si〉
is independent of i, for i fixed).

(i) In the Gibbs average for 〈si〉 perform explicitely the sum over the two end

spins s−n/2 and sn/2. Show that this leads to a new model on a shorter chain

with new Hamiltonian

βH(1) = −J
n
2−2∑

i=−n2 +1

sisi+1 − h
n
2−2∑

i=−n2 +2

si

− β−1(h+ tanh−1(tanh(βJ) tanh(βh)))(s−n2 +1 + s−n2−1)

(ii) Repeat this calculation to show that

lim
N→+∞

〈s0〉 = tanh(βh+ 2 tanh−1(tanh(βJ) tanh(βu)))

where u is the solution of the fixed point equation

u = βh+ tanh−1(tanh(βJ) tanhβu)

(iii) Show that the solution of this fixed point equation is unique (so that there

is no ambiguity in this result).

(iv) Check that the result agrees with the expression for m found in the first

problem. Hint: use the identity tanh(x+y) = (tanhx+tanh y)/(1+tanhx tanh y)

3 Formulation of Problems as Spin
Glass Models

We will reformulate the three problems introduced in Chapter 1 in a statistical

physics language. Both the coding as well as the compressive sensing problem

are inference problems, and in this context Gibbs distributions appear quite nat-

urally. The random K-SAT problem is not an inference problem and the Gibbs

distribution does not appear in a completely straightforward way. A simple and

natural distribution is the uniform one over the set of satisfying assignments.

In a sense this distribution is akin to the microcanonical measure introduced in

Sec. 2.7. But, given a formula, the set of satisfying assignments is not known,

typically we dont even know if it is empty or not, and in any case it is difficult

to get a handle on the uniform distribution. Instead, we will take a Gibbs distri-

bution which is always well defined on all possible assignments and get a good

approximation to the uniform distribution when the inverse temperature β tends

to infinity.

In all cases we end up with spin glass models. What do we mean by this? Take

for example the coding or satifiability examples. Instead of talking about physical

degrees of freedoms (e.g. magnetic spins), we can think of the bits which are to

be transmitted or the Boolean variables and which can take one of two possible

values as spins. This explains why we talk about spin systems. In compressed

sensing the signal components are continuous and this model falls in the class

of continuous spin systems. But where is the glass? In coding the way we have

defined our code ensemble, a check interacts with a random subset of the bits

so the graph and interactions are random. The same is true for satisfiability. In

compressed sensing the measurement matrices are random which results in ran-

dom interaction constants between the continuous spins. Note that in compressed

sensing the graph itself is bipartite complete and is therefore not a random ob-

ject. In all our models this type of randomness is quenched: once we pick an

instance from the appropriate ensemble we have a fixed Gibbs distribution. In

this sense our models fall in the general category of spin glasses.

To summarize, our reformulations will lead us to random Gibbs distributions.

For each problem we will identify a Hamiltonian function over “spins” with

underlying graphs and interaction constants belonging to a random ensemble.

3.1 Coding as a spin glass model 47

3.1 Coding as a spin glass model

Let C be a code from Gallager’s (dv, dc) ensemble of block length n. Recall that

dv is the degree of variable nodes, and that dc is the degree of check nodes.

Further, n is the block length, i.e., it is the number of variable nodes. We have

ndv = mdc where m is the number of parity checks.

Assume that we transmit the codeword x = (x1, . . . , xn) through a binary,

memoryless symmetric channel without feedback, and let y = (y1, . . . , yn) be

the received word. We will use the spin variable notation for the codebits. This

means that we write si = (−1)xi (or si = 1− 2xi). The channel is described by

transition probabilities

p(y|s) =

n∏
i=1

p(yi|si) (3.1)

The three examples to which we will refer most often are the BEC, the BSC,

and the BAWGNC.

We will always assume that the transmitted (input) codeword sin is selected

uniformly at random, thus the joint distribution for (s, y) is p(y|s)× 1(∈C)
|C| . We

call p(s | y) be the posterior probability distribution of s given the received word

y.

MAP decoding

The bit-MAP estimate ((MAP means maximum a posteriori) is,

ŝi(y) = argmaxsi νi(si|y), (3.2)

where νi(si|y) is the marginal of the posterior p(s|y). This estimator is optimal

in the sense that it minimizes the bit probability of error.

Since sin is picked uniformly at random from the code, the probability that

bit i is wrongly decoded is

1

|C|
∑
sin∈C

P[ŝi(Y) 6= sin
i]

Thus the average bit probability of error is defined as

Pb[error] =
1

n

n∑
i=1

1

|C|
∑
sin∈C

P[ŝi(Y) 6= sin
i] (3.3)

We will see that bit-MAP decoding has a very natural statistical mechanical

interpretation in terms of the magnetization of a spin glass model.

Although we will not be deal much with it, we mention the block-MAP esti-

mate ŝ(y) = argmaxs p(s | y) and the associated the block probability of error

PB[error] = 1
|C|
∑
sin∈C PB [ŝ(Y) 6= sin]. We will see that the block-MAP decoding

is equivalent to finding the minimum energy states of a Hamiltonian; and that

48 Formulation of Problems as Spin Glass Models

there is a ”finite temperature“ decoder which interpolates between the bit-MAP

and block-MAP decoders.

The posterior distribution as a spin glass model

We now show that the posterior distribution p(s | y) is a random Gibbs distribu-

tion. Recall that a code is represented by a bipartite factor graph with variable

nodes i = 1, . . . , n and checks1 a = 1, . . . ,m; like in Fig. 1.1. We call ∂a the set

of variable nodes connected to check a. A code word x has to satisfy all parity

check constraints
∑
i∈∂a xi = 0 for all checks. In spin language are equivalent to∏

i∈∂a si = 1 for all checks. Thus the prior distribution over codewords can be

written as

p0(s) =
1(s ∈ C)
|C|

==
1

| C |

m∏
a=1

1

2
(1 +

∏
i∈∂a

si). (3.4)

Using Bayes law and the channel law (3.1),

p(s|y) =
p(y|s)p0(s)

p(y)

=
p0(s)

∏n
i=1 p(yi|si)∑

s p0(s)
∏n
i=1 p(yi|si)

(3.5)

Now we divide the numerator and denominator by
∏n
i=1 p(yi| − 1) and use

p(yi|si)
p(yi| − 1)

= ehisi+hi (3.6)

where we have introduced the half-loglikelihood variable associated to channel

observation yi

hi =
1

2
ln
p(yi|+ 1)

p(yi| − 1)
, (3.7)

and obtain

p(s|y) =
p0(s)

∏n
i=1 e

hisi+hi∑
s p0(s)

∏n
i=1 e

hisi+hi
. (3.8)

Finally using (3.4) we arrive at the expression

p(s|y) =
1

Z

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi (3.9)

where the normalizing factor in the denominator is

Z =
∑
s

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi . (3.10)

It equivalent to describe the channel outputs by h or y, and we will sometimes

1 We will usually denote variable nodes by letters i, j, k, . . . and checks by a, b, c, . . .

3.1 Coding as a spin glass model 49

interchange them in our notations when this does not lead to ambiguities. So for

example we can write p(s|y) = p(s|h) for the posterior. But for the transition

probability of the memoryless channel we have to be more careful. In terms

of half-loglikelihood variable we denote it c(hi|si), and formally p(yi|si)dyi =

c(hi|si)dhi. In the exercises you compute explicitely c(hi|si) for the BEC, BSC

and BAWGNC.

The posterior (3.9) is a random Gibbs distribution, also called a spin glass

model. Here the word random relates to the randomness of the channel outputs

as well as the choice of code. For each channel realization h and each code C picked

from the Gallager ensemble we have a distribution over the spins s ∈ {−1,+1}n.

In the terminology of physics the randomness associated with the code (or factor

graph) and channel realisations is called ”quenched randomness”. This is because

in a given experiment (here the transmission and reception of a message) the code

and channel realisations are fixed, or frozen. The spins on the other hand are

called annealed variables because they fluctuate and adapt themselves into their

typical configurations.

What are the distributions of the quenched randomness? The distribution

over the codes is the uniform distribution over Gallager’s ensemble. In the con-

figuration model introduced in Chapter 1 this is the uniform distribution over

all permutations among ndv sockets. Averages with respect to codes are denoted

EC [−]. The channel outputs are distributed according to c(h|sin) and correspond-

ing averages Eh|sin [−].

This is a good point to recall that averages with respect to the Gibbs dis-

tribution, in other words with respect to the spins, are denoted by the bracket

〈−〉, and are distinguished from averages over quenched variables generically de-

noted E. Note also that Gibbs brackets depend on h so 〈−〉 and E cannot be

interchanged.

We explained in Chapter 2 that a crucial feature of Gibbs distributions, which

plays a fundamental role in their analysis, is their ”locality”. We see that this

is the case here because each term in the products in (3.9) and (??) depend on

a finite number of spins. This is the essential reason why statistical mechanics

methods can be applied.

Bit-MAP decoder and magnetization

The bit-MAP decoder has a natural relation to the magnetization of the spin

glass. The definition (3.2) is equivalent to

ŝi(h) = sign(νi(si = 1|h)− νi(si = −1|h))

= sign(
∑
si

siνi(si|h)) = sign〈si〉, (3.11)

50 Formulation of Problems as Spin Glass Models

So the bit-MAP estimate for the i-th bit i is given by the sign of the local

magnetisation 〈si〉,

〈si〉 =
1

Z

∑
s

si

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi

=
∂

∂hi
lnZ (3.12)

Using P[ŝi(h) 6= sin
i] = Eh|sin [1(ŝi(h) 6= sin

i) the average bit probability of error

(3.3) becomes

Pb[error] =
1

n

n∑
i=1

1

|C|
∑
sin∈C

1

2

(
1− Eh|sin

[
sin
i sign(〈si〉)

])
. (3.13)

The BEC, BSC and BAWGNC have a special symmetry property which allows

to simplify this expression. In the next section we show that for a general class

of symmetric channels the terms in the sum (3.13) are independent of the in-

put word (see Equ. (3.20)). For such channels there is no loss in generality to

assume that the transmitted word is sin
i = 1, i = 1, . . . , n, or x = 0 the ”all-zero

codeword”. To simplify the notations we set c(h|1) = c(h) and Eh|1in = Eh. For

symmetric channels the average bit error probability is given by

Pb[error] =
1

n

n∑
i=1

1

2

(
1− Eh

[
sign(〈si〉)

])
. (3.14)

Interpolating between bit-MAP and MAP decoders

What is the Hamiltonian corresponding to distribution (3.9)? To answer this

question it is enough rewrite this expression as e−βH(s)/Zβ . If we set β = 1 we

have2

H(s) =

m∑
a=1

1

2
(1−

∏
i∈∂a

si)−
n∑
i=1

hisi (3.15)

So the posterior distribution used in bit-wise MAP decoding can be though as a

Gibbs distribution with inverse temperature set to the special value β = 1.

From this point of view it is natural to try other decoders based on the Gibbs

distribution for arbitrary values of the inverse temperature parameter,

pβ(s|h) =
1

Zβ
e−βH(s) =

1

Zβ

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

eβhisi (3.16)

with the partition function Zβ the sum over all s ∈ {−1,+1}n of the numerator.

The general temperature decoder is defined as

ŝi(h;β) = argmax pβ(si|h) = sgn〈si〉β (3.17)

2 Setting β to a different value would amount to scale the Hamiltonian by the inverse of that

value.

3.2 Channel symmetry and gauge transformations 51

where the bracket 〈−〉β is the average with respect to (3.16). Obviously β = 1

this is the bit-wise MAP decoder. Taking the limit β → +∞ it is not difficult

to see that sgn〈si〉β → argminH(s). This also equals argmax p(s|h), thus in the

zero temperature limit we recover the block MAP decoder. For 1 ≤ β ≤ +∞ the

general temperature decoder interpolates between the bit-wise and block MAP

decoders.

3.2 Channel symmetry and gauge transformations

A binary input channel is said to be symmetric when the transition probability

satisfies p(yi|si) = p(−yi|−si). Using (3.7) and (??) one shows that this is equiv-

alent to c(hi|si) = p(−hi| − si). We show below that without loss of generality

one can assume sin
i = 1, so it is useful to also notice that

c(−hi) = c(hi)e
−2hi (3.18)

example 10 For the BEC, BSC, BAWGNC we check explicitly that p(yi|si) =

p(−yi| − si). One also computes c(hi) = c(hi|1) from (3.7) and (??) and finds

c(h) = (1− ε)δ+∞(h) + εδ(h), BEC(ε)

c(h) = (1− p)δ(h− ln
1− p
p

) + pδ(h− ln
p

1− p
), BSC(p)

c(h) =
1√

2πσ−2
e−(h− 1

σ2)2/ 2
σ2 , BAWGNC(σ2)

The identity (3.18) is explicit on these expressions.

As a first application of channel symmetry let us prove (3.14). Consider first

Eh|sin
[
sin
i sign(〈si〉)

]
. The expectation Eh|sin is an integral over hi’s and the

bracket 〈−〉 contains sums (in a numerator and denominator) over si’s. In the

inetgarls and sums we may perform the change of variables

si → τisi, hi → τisi, i = 1, . . . , n (3.19)

for a code word τ ∈ C. Now we note two crucial facts. First, under this transfor-

mation the posterior (3.9) remains invariant, and therefore 〈si〉 → τi〈si〉, where

〈−〉 is the same expectation on both sides of the equality. Second, because of

channel symmetry Eτihi|sin = Ehi|τisin . Thus

Eh|sin
[
sin
i sign(〈si〉)

]
= Eh|τ?sin

[
τis

in
i sign(〈si〉)

]
(3.20)

where we find it convenient to use v ? u for a vector with components viui,

i = 1, . . . , n. Now, since the code is linear τ ? sin is also a code word, and

therefore the sum over sin is independent of τ . This proves (3.14).

The idea of using a transformation such as si → τi, hi → τisi with τ a code

word, turns out to be very useful in the present framework. Since codewords

τ ∈ C form a group, the set of such transformations also forms a group. Moreover

52 Formulation of Problems as Spin Glass Models

these transformations are local in the sense that for each i the variables get

multipied by different factors. Transformations with these two properties are

called gauge transformations. The invariance of the Gibbs distribution under

such transformations together with channel symmetry allows to derive a number

of useful consequences and identities. We will have the occasion to derive them

as we proceed with the theory. The independence of the error probability on the

transmitted codeword is one of them.

It is important to note that the invariance of the Gibbs distribution under

gauge transformations is a consequence of the linearity of the code. For non-

linear codes such an invariance would typically not be present. Also, for the

random K-SAT problem where the constraints are “non-linear” we do have (or

know) any useful gauge transformations. This is one of the reasons why this

problem is a much harder one.

3.3 Conditional entropy and free energy in coding

Without loss of generality we assume from now on that the all all-zero codeword

is transmitted. We recall the equivalent notation EY |1 = EY , Eh|1 = Eh.

We explained in Chapter 2 that a lot can be learned from the free energy

− 1
n lnZ (recall here we have β = 1). For example differentiating with respect to

hi yields the magnetization 〈si〉 (see Equ. (3.12)). For spin glass models the free

energy is random but usually concentrates in the thermodynamic limit n→ +∞.

in the thermodynamic limit and, although this can be non-trivial, we do have

examples where this can be proven. Such proof techniques will be studied in

Chapter 13. We therefore consider the average free energy − 1
nEh[lnZ]. We will

now show an important relation to the conditional entropy H(X|Y), i.e. the

average entropy of the posterior p(s|y),

H(X|Y) = −EY
[∑

s

p(s|y) ln p(s|y)

]
(3.21)

This relation shows that computing the average free energy or the conditional

entropy is basically equivalent. In part III we will develop powerful methods

to compute the free energy. This will automatically allow us to compute the

conditional entropy and in particular the MAP threshold.

For transmission over a symmetric channel and any fixed linear code (not

necessarily an LDPC code) we have

1

n
H(X|Y) =

1

n
Eh[lnZ]−

∫ +∞

−∞
dh c(h)h. (3.22)

Observe that the last term in (3.43) depends only on the channel. For the BSC

it is equal to (1 − 2p) ln 1−p
p and for the BAWGNC 1/σ2. For the BEC there is

a little ambiguity here. Formally
∫ +∞
−∞ dh c(h)h is infinite, but this infinity is

3.3 Conditional entropy and free energy in coding 53

cancelled with another infinity in lnZ. Indeed the weight factors ehisi in Z

diverge when si = 1 and hi = +∞. However we can redefine the partition

function replacing ehisi by ehisi−hi , so that the new Z is finite and the last term

in (3.43) is not present. This should in principle be done for any channel having

a non-zero weight on hi = +∞, but is not real problem.

The proof of this relation will be a good occasion to illustrate once a again the

use of gauge transformations and channel symmetry. Replacing (3.9) in (3.21)

H(X|Y) = EY [lnZ(y)]− EY
[∑

s

p(s|y) ln
∏
c∈C

1

2
(1 +

∏
i∈c

si)

]

− EY
[∑

s

p(s|y)

n∑
i=1

hisi

]

= Eh[lnZ]−
n∑
i=1

Eh[hi〈si〉] (3.23)

To get the last equality we noticed that the second expectation vanishes because

p(s|y) is supported on code words and ln 1 = 0. Finally we replaced EY by Eh.

It remains to show the identity

Eh[hi〈si〉] = Eh[hi] (3.24)

This is part of a whole class of relationships, called Nishimori identities, which

follow from gauge invariance and channel symmetry. We will encounter a number

of them in susequent chapters. Using a gauge transformation si → τisi, hi → τihi
and the channel symmetry in the form c(τihi) = c(hi)e

hiτi−hi we have

Eh[hi〈si〉] = Eτ?h[hi〈si〉]

= Eh[hi〈si〉
n∏
j=1

ehjτj−hj] (3.25)

Summing over all code words τ ∈ C,

Eh[hi〈si〉] =
1

|C|
=

1

|C|
Eh[Zhi〈si〉

n∏
j=1

e−hj]

=
1

|C|
Eh[hi

∑
s

si

m∏
c=1

1

2
(1 +

∏
i∈∂c

si)

n∏
j=1

ehjsj−hj]

=
1

|C|
∑
s

si

m∏
c=1

1

2
(1 +

∏
i∈∂c

si)Eh[hi

n∏
j=1

ehjsj−hj]

=
1

|C|
∑
s

si

m∏
c=1

1

2
(1 +

∏
i∈∂c

si)Eh[hie
hisi−hi]

∏
j 6=i

Eh[hi

n∏
j=1

ehjsj−hj]

(3.26)

54 Formulation of Problems as Spin Glass Models

The result then follows from the two identities

Eh[ehisi−hj] = 1, Eh[hie
hisi−hi] = si (3.27)

because
∑
s si
∏m
c=1

1
2 (1 +

∏
i∈∂c si) = |C|. These two identities simply amount

to the normalization of c(h) when si = 1. When si = −1 it is elementary to see

that they follow from c(−hi) = c(hi)e
−2hi .

3.4 Compressive Sensing as a spin glass model

Recall that we are considering the model

y = Ax+ z, (3.28)

where the measurement matrix A is an m × n real valued matrix with iid zero

mean Gaussian entries with variance 1/m, the noise z consists of m iid zero-

mean Gaussian entries of variance σ2, and where the signal x consists also of n

iid entries distributed with the prior p0(x). We will assume this prior belongs to

the sparse class, p0 ∈ Fκ, that is

p0(x) = (1− κ)δ(x) + κφ0(x) (3.29)

where φ0 is a continuous positive and normalized density. So the expected number

of non-zero entries in the signal is k = κn.

The conditional probability of observing y given x is

p(y | x) =
1

(2πσ2)
n
2
e−

1
2σ2 ‖y−Ax‖

2
2 , (3.30)

and the joint distribution, taking the prior into account, has the form

p(x, y) =
1

(2πσ2)
n
2
e−

1
2σ2 ‖y−Ax‖

2
2

n∏
i=1

p0(xi). (3.31)

We discuss two scenarios. In the first one the prior is known (so here φ0(x) is

known) and in the second scenario which is more realistic the prior is not known

and one only knows that it belongs to Fκ. In other words κ is assumed to be

known but not φ0.

Known prior: MMSE estimator

When the prior is known a reasonable way to estimate the signal is to use the

Minimum Mean Square Estimator (MMSE). This estimator is optimal in the

sense that it minimizes the Mean Square Error (MSE). The MSE is the functional

over the space of estimators x̂(y) : Rr → Rn

MSE[x̂] = E[(x̂(Y)−X)2] (3.32)

3.4 Compressive Sensing as a spin glass model 55

Here the expectation is with respect to the joint distribution (3.31) and the iid

Gaussian entries of A. A standard exercise shows that the minimum is attianed

by the MMSE,

x̂i(y) = EX|y[X] =

∫
dnxxi p(x | y), i = 1, . . . , n. (3.33)

In this expression p(x|y) is the posterior distribution associated to (3.31), and we

have adopted the notation dnx =
∏n
i=1 dxi. Analogously to the case of coding,

we will interpret the posterior as a Gibbs distribution and the MMSE as a

”magnetization“.

Unknown prior: LASSO estimator

We will almost exclusively concentrate on this situation which is more realistic.

A popular choice for the estimator is the LASSO, (??)

x̂1(y) = argminx

{
1

2
‖y −Ax‖22 + λ‖x‖1

}
. (3.34)

where the real parameter λ has to be chosen suitably. Since the prior is unknown

it is natural to choose the best possible λ for the worse possible prior. Formally

we solve a minimax problem,

inf
λ∈R

sup
p0∈Fκ

1

n
E[(x̂1(y)− x)2] (3.35)

The expectation is again here over the joint distribution (3.31) and the random

matrix ensemble. Solving teh minimax problem amounts to find the best possible

parameter λ when the signal distribution p0(x) is the worst possible. The value

given by (3.35) is sometimes called teh LASSO minimax risk and will constitute

our performance measure.

As explained in Chapter 1 it is not so easy to unambiguously justify a priori

the choice of this estimator. We will be able to solve exactly this problem in

Chapter ?? and we will find that the minimax-MSE is finite in the same region of

parameters for which l1-l0 equivalence holds. In the region were l1-l0 equivalence

does not hold the minimax-MSE diverges. In this sense LASSO is as good as

pure l1 minimization for the noiseless problem, and this justifies the use of Lasso

a posteriori. We will shortly give a different, somewhat more phenomenological,

justification which does not require to develop the whole theory. We will see

that the Lasso estimator can also be considered as a zero temperature limit of

a ”finite temeprature MMSE“ with a Laplacian prior modelling the unknown

distribution p0.

56 Formulation of Problems as Spin Glass Models

MMSE and LASSO as spin glass models

The posterior entering in the MMSE estimator (3.33) is derived from 3.31,

p(x | y) =
1

Z

m∏
a=1

e−
1

2σ2 (ya−ATa x)2
n∏
i=1

p0(xi), (3.36)

where ya, a = 1, . . . ,m are the components of y and Aa is the column vector

equal to the a-th row of the matrix A. Thus ATa x =
∑n
i=1Aaixi. The explicit

expression of the normalisation factor is

Z =

∫
dnx

m∏
a=1

e−
1

2σ2 (ya−ATa x)2
n∏
i=1

p0(xi) (3.37)

The interpretations in terms of spin-glass concepts are analogous to the case of

coding. The posterior (3.36) can be though of as a random Gibbs distribution

and (3.37) as a partion function. This time the ”spin variables“ xi ∈ R belong

to a continuous alphabet, and one often speaks of “continuous spins”. The dis-

tribution is random because of the measurement matrix A and the observations

y. These are the quenched variables.

The MMSE estimator (3.33) is the average with respect to the Gibbs distribu-

tion and in statistical mechanics notation is written as the bracket 〈xi〉. One can

interpret it as a “magnetization” for the continuous spins. Note that in order to

compute it all we need in principle is the marginal p(xi|y) given by integrating

(3.36) over all spin variables except xi. To sum up we have,

x̂i(y) = 〈xi〉 =

∫
dnxxi p(x | y) =

∫
dxixi p(xi | y), (3.38)

We saw in Chapter 2 that Gibbs distributions are of the form e−βH/Z where

H is a Hamiltonian. What are the Hamiltonian and the inverse temperatrure

here? A natural answer to this question is to take β = 1 and

H(x) =
1

2σ2

m∑
a=1

(ya −ATa x)2 +

n∑
i=1

ln p0(xi) (3.39)

In coding where we discussed a ’finite temperature decoder“ and noticed that it

interpolates between the bit-MAP and block-MAP decoders. Once we have the

Hamiltonian view it is immediate to do something similar here. Let

pβ(x|y) =
1

Zβ
e−βH(x) =

1

Zβ

m∏
a=1

e−
β

2σ2 (ya−ATa x)2
n∏
i=1

(p0(xi))
β (3.40)

with Zβ the correct normalization factor given by the integral over all xi’s of the

numerator. We define a ”finite temperature estimator“ as the magnetization at

inverse temperature β,

x̂i,β(y) = 〈xi〉β =

∫
dxxi pβ(x | y) =

∫
dxixi pβ(xi | y). (3.41)

For β = 1 this simply the usual MMSE estimator. In the limit of zero temperature

3.5 Free energy and conditional entropy in compressive sensing 57

β → +∞ the integral is concentrated on the spin configurations that minimize

the Hamiltonian, in other words

lim
β→+∞

x̂β(y) = argminxH(x)

= argminx
(1

2σ2
‖y −Ax‖2 + λ

n∑
i=1

ln p0(xi)
)

(3.42)

This is analogous to the usual least square estimator but penalized by a term

ln p0(x) coming from the prior distribution.

Now we can see why the LASSO can be viewed as a zero temperature limit

of a finite temperature MMSE. When the prior is unknown but it is only known

that the signal is sparse the Laplacian prior p0(x) = e−
λ
σ2 |x| is a simple, and as it

turns out, tractable model for the ensemble of possible priors. This ensemble is

parametrized by a single parameter λ and its optimal value as a function of κ is

determined from the minimax principle. In a sense, this point of view naturally

leads to the AMP algorithm developed in Chapter 8.

3.5 Free energy and conditional entropy in compressive sensing

Assume that the prior is known and consider the Gibbs distribution associated

to the MMSE estimator. There is a relation between the average free energy and

conditionnal entropy that is perfectly analogous to the one for coding in section

3.3. Consider −EY [1
n lnZ] the average free energy where the average is only over

Y and the measurement matrix is fixed. We have

H(X|Y) = EY [lnZ(y] +H(X) +
n

2
(3.43)

It is pleasing to see that the free energy is directly related to the the mutual

information H(X)−H(X|Y). Note also that H(X) = nH(X) = κH(φ0(·)).
The derivation is easier than in coding and is a matter of simple algebra. By

definition

H(X | Y) = −EX,Y [ln p(X | Y)] (3.44)

The logarithm of the posterior distribution is equal to

− 1

2σ2
‖y −Ax‖22 +

n∑
i=1

ln p(xi)− lnZ(y) (3.45)

The last term contributes EY [lnZ] to the conditional entropy (3.43). The con-

tribution of the second term to (3.43) is also very easy to assess

−EX,Y
[n∑
i=1

ln p(Xi)

]
= −

n∑
i=1

EX [ln p(Xi)] = H(X) (3.46)

58 Formulation of Problems as Spin Glass Models

To derive the contribution of the first term it is convenient to write down ex-

plicitely the integrals,

1

2σ2

∫
dx

∫
dy p(x, y)‖y −Ax‖22

=
1

2σ2

∫ n∏
i=1

dxip0(xi)

∫
dy ‖y‖22

e−
1

2σ2 ‖y‖
2
2

(2πσ2)n/2

=
n

2
(3.47)

The second line is obtained by a shift y → y+Ax in the y-integral for each fixed

x.

3.6 K-SAT as a spin glass model

Recall the formulation of the random max-K-sat problem of Chapter 1. We take

a formula at random from the ensemble F(n,K,M). The formula corresponds

to a biparttite factor graph with dashed and full edges, see Fig. 1.6. As for

coding and compressed sensing we adopt the notation that letters i, j, k, . . . are

variable nodes and a, b, c, . . . are constraint nodes. In the max-K-sat problem

we consider the number of violated clauses for an assignment x, then we take

the best possible assignment that minimizes the number of violated clauses and

average over the random formulas,

e(α) = lim
m→+∞

1

m
E
[
min
x

m∑
a=1

(1− 1a(x))
]
. (3.48)

In Chapter 13 we study mathematical methods allowing the proof of existence

of this limit.

The problem here is not directly formulated in terms of a Gibbs distribution,

but a natural and fruitful idea is to one consider the Gibbs distribution associated

to the cost function

m∑
a=1

(1− 1a(x)). (3.49)

In particular, by studying the Gibbs distribution for very low temperatures we

can get hold of e(α) and much more also.

Hamiltonian formulation

We will work in the spin language, so we set si = (−1)xi . Furthermore if clause ca
contains the literal xi (resp. x̄i) we associate a weight Jai = +1 (resp.Jai = −1)

to the edge ai of the factor graph. Thus, for example on Fig. 1.6 full edges have

Jai = +1 and dashed edges have Jai = +1. Moreover the Jai are bernoulli 1/2

3.6 K-SAT as a spin glass model 59

random variables. With these convention we see that the i-th variable satisfies

clause a when si = −Jai and does not satisfy it when si = −Jai. Therefore

1a(x) =
∏
i∈∂a

(1− siJia
2

)
(3.50)

and the cost function, also called the Hamiltonian of K-sat, takes the form

H(s) =

m∑
a=1

∏
i∈∂a

(1 + siJia
2

)
(3.51)

By expanding the product in each term we see that this Hamiltonian involves

“multispin interactions” of the form (2.3). This Hamiltonian is random in the

sense that the underlying factor graph is random, and this randomness is frozen

because once the formula has been chosen from the ensemble it is fixed. This is

a spin-glass Hamiltonian. Of course we have

e(α) = lim
m→+∞

1

m
E
[
min
s
H(s)

]
. (3.52)

The spin assignments that minimize the Hamiltonian (3.51) are often called

“ground states” and one of the problems that will be discussed in later chapters

will be to understand their geometric organization in the “Hamming space”

{−1,+1}n. Ground states with zero energy (zero cost) are solutions of the K-sat

formula. An important problem is to count them. This amounts to evaluate

N0 =
∑
s

m∏
a=1

(1−
∏
i∈∂a

(1 + siJia
2

)
) (3.53)

We will also see that it is often useful to take a larger view and count the number

of spin assignment of energy (or cost) E,

NE =
∑
s

1(H(s) = E)

m∏
a=1

(1−
∏
i∈∂a

(1 + siJia
2

)
) (3.54)

Finite temperature formulation

The set of solutions of a K-sat formula, equivalently the set of ground states,

is not easy to determine. One way to approach this problem would be to sam-

pel from this space at random thanks to a simple distribution. The simplest

distribution one could imagine is the uniform one over solutions, so formally

1(H(s) = 0)/N0. We immediately face a proble here because some formulas

from F(n,K,M) will not have any solution (and for high enough α this happens

with overwhelming probability when n is large) so the uniform distribution is

not well defined.

From the point of view of statistical mechanics there is a very natural regu-

larisation of the uniform distribution. Namely one takes the Gibbs distribution

60 Formulation of Problems as Spin Glass Models

at finite inverse temperature β < +∞,

p(s) =
1

Z
e−βH(s) =

1

Z

m∏
a=1

e−β
∏
i∈∂a

(
1+siJia

2

)
(3.55)

with the partition function

Z =
∑
s

m∏
a=1

e−β
∏
i∈∂a

(
1+siJia

2

)
(3.56)

In the zero temperature limit limβ→+∞ Z = N0 and formally p(s) → 1(H(s) =

0)/N0.

From the average free energy F (β) = − 1
βE[lnZ] at finite temperature, we can

recover the average ground state energy per clause,

e(α) = lim
m→+∞

lim
β→+∞

1

m
E[F (β)]. (3.57)

To see this we simply note that 1
β | lnZ| ≤ C uniformly with respect to β, thus

by dominated convergence

lim
β→+∞

E[F (β)] = −E[lim
β→+∞

1

β
lnZ] (3.58)

= E[min
s
H(s)]

Recall also that from formula (??) we get the Gibbs entropy as a function of

the inverse temperature. Here we define a ”ground state entropy” per variable

by taking the zero temperature limit (assuming the limit exists)

s(α) = lim
n→+∞

lim
β→+∞

1

n
E[

d

d(1/β)
F (β)]. (3.59)

The ground state entropy is nothing else than the growth rate of the number of

solutions in the sat phase,

s(α) =

{
limn→+∞

1
nE[lnN0], α < αs(K),

0, α > αs(K).
(3.60)

3.7 Notes

The prototypical Gauge symmetry of physics is an invariance of the Maxwell

equations under a group of local transformations. Gauge symmetry is a funda-

mental principle underlying all known fundamental forces.

Problems

3.1 Nishimori identities for coding. Use the technique of gauge transfor-

mations to prove the identities [〈si〉2p−1] = [〈si〉2p] for all integers p ≥ 1.

3.7 Notes 61

3.2 Special identities for a Gaussian channel. In the case of a BAWGNC

identity (??) specializes to EY [hi〈si〉] = σ−2. We want to explore a proof that is

special to this channel.

(i) First check by explicit calculation that σ2c(h)h = − ∂
∂hc(h) + c(h).

(ii) Then use integration by parts and the Nishimori identity of the previous

exercise (for p = 1) to derive EY [hi〈si〉] = σ−2.

3.3 Derivation of the MMSE. Consider the MSE functional (3.32) and show

that it is minimized by the MMSE (3.33).

3.4 LASSO for the scalar case. Let y = x+ z where z is a Gaussian scalar

variable with zero mean and variance σ2. Compute explicitly the LASSO estima-

tor x̂(y) = argminx(1
2 (y− x)2 + λ|x|). The result is called the “soft thresholding

estimator”.

3.5 Crude upper bound on the sat-unsat threshold αs Below P and E
are with respect to the random ensemble F(n,K,M). Consider the partition

function Z of the microcanonical ensemble.

(i) Show the Markov inequality P[F satisfiable] ≤ E[Z].

(ii) Show that E[Z] = 2n(1− 2−K)M .

(iii) Deduce the upper bound αs < (ln 2)/ ln(1 − 2−K). For K = 3 this yields

αs(3) < 5.191. It is conjectured that αs(3) ≈ 4.26: this value is the prediction

of the highly sophisticated cavity method of spin glass theory. The asymptotic

behavior of this simple upper bound for K → +∞ is 2K ln 2, which is known to

be tight. However, the large K corrections obtained by this bound are not tight.

4 Curie-Weiss Model

Before we start analysing our three running examples, it is instructive to con-

sider a very simple model for which the analysis can be carried out explicitly

with fairly little effort. This way we will encounter many concepts in their sim-

plest incarnation. This separates the concepts and notions, and why they are

important, from the computational difficulties which we will encounter when we

carry out the same analysis for our problems.

We will consider the Curie-Weiss model. This is a specific version of the so-

called Ising model and it is defined on a complete graph. This model is admittedly

special, but it has two advantages. First, it has an explicit solution. Secondly,

and equally important, it still displays many of the interesting features of more

complicated models such as variational expressions for the free energy, fixed point

equations, and phase transitions.

A second exactly solvable model is the Ising model on a tree. This is the subject

of the problems. You will see that the solution of the Ising model on the tree

can be phrased in terms of message passing quantities, another of our favourite

themes.

Analogous, but more complicated solutions occur in coding, compressive sens-

ing and K-SAT. It is natural that the solutions of these models share common

features with the ones of the Curie-Weiss and Ising model on a tree, because

these models are defined on locally tree like graphs (coding and K-SAT) or com-

plete graphs (compressed sensing). However the situation is also considerably

more complicated and interesting. One of the reasons is that in coding and K-

SAT the graphs are locally tree like but have loops. One other reason is that the

Gibbs distributions are random, i.e. the models are non-trivial spin glasses.

We introduced the standard Ising model on a regular grid Zd in Chapter 2. This

model is not only of considerable historical value for the development of statistical

mechanics, but its study has led to many of the fundamental concepts in the

theory of phase transitions, and it is still the subject of fascinating mathematical

investigations. Models with a low dimensional regular underlying graph have

geometrical features that are absent in our three running examples, and their

solutions and the mathematical methods of analysis do not quite share similar

features (although some aspects are still similar). Nevertheless there is some

value in reviewing a few basic properties of the Ising model on Zd, and this is

briefly done in section for completeness in (??). One concept that turns out to be

4.1 Curie-Weiss model 63

s2

s1

s4

s3

Figure 4.1 A complete graph with 4 nodes.

quite important in more advanced topics such as the cavity method in Chapter

15, is the notion of pure state or extremal measure. Let us also point out that the

Ising model on Zd with d → +∞ becomes equivalent to the Curie-Weiss model

and also to the Ising model on a tree with “infinite” vertex degree.

4.1 Curie-Weiss model

The Curie-Weiss model is an Ising spin system defined on a complete graph. A

complete graph on a set V of n vertices, is a graph in which the set E of edges is

constituted by all n(n− 1)/2 pairs of nodes. An example is shown in Figure 4.1.

The Hamiltonian of the Curie-Weiss model is

H(s) = −J
n

∑
{i,j}∈E

sisj − h
∑
i∈V

si (4.1)

where J > 0 (ferromagnetic case) and h ∈ R. In the first sum 〈i, j〉 is an un-

ordered pair so each edge is counted only once. Note that the interaction constant

is scaled by n, i.e., we have the constant J/n in front of the first sum. With this

scaling both terms in the Hamiltonian scale linearly in the system size: this

necessary in order to have an interesting thermodynamic limit.

The Gibbs distribution has the form

p(s) =
1

Z
e
βJ
n

∑
〈i,j〉∈E sisj+βh

∑
i∈V si (4.2)

with the partition function given by the sum over all spin configurations s ∈
{−1,+1}n

Z =
∑
s

e
βJ
n

∑
〈i,j〉∈E sisj+βh

∑
i∈V si . (4.3)

Recall from Chapter 2, β = 1/kBT where T is the temperature and kB Boltz-

man’s constant, so the behaviour of the Gibbs distribution depends on the (di-

mensionless) ratios J/kBT and h/kBT . More precisely, what is important is

the ratio H(s)/kBT of the energy of a spin configuration compared to a “back-

ground” energy kBT . For example, if we take h = 0 for simplicity, at high

temperatures, kBT >> J , we get an almost uniform measure, whereas in the

low temperature case, kBT << J , only configurations of minimum energy count.

Not surprisingly, we will see that kBT ≈ J is a regime of great interest.

64 Curie-Weiss Model

We will first calculate the free energy and then the magnetization. This will

allow us to study the singularities of these functions, i.e. the phase transitions

displayed by the model.

4.2 Variational expression of the free energy

Recall that the free energy in the thermodynamic limit is given by

f(βJ, βh) = − lim
n→+∞

1

nβ
lnZ. (4.4)

On a complete graph we have the identity,∑
{i,j}∈E

sisj =
1

2

(∑
i∈V

si
)2 − 1

2
n. (4.5)

Introducing the “magnetisation of a spin configuration” mn(s) = 1
n

∑
i∈V si, we

can express the Hamiltonian as

H(s) = −n
(J

2
(mn(s))2 + hmn(s)

)
+
J

2
. (4.6)

Thus

Z = e−
βJ
2

∑
s

enβ
(
J
2mn(s)2+hmn(s)

)
. (4.7)

The partition function can be computed by first summing over all spin configu-

rations with a fixed magnetization mn and then by summing over all magneti-

zations mn = { jn |j = −n,−n+ 1, . . . , n− 1, n}. We get

Z = e−
βJ
2

∑
mn

N (mn) enβ
(
J
2m

2
n+hmn

)
. (4.8)

where N (mn) is the cardinality of the set {s :
∑n
i=1 si = nmn}. This is easily

computed (see Example 3 in Chapter 2 for an analogous calculation). Given mn,

let n+ and n− be the number of positive and negative spins respectively. Since

n+ + n− = n and n+ − n− = nmn we have n+ = 1+mn
2 n and therefore

N (mn) =

(
n

1+mn
2 n

)
≈ enh2(1+mn

2), (4.9)

where h2(p) = −p log2 p − (1 − p) log2(1 − p) the binary entropy function. The

last approximation is asymptotically exact for n → +∞ and is obtained using

Stirling’s formula. This leads to

Z ≈ e−
βJ
2

∑
mn

enβ
(
J
2m

2
n+hmn+β−1h2(1+mn

2)
)
. (4.10)

4.3 Average magnetization 65

Recall that mn = { jn |j = −n,−n + 1, . . . , n − 1, n}. So this is a Riemann sum

which tends for n→ +∞ to

Z ≈ e−
βJ
2 n

∫ +1

−1

dmenβ
(
J
2m

2+hm+β−1h2(1+m
2)
)
. (4.11)

The integrand has the form e−nβf(m) thus for n → +∞ the integral can be

evaluated by the Laplace method: the value is dominated by the contribution

of a small neighborhood of that value of m where f(m) takes on its minimum.

Since for the free-energy computation we take the logarithm of Z, divide by n,

and take the thermodynamic limit, we only need to determine the exponential

behavior of the integral, and this is trivially given by the maximum value the

exponent takes on. This gives us

f(βJ, βh) = min
−1≤m≤1

{
−
(J

2
m2 + hm

)
− β−1h2(

1 +m

2
)
}

≡ min
−1≤m≤1

f(m). (4.12)

With a little bit more effort this formula can be converted into a theorem.

This formula is very important. It says that the free energy is given by the

solution of a variational problem, i.e., as the solution of a minimization problem.

The function f(m) which is minimized has various names in the literature. Here

we will call it the free energy function. We will see in this course that the free

energies of the coding, compressive sensing and K-SAT problems are all given by

such variational expressions involving (often complicated) free energy functions

or functionals.

4.3 Average magnetization

We saw in Chapter 2 that the magnetisation in the thermodynamic limit is

defined by the Gibbs average

m(βJ, βh) = lim
n→+∞

〈 1
n

∑
i∈V

si〉 (4.13)

Note that by linearity of the Gibbs bracket and the symmetry of the model

m(βJ, βh) = 〈si〉 for all i ∈ V .

We can compute the magnetisation by repeating the calculations of the pre-

vious section. Indeed, first note by definition of the Gibbs bracket

〈 1
n

∑
i∈V

si〉 =

∑
smn(s)e−βH(s)∑

s e
−βH(s)

(4.14)

We have already found the asymptotic behaviour of the denominator as n→ +∞,

namely formula (4.11). It is quite clear that the same arguments applied to the

66 Curie-Weiss Model

numerator lead to the asymptotics

〈 1
n

∑
i∈V

si〉 ≈
∫ +1

−1
dmme−nβf(m)∫ +1

−1
dme−nβf(m)

(4.15)

Now assume that the free energy function f(m) has a unique global minimum.

Then applying the Laplace method to the numerator and denominator one finds

m(βJ, βh) = argmin−1≤m≤1f(m). (4.16)

In section 4.5 we will show that unicity of the global minimiser always holds

for all h 6= 0. So in this case the magnetisation is unambiguously given by the

minimiser of the free energy function.

On the other hand, for h = 0 the analysis in section 4.5 shows that, the

global minimum is unique and given by m(βJ, βh) = 0 when βJ < 1, but is

doubly degenerate when βJ > 1. In this second case if we would blindly apply

the Laplace method with h = 0 we would find a weighted average over the two

minimisers. However this does not yield the “physically correct” magnetization.

In the present case, because f(m) = f(−m) when h = 0, this weighted aver-

age vanishes, but we will now see that the physically correct result is far more

interesting!

The correct definition of the magnetization for h = 0 is

m±(βJ) = lim
h→0±

m(βJ, βh) = lim
h→0±

lim
n→+∞

〈 1
n

∑
i∈V

si〉 (4.17)

In other words the correct way to proceed is to take the limit h→ 0± after the

thermodynamic limit n→ +∞. In that case when we apply the Laplace method

in the calculation above, only one global minimum is selected. We will show in

section 4.5 that for βJ < 1 both limits vanish, but that for βJ > 1 they do

not vanish and are opposite (note that when the limits dont vanish they must

be opposite because for h = 0 the free energy function is even f(m) = f(−m)).

Thus m(βJ, βh) has a jump discontinuity on the line (βJ > 1, h = 0). This is

our first encounter of a phase transition, a theme on which we elaborate in the

next section.

There is a good physical reason for the order of the limits in 4.17. In a macro-

scopic system there always remains a residual infinitesimal magnetic field h = 0±.

When the magnetisation is discontinuous for h = 0± (here this happens at low

temperatures βJ > 1) we call it a spontaneous magnetization and say that there

is a spontaneous symmetry breaking. The magnetization and symmetry breaking

are called “spontaneous” because physically we do not get to choose the orien-

tation of the magnetization: the infinitesimal perturbations in the environment

select an orientation.

We conclude this section with a very useful relationship between the free energy

f(βJ, βh) and the magnetization m(βJ, βh). As we mentioned in Chapter 2,

4.4 Phase diagram and phase transitions 67

0.5

1.0

1.5

-1

0

1

-1.0

-0.5

0.0

0.5

1.0

Figure 4.2 The behavior of m(βJ, βh) as a function of (1/(βJ), βh), where
1/(βJ) ∈ [0, 1.5] and βh ∈ [−1.5, 1.5].

Gibbs averages can be obtained by differentiating the free energy, i.e., we have

〈 1
n

n∑
i=1

si〉 =
∂

∂h

1

nβ
lnZn. (4.18)

Taking the limit n→ +∞ one finds the important relation

m(βJ, βh) = − ∂

∂h
f(βJ, βh). (4.19)

The careful reader will notice that we have interchanged the limit n→ +∞ and

the partial derivative. We do not prove it here, but this is permitted except at

phase transition points, i.e. except on the line (βJ ≥ 1, h = 0).

4.4 Phase diagram and phase transitions

Consider the free energy function f(m) and look at the minimiser m(βJ, βh). As

already mentioned in the previous section for h 6= 0 this minimizer is unique and

there is no ambiguity, so we think of this case. Instead of plotting m(βJ, βh) as

a function of βJ > 0 and βh, we will plot m(βJ, βh) as a function of 1/(βJ) =

kBT/J (on the T -axis) and βh = h/kBT (on the h-axis).

Figure 4.2 shows the resulting plot. Why are we interested in this figure?

As we discussed in the previous section this function represents the average

magnetization, i.e., it represents a quantity describing the global behavior of

the system as a function of the parameters. For some values of the parameters

68 Curie-Weiss Model

(βJ, βh), the system behaves smoothly when we perturb the parameters. But for

some other parameters the system behavior changes abruptly. These are so-called

phase transitions.

A look at the figure already reveals two different forms of behavior. For pa-

rameters on the line segment (0 < 1/(βJ) < 1, h = 0), when we move along

the h-axis, the magnetization m(βJ, βh) jumps. At the tip of this line segment

(1/(βJ) = 1, h = 0) the magnetization is continuous but not differentiable.

For example if we move along the T -axis or along the h-axis across the point

(1/(βJ) = 1, h = 0), m(βJ, βh) changes in a continuous fashion, but its deriva-

tive (wrt to T or h) jumps. Finally, for all other points, m(βJ, βh) changes

smoothly and is in fact analytic (i.e., infinitely differentiable with an absolutely

convergent Taylor expansion).

We call the first behavior a phase transition of first order and the second

behaviour a phase transition of second order. To understand the terminology

here, recall Equ. (4.19). At a first order transition the magnetization jumps and

equivalently the first derivative of the free energy is discontinuous. At a second

order phase transition the magnetization is continuous but its first derivative is

discontinuous and equivalently the second derivative of the free nergy is discon-

tinuous.

For a sligthly different perspective, let us replot Figure 4.2 but this time let us

consider the picture “from the top,” i.e., we only show the 1/(βJ) and βh axis.

This is shown in Figure 4.3. The different ways to change parameters leading to

the various phase transitions are indicated. The segment indicated in blue, given

by (0 < 1/(βJ) < 1, h = 0) is called the co-existence line. This name is easily

explained. If we approach this line from the top or the bottom, i.e., we consider

the limit h → 0±, then we get two opposite values ±m±(βJ). So “on the line”

we can think of having two possible “co-existing” phases. This line terminates

terminates at the critical point (βJ = 1, h = 0) where the magnetization is

continuous but not differentiable.

Going down one further dimension by fixing a value of 1/(βJ) < 1 and only

varying h, or by fixing h = 0 and varying 1/(βJ) across βJ = 1, Figure 4.4

explicitly shows phase transitions of first and second order.

Let us sum up with a few general remarks about phase transitions.

The variational expression (4.12) of the free energy implies that it is a continu-

ous and concave function of βJ and βh. In particular this means that the function

itself does not jump, only its derivatives might. Here we have seen that two types

of singularities occur in the phase diagram. The first derivative is discontinuous

when the coexistence line is crossed, this is a first order phase transition. The

second derivative is discontinuous when the critical point is crossed, this is a

second order phase transition.

Continuity and concavity of the free energy is a general requirement in thermo-

dynamics, and a general property of well behaved statistical mechanical models.

Only the derivatives may have jumps. If the n-th derivative is discontinuous one

speaks of a phase transition of order n. We point out there exist models with

4.4 Phase diagram and phase transitions 69

Kc = 1

second order

second order

first order

no transition

K−1 or T

h

Figure 4.3 The blue line is called coexistence line because two thermodynamic phases
(e.g. water/ice) coexist for parameters on it. Crossing the thick line is a first order
phase transition. This line is terminated by the critical point. Crossing the critical
point is a second order phase transition. There are many ways to cross it.

h

m(K,h)

(a) First order

(1/K)critical

1/K

|m(K;h)|

(b) Second order

Figure 4.4 A phase transition of first and second order.

phase transitions of ”infinite order” where the free energy is non-analytic but

all its derivatives are continuous are known to exist. This classification of phase

transitions due to Ehrenfest is not the only one. The more modern view point is

to distinguish between continuous and discontinuous transitions and to classify

them according to the type of symmetry change. These issues will not concern

us in this course and ehrenfest’s classification is good enough for our purposes.

Phase transitions related to singularities of the free energy are sometimes

called ”static” or ”thermodynamic” phase transitions. We will encounter also

other types of phase transitions that are called ”dynamical” in the sense that

they are related to a sudden change of the behaviour of algorithms but the free

energy stays perfectly analytic.

70 Curie-Weiss Model

4.5 Analysis of the fixed point equation

We have plotted the three-dimensional picture of m(βJ, βh) and from this we

can in principle see all phase transitions. But there is value in rederiving our

conclusions in a more classical way by using calculus. By doing so, not only will

we be able to add details to our picture, but we will also encounter some notions

which will reappear throughout the course.

Curie-Weiss fixed point equation

Let us solve the variational problem (4.12) by differentiating the free energy

function

f(m) ≡ −(
J

2
m2 + hm)− β−1h2(

1 +m

2
). (4.20)

Explicitly f ′(m) = 0 yields,

β(Jm+ h) +
1

2
ln

(

1−m
1 +m) = 0. (4.21)

Using the identity

tanh(
1

2
ln{1 +m

1−m
}) = m, (4.22)

we obtain the Curie-Weiss fixed point equation

m = tanh(β(Jm+ h)). (4.23)

Of course this equation may have many solutions, and one has to select the ones

which minimizes f(m). If no solution is present then the minimum is attained

at m = ±1. However this case does not concern us too much because it happens

only for β = +∞ (T = 0).

Equ. (4.23) is also called the mean field equation. Let us explain teh termi-

nology here. Equation (4.23) expresses the magnetization as the one of an hypo-

thetical single spin submitted to a magnetic field Jm + h. Indeed Hamiltonian

of this single spin would be −(Jm+ h)s and its magnetization

m = 〈s〉 =

∑
s=±1 se

−β(Jm+h)s∑
s=±1 e

−β(Jm+h)s
= tanh(β(Jm+ h)) (4.24)

One can think of Jm + h as the effective average magnetic field felt by a each

single spin on the complete graph.

This way of thinking is at the basis of the “mean field theory” of magnetism

pioneered by Curie-Weiss and also at the basis of the generic “mean field approx-

imations” for Ising spin systems. In the Curie-Weiss model it turns out that the

mean field equation is exact. For Ising models on low dimensional regular grids

such equations are not exact but often give a valuable first insight. However as

briefly explained in section ?? they can also lead to qualitatively wrong predic-

tions and care must be exercised. Even when mean field equations are “good”

4.5 Analysis of the fixed point equation 71

−1

1
tanh (Km)

K < 1

K > 1

m

m

Figure 4.5 Curie-Weiss fixed points, h = 0

or exact it must not be thought that they are easy to derive. We will see that

the solutions of our problems are intimately related to mean field equations but

these are considerably more subtle to derive, let alone assess wheter they are

exact or not.

Analysis of the Curie-Weiss equation and of the phase transitions

Now our task is to find solutions of the Curie-Weiss equation and select the ones

that minimize f(m). The solutions of (4.23) can be determined graphically. In

the discussion below we distinghuish the cases h = 0, h > 0 and h < 0.

Case h = 0. The fixed points and free energy function f(m) are shown in Fig-

ure 4.5 and Figure 4.6. In the ”high temperature phase” βJ < 1 there is a unique

fixed point m(βJ, 0) = 0 and βf(βJ, 0) = ln 2. In the ”low temperature phase”

βJ > 1 there are three fixed points {m−, 0,m+} with m± the global minimizers

of f(m) and m = 0 a local maximum. As explained before, the magnetisation

of a physical system will choose between two possible values m− or m+ because

there is always an infinitesimal h = 0± in the environnement. This is called

“spontaneous symmetry breaking”.

Let us look more closely at the behaviour of the magnetization for h = 0 as a

function of 1/(βJ) is shown in Figure 4.4. For βJ close to βJ = 1 we can expand

the Curie-Weiss equation around m = 0,

m = tanhβJm ≈ βJm− (βJ)3

3
m3

Besides m = 0 we have two other solutions

m± ∼ ±3(βJ − 1)1/2

The exponent 1/2 is called a critical exponent. Remarkably the critical exponent

72 Curie-Weiss Model

ln 2

-1 +1

m

u(m)− s(m)

(a) K > 1

m

ln 2

-1 +1
m

u(m)− s(m)

(b) K < 1

Figure 4.6 Free energy functional

often does not depend on the details of the Hamiltonian but only on the dimen-

sionality of the system (here d = +∞), and the underlying symmetries of the

Hamiltonian (here the Hamiltonian is invariant under si → −si for h = 0). For

example in the exercises you will see that the ising model on a tree has the same

critical exponent (in some sense the tree is an infinite dimensional graph). The

magnetisation remains continuous but its derivative jumps. This means that the

free energy has discontinuous second derivative and according to the Ehrenfest

classification the transition is called second order. One also refers to such tran-

sitions as continuous transition because of the continuity of the magnetisation.

Cases h > 0 and h < 0. Fixed points and free energy function f(m) are shown

in Figures 4.7 and 4.8 for h > 0 (h not too large), βJ > 1 and for h > 0, βJ < 1.

Note that there is always a unique global minimizer m > 0. The situation for

h < 0 is symmetric with a global minimizer m < 0.

It is of interest to discuss what happens when h is infinitesimal, h→ 0±. For

βJ < 1, m(βJ, βh) is continuous and differentiable (even analytic) and there is

no phase transition. For βJ > 1, m(βJ, βh) is discontinuous at h = 0. This is

called a discontinuous phase transition or a first order phase transition (because

the first derivative of the free energy jumps). See figure (4.4). At the critical

point (βJ = 1, h = 0) the jump disappears and

m(βJ = 1, h) ∼ ±|h| 13 , h→ 0± (4.25)

This is again an example of second order phase transition thsi time with critical

exponent 1
3 (exercise: show this by expanding the Curie-Weiss equation for small

h when βJ = 1.)

4.6 Ising model on a tree 73

−1

1
tanh (Km + h)

m

m

(a) Fixed points

ln 2

m

u(m)− s(m)

(b) Free energy

Figure 4.7 Curie-Weiss fixed points, h > 0,K > 1

−1

1
tanh (Km + h)

m

m

(a) Fixed points

m

u(m)− s(m)

(b) Free energy

Figure 4.8 Curie-Weiss fixed points, h > 0,K < 1

4.6 Ising model on a tree

TO DO (transfer from exercises)

4.7 Phase transitions in the Ising model on Zd

This section is not needed for the main development of these notes and can

be skipped in a first reading.

TO COMPLETE

74 Curie-Weiss Model

4.8 Notes

Problems

4.1 Definition of the Ising model on a tree.

In problems of Chapter 2 you proved that the Ising model in one dimension

(d = 1) does not have a phase transition for any T > 0. On the grid Zd there

is a non trivial phase diagram with first and second order phase transitions

for any d ≥ 2. This is also the case on the complete graph (as shown in the

lectures) which morally corresponds to d = +∞. Another graph that in a sense,

corresponds to d = +∞, is the q-ary tree for q ≥ 3. Indeed on Zd the number

of lattice sites at distance less than n from the origin scales as nd. On the q-ary

tree it scales as (q − 1)n which grows faster than nd for any finite d (for q ≥ 3).

Of course q = 2 corresponds to Z+.

The goal of the three exercises below is to solve for the Ising model on a q-ary

tree and show that it displays first and second order phase transitions (with

similar qualitative properties than on a complete graph).

Consider a finite rooted tree and call the root vertex o. All vertices have degree

q, except for the leaf nodes that have degree 1. We suppose that the tree has

n levels (the root being “level 0“). The thermodynamic limit corresponds to

n→ +∞. The Hamiltonian (multiplied by β) is

Hn = −J
∑

(i,j)∈En

sisj − h
∑
i∈Vn

si (4.26)

were J > 0, h ∈ R, Vn is the set of vertices and En the set of edges for the

tree with n levels. We are interested in the magnetization of the root node in the

thermodynamic limit:

m(J, h) = lim
n→+∞

< so >n=

∑
{sk,k∈Vn} so e

−βHn

Zn
(4.27)

The formula atanh y = 1
2 ln (

1+y1− y) might be useful.

4.2 Recursive equations. Perform the sums over the spins attached at the

leaf nodes and show that

< so >n=

∑
{sk,k∈Vn−1} so e

−βH′n−1

Z ′n−1

(4.28)

where En−1 and Vn−1 are the edge and vertex sets of a tree with with n − 1

levels and the new Hamiltonian is

βH′n = −J
∑

(i,j)∈En−1

sisj−h
∑

i∈Vn−1

si−(q−1) tanh−1(tanhβJ tanhβh)
∑

i∈level n−1

si

(4.29)

Iterate this calculation and deduce

< so >n= tanh(βh+ q tanh−1(tanhβh tanhun)) (4.30)

4.8 Notes 75

where

uk+1 = βh+ (q − 1) tanh−1(tanhβJ tanhuk), u1 = βh (4.31)

Check that for q = 2 you get back the recursion found in one dimension in Chap-

ter 2.

4.3 Analysis of the recursion. We want to analyze the fixed point equation

obtained in the preceding question for q ≥ 3,

u = βh+ (q − 1) tanh−1(tanhβJ tanhu) (4.32)

Plot the curves u → u − h and u → (q − 1) tanh−1(tanhβJ tanhu) and show

that:

• for βJ ≤ 1
2 ln(q

q−2), (4.32) has a unique solution, and that the iterations (4.31)

converge to this unique solution.

• for βJ > 1
2 ln(q

q−2):

– for |h| ≥ hs, (4.32) has a unique solution (you do not need to compute

hs explicitly although it is possible to find its analytical expression)

and that the iterations (4.31) converge to this unique solution.

– for |h| < hs, (4.32) has three solutions u−(h) < u0(h) < u+(h). Check

graphically that for h > 0 the iterations (4.31) with initial condition

u1 = h converge to u+(h). Similarly for h < 0 they converge to u−(h).

Check also graphically that the fixed point u0(h) is unstable whereas

u±(h) are stable.

4.3 Phase transitions. Now we want to discuss the consequences of the results

in the previous problem for the phase diagram. On a tree the magnetization is

defined as the average spin of the root. More precisely for h 6= 0

m(βJ, βh) = lim
n→+∞

〈so〉n, (4.33)

and we define the ”spontaneous magnetization” asm±(βJ) = limh→0± m(βJ, βh).

You will show that in the ((βJ)−1, h) plane there is a first order phase transi-

tion line ((βJ)−1 ∈ [0, (1
2 ln(q

q−2))−1[, h = 0) terminated by a critical point

(atanh(q − 1)−1)−1. Outside of this line m(βJ, βhh) is an analytic function of

each variable.

• Deduce from the analysis in problem 2 that for βJ ≤ 1
2 ln(q

q−2), m+(βJ) =

m−(βJ) = 0.

• Deduce that for βJ > 1
2 ln(q

q−2), m+(βJ) 6= m−(βJ) (jump discontinuity or

first order phase transition) and that for β → +∞ m± → ±1.

• Show that for βJ → 1
2 ln(q

q−2) from above, m±(βJ) ∼ (βJ − 1
2 ln(q

q−2))1/2.

So on the line h = 0, as a function of βJ , the spontaneous magnetiza-

tion is continuous but not differentiable at 1
2 ln(q

q−2) (second order phase

transition).

76 Curie-Weiss Model

• Now fix βJ = 1
2 ln(q

q−2) and show that m(1
2 ln(q

q−2), βh) ∼ |βh|1/3. As a func-

tion of h the spontaneous magnetization is continuous but not differentiable

at teh critical point (second order phase transition).

Hint: for the last two questions you can expand the fixed point equation to order

u3.

Remark 1: Note that the exponents 1/2 and 1/3 are the same than for the

model on a complete graph. This is also the case for all d ≥ 4 and is not the case

for d = 2, 3.

Remark 2: On a tree the definition of the magnetization above is not equiva-

lent to minus the derivative of the free energy with respect to h. In fact there

is a fine point: − 1
n lnZn is dominated by the contributions of leaf nodes and

is not the ”physically meaningful” definition of free energy. Rather the ”phys-

ically meaningful” definition is given by an integral, with respect to h, of the

magnetization at the root.

Part II

Analysis of Message Passing
Algorithms

5 Marginalization and Belief
Propagation

We have seen that computing the marginals of the Gibbs distributions is a central

problem. For example in coding and compressed sensing the tasks of decoding

and signal estimation can both be reduced to the determination of a “magnetiza-

tion” which in turn is easy to obtain once we know the marginals. Unfortunately,

for general Gibbs distributions this is an intractable problem. Nevertheless all is

not lost, much to the contrary. Indeed, we have seen in Chapter 1 that the factor

graphs of our models are always either locally tree like (coding and K-SAT) or

complete (compressive sensing); and in Chapter 4 we have learned how to ex-

actly solve two simple models, on the tree and the complete graph, which are

toy versions of our more ambitious models.

In this chapter we will concentrate on an efficient calculation of marginals

for the case where the factor graph is a tree. The emphasis here is on the word

“efficient”. We will see that this question has a natural answer in the form of a

message-passing algorithm. The message-passing paradigm is the basis for the

low-complexity algorithms which we will apply to our problems even when the

factor graph is not a tree. There is a price to pay on non-tree graphs because

marginalization is a priori not exact. Therefore our low complexity message pass-

ing algorithms are suboptimal in the sense that they do not give correct solutions

up to the so-called static thresholds. For example message passing decoders do

not work up to the MAP threshold of the code ensemble; K-SAT solvers based on

message passing find solutions only for densities α quite smaller than the SAT-

UNSAT threshold αs. In the analysis of message passing we will find algorithmic

thresholds which are smaller (i.e. worse) than the static thresholds.

There is a surprise. Message-passing algorithms are also the key for the analysis

of the static thresholds and phase transitions of our three examples. A priori it

is not obvious that there should be any connection between static thresholds

and low-complexity algorithms. For example as we will see static thresholds are

non-differentiability points of the free energy (just as for the Curie-Weiss model)

but algorithmic thresholds are not visible on the free energy (since away from

static thresholds it is analytic). Nevertheless these two worlds are connected as

we will see in the third part of our lectures. Quite remarkably one can also go

one step further. In Chapter 14 we will consider a class of ensembles - called

spatially coupled ensembles - for which the static and dynamical thresholds may

80 Marginalization and Belief Propagation

even be equal. For these ensembles the low complexity message passing methods

work all the way up to the static thresholds and allow optimal solutions!

So far we have associated a factor graph to the Hamiltonians or cost functions.

In the next section this idea is taken a little bit further by associating the factor

graph to the Gibbs distribution itself. We then use this representation to help

organize the marginalization on trees and derive the message passing algorithm.

As we will see on trees marginalization ultimately boils down to an application

of a distributive law of multiplication and addition. Finally we illustrate through

simple examples how the formalism is applied to our three problems.

5.1 Factor graph representation of Gibbs distributions

One important characteristic of the Gibbs distributions of our three problems is

its factorized form. Generically

p(x) =
1

Z

∏
c

fc(x∂c), Z =
∑
x∈Xn

m∏
c=1

fc(x∂c) (5.1)

where x∂c is the set of variables xi entering as arguments of the factors fc.

The simplest incarnation of this factorization occurs in K-SAT (see (3.55))

where in spin language the alphabet X = {−1,+1}, xi → si and the factors are

fa(s∂a) = exp
{
−β
∏
i∈∂a

(
1+siJia

2

)}
. For coding (see (3.9)) we have two types of

factors fi(si) = ehisi and fa(s∂a) = 1
2 (1+

∏
i∈∂a si). For compressed sensing (see

(3.40)) the alphabet is continuous X = R so in (5.1) the sums must be interpreted

as integrals
∫
dnx and there are two types of factors fi(xi) = (p0(xi))

β and

fa(x∂a) = e−
β

2σ2 (ya−ATa x)2

. Analogous identifications for general Ising models of

Chapter 2 and also for the Curie-Weiss model are left as an exercise. Note that

the factorization is not unique, but usually it is pretty clear how to find a natural

one.

From now on we will focus on a generic factorization (5.1) and come back to

specific illustrations in sections 5.4-5.6. We associate with this factorization a

factor graph which is mildly different from the ones introduced in Chapter 1.

For each variable xi draw a variable node (circle) and for each factor fc draw a

factor node (square). Connect a variable node to a factor node by an edge if and

only if the corresponding variable appears in this factor.

example 11 (Simple Example) Let’s start with an example. Consider a dis-

tribution with factorization

p(x1, x2, x3, x4, x5, x6) =
1

Z
f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5). (5.2)

The resulting graph for this distribution is shown on the Figure 5.1. ♦

The factor graph is bipartite. This means that the set of vertices is partitioned

into two groups (the set of nodes corresponding to variables and the set of nodes

5.2 Marginalization on trees 81

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

Figure 5.1 Factor graph of f given in Example 11.

corresponding to factors) and that an edge always connects a variable node to

a factor node. For our particular example the factor graph is a (bipartite) tree.

This means that there are no cycles in the graph; i.e., there is one and only one

path between each pair of nodes.

As we will show in the next section, for factor graphs that are trees marginals

can be computed efficiently by message-passing algorithms. This remains true in

the slightly more general scenario where the factor graph forms a forest; i.e., the

factor graph is disconnected and it is composed of a collection of trees. In order

to keep things simple we will assume a single tree and ignore this straightforward

generalization.

5.2 Marginalization on trees

We first remark that in order to carry out the marginalization in practice one can

first ignore the partition function Z. Indeed suppose that we want to compute

the marginal ν1(x1) (recall definition (2.24)) for (5.1). Let us first compute the

“marginal” of the numerator only

µ1(x1) =
∑
∼x1

∏
c

fc(x∂c) (5.3)

Clearly ν1(x1) = µ(x1)/Z so the only difference between ν1(x1) and µ1(x1) is a

proportionality factor which serves to normalize the marginal. Thus, assuming

that we are able to compute µ(x1), we simply get the marginal by normalizing

ν1(x1) =
µ1(x1)∑

x1∈X µ1(x1)
, (5.4)

This last step is an easy task that involves only one sum or an integral.

In the sequel and in practice we just deal with the “marginalization” of the

numerator and normalize the result in the very last step.

82 Marginalization and Belief Propagation

Distributive Law

On trees marginalization can be achieved by a careful application of the distribu-

tive law. Let F be a field (think of F = R) and let a, b, c ∈ F. The distributive

law states

ab+ ac = a(b+ c). (5.5)

This simple law, properly applied, can significantly reduce computational com-

plexity: consider, e.g., the evaluation of
∑
i,j aibj as (

∑
i ai)(

∑
j bj). Factor graphs

provide an appropriate framework to systematically take advantage of the dis-

tributive law.

Let’s start with Example 11. The numerator of p is a function f with factor-

ization

f(x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5). (5.6)

We are interested in computing the marginal of f with respect to x1

µ1(x1) =
∑
∼x1

f(x1, x2, x3, x4, x5, x6).

What is the complexity of a brute force computation? Assume that all variables

take values in a finite alphabet, call it X . Determining ν(x1) for all values of x1

by brute force requires Θ
(
|X |6

)
operations, where we assume a naive computa-

tional model in which all operations (addition, multiplication, function evalua-

tions, etc.) have the same cost. But we can do better: taking advantage of the

factorization, we can rewrite ν(x1) as

µ(x1) =
[∑
x2,x3

f1(x1, x2, x3)
][∑

x4

f3(x4)
(∑
x6

f2(x1, x4, x6)
)(∑

x5

f4(x4, x5)
)]
.

Fix x1. The evaluation of the first factor can be accomplished with Θ
(
|X |2

)
operations. The second factor depends only on x4, x5, and x6. It can be eval-

uated efficiently in the following manner. For each value of x4 (and x1 fixed),

determine
∑
x5
f4(x4, x5) and

∑
x6
f2(x1, x4, x6). Multiply by f3(x4) and sum

over x4. Therefore, the evaluation of the second factor requires Θ
(
|X |2

)
opera-

tions as well. Since there are |X | values for x1, the overall task has complexity

Θ
(
|X |3

)
. This compares favorably to the complexity Θ

(
|X |6

)
of the brute force

approach.

Recursive Determination of Marginals

Consider the factorization of a generic function g (e.g. the numerator of a Gibbs

distribution (5.1)) and suppose that the associated factor graph is a tree (by

definition it is always bipartite). Suppose that we are interested in marginalizing

g with respect to the variable z; i.e., we are interested in computing µ(z) =

5.2 Marginalization on trees 83

∑
∼z g(z, . . .). Since the factor graph of g is a bipartite tree, g has a generic

factorization of the form

g(z, . . .) =

K∏
k=1

[gk(z, . . .)]

for some integer K with the following crucial property: z appears in each of the

factors gk, but all other variables appear in only one factor. To see this assume to

the contrary that another variable is contained in two of the factors. This implies

that besides the path that connects these two factors via variable z another path

exists. But this contradicts the assumption that the factor graph is a tree.

For the function f of Example 11 this factorization is

f(x1, . . .) = [f1(x1, x2, x3)] [f2(x1, x4, x6)f3(x4)f4(x4, x5)] ,

so that K = 2. The generic factorization and the particular instance for our run-

ning example f are shown in Figure 5.2. Taking into account that the individual

z
g

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5

f

[g1] [gk] [gK] [f1]

[f2f3f4]

Figure 5.2 Generic factorization and the particular instance.

factors gk(z, . . .) only share the variable z, an application of the distributive law

leads to

µ(z) =
∑
∼z

g(z, . . .) =
∑
∼z

K∏
k=1

[gk(z, . . .)]︸ ︷︷ ︸
marginal of product

=

K∏
k=1

[∑
∼z

gk(z, . . .)
]

︸ ︷︷ ︸
product of marginals

. (5.7)

In words, the marginal
∑
∼z g(z, . . .) is the product of the individual marginals∑

∼z gk(z, . . .). In terms of our running example we have

ν(x1) =
[∑
∼x1

f1(x1, x2, x3)
][∑
∼x1

f2(x1, x4, x6)f3(x4)f4(x4, x5)
]
.

This single application of the distributive law leads, in general, to a non-negligible

reduction in complexity. But we can go further and apply the same idea recur-

sively to each of the terms gk(z, . . .).

84 Marginalization and Belief Propagation

In general, each gk is itself a product of factors. In Figure 5.2 these are the

factors of g that are grouped together in one of the ellipsoids. Since the factor

graph is a bipartite tree, gk must in turn have a generic factorization of the form

gk(z, . . .) = h(z, z1, . . . , zJ)︸ ︷︷ ︸
kernel

J∏
j=1

[hj(zj , . . .)]︸ ︷︷ ︸
factors

,

where z appears only in the “kernel” h(z, z1, . . . , zJ) and each of the zj appears

at most twice, possibly in the kernel and in at most one of the factors hj(zj , . . .).

All other variables are again unique to a single factor. For our running example

we have

f2(x1, x4, x6)f3(x4)f4(x4, x5) = f2(x1, x4, x6)︸ ︷︷ ︸
kernel

[f3(x4)f4(x4, x5)]︸ ︷︷ ︸
x4

[1]︸︷︷︸
x6

.

The generic factorization and the particular instance for our running example f

are shown in Figure 5.3. Another application of the distributive law gives

z

kernel h

z1 zj zJ

[h1] [hj] [hJ] f3
f4

x5

x1

f2kernel

x4 x6

[f3f4]

[1]

[f2f3f4][gk]

Figure 5.3 Generic factorization of gk and the particular instance.

∑
∼z

gk(z, . . .) =
∑
∼z

h(z, z1, . . . , zJ)

J∏
j=1

[hj(zj , . . .)]

=
∑
∼z

h(z, z1, . . . , zJ)

J∏
j=1

[∑
∼zj

hj(zj , . . .)
]

︸ ︷︷ ︸
product of marginals

. (5.8)

In words, the desired marginal
∑
∼z gk(z, . . .) can be computed by multiplying

the kernel h(z, z1, . . . , zJ) with the individual marginals
∑
∼zj hj(zj , . . .) and

summing out all remaining variables other than z.

We are back to where we started. Each factor hj(zj , . . .) has the same generic

form as the original function g(z, . . .), so that we can continue to break down the

5.3 Marginalization via Message Passing 85

marginalization task into smaller pieces. This recursive process continues until

we have reached the leaves of the tree. The calculation of the marginal then

follows the recursive splitting in reverse. In general, nodes in the graph compute

marginals, which are functions over X , and pass these on to the next level. In the

next section we will elaborate on this method of computation, known as message

passing: the marginal functions are messages. The message combining rules at

function nodes is explicit in (5.8). And at a variable node we simply perform

pointwise multiplication.

Let us consider the initialization of the process. At the leaf nodes the task is

simple. A function leaf node has the generic form gk(z), so that
∑
∼z gk(z) =

gk(z): this means that the initial message sent by a function leaf node is the func-

tion itself. To find out the correct initialization at a variable leaf node consider the

simple example of computing
∑
∼x1

f(x1, x2). Here, x2 is the variable leaf node.

By the message-passing rule (5.8) the marginal is equal to
∑
∼x1

f(x1, x2)·µ(x2),

where µ(x2) is the initial message that we send from the leaf variable node x2

towards the kernel f(x1, x2). We see that to get the correct result this initial

message should be the constant function 1.

5.3 Marginalization via Message Passing

In the previous section we have seen that, in the case where the factor graph is a

tree, the marginalization problem can be broken down into smaller and smaller

tasks according to the structure of the tree.

This gives rise to the following efficient message-passing algorithm. The al-

gorithm proceeds by sending messages along the edges of the tree. Messages

are functions on X , or, equivalently, vectors of length |X |. The messages signify

marginals of parts of the function and these parts are combined to form the

marginal of the whole function. Message passing originates at the leaf nodes.

Messages are passed up the tree and as soon as a node has received messages

from all its children, the incoming messages are processed and the result is passed

up to the parent node.

example 12 (Message-Passing Algorithm for f of Example 11) Consider this

procedure in detail for the case of our running example as shown in Figure 5.4.

The top leftmost graph is the factor graph. Message passing starts at the leaf

nodes as shown in the middle graph on the top. The variable leaf nodes x2, x3,

x5, and x6 send the constant function 1 as discussed at the end of the previous

section. The factor leaf node f3 sends the function f3 up to its parent node.

In the next time step the factor node f1 has received messages from both its

children and can therefore proceed. According to (5.8), the message it sends

up to its parent node x1 is the product of the incoming messages times the

“kernel” f1, after summing out all variable nodes except x1; i.e., the message is∑
∼x1

f1(x1, x2, x3). In the same manner factor node f4 forwards to its parent

86 Marginalization and Belief Propagation

node x4 the message
∑
∼x4

f4(x4, x5). This is shown in the rightmost figure in

the top row. Now, variable node x4 has received messages from all its children. It

forwards to its parent node f2 the product of its incoming messages, in agreement

with (5.7), which says that the marginal of a product is the product of the

marginals. This message, which is a function of x4, is f3(x4)
∑
∼x4

f(x4, x5) =∑
∼x4

f3(x4)f4(x4, x5). Next, function node f2 can forward its message, and,

finally, the marginalization is achieved by multiplying all incoming messages at

the root node x1. ♦

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3

1

1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4

f4

1

1

∑
∼x1

f1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4

f4

1

1

∑
∼x1

f1

∑
∼x4

f3f4

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4

f4

1

1

∑
∼x1

f1

∑
∼x4

f3f4

∑
∼x1

f2f3f4

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4

f4

1

1

∑
∼x1

f1

∑
∼x4

f3f4

∑
∼x1

f2f3f4

∑
∼x1

f1f2f3f4

Figure 5.4 Marginalization of function f from Example 11 via message passing.
Message passing starts at the leaf nodes. A node that has received messages from all
its children processes the messages and forwards the result to its parent node. Bold
edges indicate edges along which messages have already been sent.

Complexity of message passing

Before stating the message-passing rules formally, consider the following impor-

tant generalization. Whereas so far we have considered the marginalization of

a function f with respect to a single variable x1 we are actually interested in

marginalizing for all variables. We have seen that a single marginalization can

be performed efficiently if the factor graph of f is a tree, and that the complexity

of the computation essentially depends on the largest degree of the factor graph

and the size of the underlying alphabet. Consider now the problem of computing

all marginals. We can draw for each variable a tree rooted in this variable and

execute the single marginal message-passing algorithm on each rooted tree. It is

easy to see, however, that the algorithm does not depend on which node is the

root of the tree and that in fact all the computations can be performed simulta-

5.3 Marginalization via Message Passing 87

neously on a single tree. Simply start at all leaf nodes and for every edge compute

the outgoing message along this edge as soon as you have received the incoming

messages along all other edges that connect to the given node. Continue in this

fashion until a message has been sent in both directions along every edge. This

computes all marginals so it is more complex than computing a single marginal

but only by a factor roughly equal to the average degree of the nodes. We now

summarize this discussion.

Belief propagation equations

Messages flow on edges in both directions. Messages from variables nodes (cir-

cles) to function nodes (squares) are denoted µi→c, and messages from function

nodes to variable nodes µ̂c→i. As before the letters a, b, c, . . . are reserved for

function nodes and i, j, k, . . . for variable nodes. Although this may sometimes

be redundant notation, in order to avoid confusions it is convenient to reserve

µ for messages from variable nodes (circles) to factor nodes (squares) and µ̂

for messages from factor nodes to variable nodes. Marginals, once normalized,

will be denoted by ν. Messages and marginals are functions on X and for finite

alphabets it is sometimes useful to think of them as vectors with |X | components.

Message passing starts at leaf nodes. Consider a node and one of its adjacent

edges, call it e. As soon as the incoming messages to the node along all other

adjacent edges have been received these messages are processed and the result is

sent out along e. This process continues until messages along all edges in the tree

have been processed. In the final step the marginals are computed by combining

all messages which enter a particular variable node. The initial conditions and

processing rules are summarized in Figure 5.5. Since the messages represent

(unormalized) probabilities or beliefs, the algorithm is also known as the belief

propagation (BP) algorithm. From now on we will mostly refer to it under this

name.

We sumarize the BP relations here for further reference

µi→a (xi) =
∏

b∈∂ira
µ̂b→i (xi) (5.9)

µ̂a→i (xi) =
∑
∼xi

fa (x∂a)
∏

j∈∂ari
µj→a (xj) (5.10)

At leaf nodes these are interpreted as µi→c(xi) = 1 and µ̂c→i(xi) = fc(x∂c). The

marginals are obtained as

νi (xi) =

∏
a∈∂i µ̂a→i (xi)∑

xi

∏
a∈∂i µ̂a→i (xi)

(5.11)

νa (x∂a) =
fa (x∂a)

∏
i∈∂a µi→a (xi)∑

x∂a
fa (x∂a)

∏
i∈∂a µi→a (xi)

. (5.12)

When we compute the marginals it is not important how the messages are nor-

malized. Indeed in (5.11)-(5.12) the normalizations cancel out. We will often

88 Marginalization and Belief Propagation

fc

xi

µ̂c→i(xi) = fc(xi)
initialization at

leaf nodes
xi

fc

µ(xi) = 1

fc

xi

variable/function
node processing

µi→c(xi) = µ̂d→i(xi)µ̂e→i(xi)µ̂f→i(xi)

µ̂d→i µ̂e→iµ̂f→i

fd
fe

ff

xi

fc

µ̂(xi) =
∑
∼xi

fc(xi, xj , xk, xl)µj→c(xj)µk→c(xk)µl→c(xl)

µj→c µk→cµl→c

xj
xk

xl

ximarginalization ν(xi) = µ̂a→i(xi)µ̂b→i(xi)µ̂c→i(xi)µ̂d→i(xi)

µ̂a→i µ̂b→iµ̂c→i

fa
fb

fc

fd

µd→i

Figure 5.5 Message-passing rules. The top row shows the initialization of the messages
at the leaf nodes. The middle row corresponds to the processing rules at the variable
and function nodes, respectively. The bottom row explains the final marginalization
step.

exploit this fact and write (5.9)-(5.10) as proportionality relations. This often

simplifies many calculations.

Algorithmic versus static point of view

As explained in this chapter the BP relations allow to compute exact marginals

on trees. By starting the process at leaf nodes we are sure that it converges in a

finite number of steps to the exact marginals. On non-tree graphs the situation

is not as simple because this process does not yield exact marginals. There, the

BP relations form the basis of an algorithm which outputs BP marginals which

are used to make decisions about the decoded bit, signal estimate, etc. To run

the algorithm we have to decide on a schedule to compute the messages. The

so-called “flooding schedule” is popular. At each time step t one sends in parallel

messages µ
(t)
i→c (xi) from variable nodes to function nodes, and from these one

computes messages µ̂
(t)
c→i (xi) which are sent back in parallel again. One runs

these iterations for times t = 0, . . . , T until some reasonable stopping time, and

the BP marginals are estimated thanks to the messages at time T .

In the third part of these notes the BP equations will be used in a “statistical

mechanics” non-algorithmic way, namely as fixed point equations. We will see

that they also arise when one minimizes the so-called “Bethe free energy” much as

5.4 Decoding via Message Passing 89

the Curie-Weiss fixed point equation appeared in Chapter 4 when we minimized

the free energy function. This point of view will be become key when we relate

low complexity algorithms to static thresholds.

5.4 Decoding via Message Passing

Assume we transmit over a binary-input memoryless channel using a linear code.

Recall the formulation in Chapter 3: the rule (3.11) for the bit-wise maximum a

posteriori (MAP) decoder reads ŝi(h) = argmaxsi∈{±1}p(si | h) = sign〈si〉 which

is immediate to compute once we have p(si | h) the marginal of distribution (3.9).

So we have to marginalise the numerator of

p(s | h) =
1

Z

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi . (5.13)

and eventually normalize the resulting function of si ∈ {−1,+1}. This numerator

has a factorized form with two types of factors, fi(si) = ehisi and fa({si, i ∈
∂a}) = 1

2 (1+
∏
i∈∂a si), which are associated to square nodes in the factor graph

representation of (5.13). The first factor is attached in the factor graph to a

single bit and describes the influence of the channel. The second one is attached

to several bits and describes the parity-check constraints.

example 13 (Bit-wise MAP Decoding) Consider the code defined by its

parity-check matrix with Tanner graph shown on the left of Fig. 5.6.

x1
x2
x3
x4
x5
x6
x7

x1 + x2 + x4 = 0

x3 + x4 + x6 = 0

x4 + x5 + x7 = 0

eh1s1

eh2s2

eh3s3

eh4s4

eh5s5

eh6s6

eh7s7

1
2
(1 + s1s2s4)

1
2
(1 + s3s4s6)

1
2
(1 + s4s5s7)

Figure 5.6 Left: graphical representation of the parity check code. Right: factor graph
associated to the distribution (5.13) of our running example.

The factor graph corresponding to the distribution (5.13) is shown on the

right of this figure. It includes the (Tanner) graph of parity check code, but

additionally contains factor nodes which represent the effect of the channel. For

this particular case the resulting graph is a tree. We can therefore apply the

message-passing algorithm to this example to perform bit-wise MAP decoding.

♦

In principle the messages are uniquely specified by the general message-passing

rules and we could simply move on to the next example. Indeed, the real power

of the factor graph approach lies in the fact that, once the graph and the factor

90 Marginalization and Belief Propagation

nodes are specified, no thought is required to work out the messages. For the

current example perhaps the result is quite intuitive and this might seem as no

big deal. But in “real” systems substantially more complicated factor graphs are

encountered and in such cases without the message passing rules it might be

quite difficult to figure out how to correctly combine messages. Despite the fact

that we could just blindly follow the rules, it is instructive to explicitly work out

a few steps of the belief propagation algorithm for this example.

example 14 (Message passing algorithm for decoding) We give the first three

steps of belief propagation for the tree in Figure 5.6. In the first step the initial

messages are sent from leaf nodes. Here all leaf nodes are factor nodes whose fac-

tor is the prior, thus the initial messages are µ̂k→k(sk) = ehksk for k = 1, . . . , 7.

At the second step six variable nodes send messages to factor nodes, namely

the variable nodes that participate in only a single parity-check constraints:

µ1→1(s1) = eh1s1 , µ2→1(s2) = eh2s2 , µ3→2(s3) = eh3s3 , µ5→1(s5) = eh5s5 ,

µ7→1(s7) = eh7s7 . At the third step the three factor nodes have received all

their input, except the input from variable node 4. Hence, they can send their

messages in direction of node 4. These are

µ̂1→4(s4) =
∑
s1,s2

1

2
(1 + s1s2s4)eh1s1eh2s2 ,

µ̂2→4(s4) =
∑
s3,s6

1

2
(1 + s3s4s6)eh3s3eh6s6 ,

µ̂3→4(s4) =
∑
s5,s7

1

2
(1 + s4s5s7)eh5s5eh7s7 .

The sums involved in the messages are easy to compute. For example using

ehisi = coshhi + si sinhhi the first one is equal to

µ̂1→4(s4) = (2 coshh1 coshh2)(1 + s4 tanhh1 tanhh2)

Looking at one more step, note that at this point all incoming messages to

variable node 4 are known and so we can compute the ”marginal” µ4(s4) (of the

numerator) by multiplying all messages incoming into variable node 4. Explicitly,

µ(s4) =(2 coshh4)(1 + s4 tanhh4)(2 coshh1 coshh2)(1 + s4 tanhh1 tanhh2)

× (2 coshh3 coshh6)(1 + s4 tanhh3 tanhh6)

× (2 coshh5 coshh7)(1 + s4 tanhh5 tanhh7)

To get the true marginal ν4(s4) = p(s4 | h) one has to normalize µ(s4),

p(s4 | h) =
µ(s4)

µ4(1) + µ4(−1)

To compute the other marginals one continues in this fashion with further steps

of belief propagation. As a final remark, note that (in the binary case) messages

can equivalently be considered as vectors with two components or as Bernoulli

distributions. ♦

5.5 Message Passing in Compressed Sensing 91

5.5 Message Passing in Compressed Sensing

Recall the spin glass setting for compressed sensing in Section 3.4. From the

marginals p(xi|y) of the posterior distribution (3.40)

pβ(x | y) =
1

Zβ

r∏
a=1

e−
β

2σ2 (ya−ATa x)2
n∏
i=1

(p0(xi))
β , (5.14)

we can compute the Gibbs average x̂i,β(y) = 〈xi〉β . To get the MMSE estimate

(when the prior is known) we set β = 1; to get the LASSO estimate (when we

only know that the prior is in the sparse class Fκ) we take p0(x) = e−
λ
σ2 |x|

and send β → +∞. For compressive sensing marginalization involves integrals

instead of discrete sums. Formally, the distributive law (5.5) is replaced by∫
dx a(x)b(x)+

∫
dx a(x)c(x) =

∫
dx a(x)(b(x)+c(x)) but otherwise the marginal-

ization proceeds exactly in the same way as in the discrete case if we simply

replace sums by integrals in the message-passing rules (note that in our applica-

tions all integrals will remain finite).

To obtain p(xi | y), it is sufficient to marginalize the numerator in (5.14) and

eventually normalize the resulting function of xi. As in the coding case, this

numerator has a factorized form with two types of factors fi(xi) = (p0(xi))
β

and fa(x∂a) = e−
1

2σ2 (ya−ATa x)2

. We already associated a ”Tanner graph” to the

measurement matrix A in Chapter 2. Here we go one step further. In the factor

graph representation for the distribution (5.14) we add extra square nodes corre-

sponding to the factors (p0(xi))
β and attach them to variable nodes. The other

square nodes already present in the representation of the measurement matrix

are associated to the factors fa(x∂a). Let us discuss a concrete illustration.

example 15 (Factor graph for compressive sensing) Figure 5.7 shows a factor

graph associated to (5.14). Edges are present if and only if Aai 6= 0. One may

think of Aai 6= 0 as the “strength” of an edge. This factor graph contains the

graph representing A itself, and has also additional factor nodes which represent

the prior for the signal ♦

p(x1)
p(x2)
p(x3)
p(x4)
p(x5)
p(x6)
p(x7)

e
− 1

2σ2 (y1−A11x1−A12x2−A14x4)
2

e
− 1

2σ2 (y2−A23x3−A24x2−A26x6)
2

e
− 1

2σ2 (y3−A34x4−A35x5−A37x7)
2

Figure 5.7 Factor graph for compressive sensing. The edges represent the non-zero
elements of the measurement matrix. The signal has seven components and there are
three measurements.

A few comments are in order. In this example we take a factor graph that is a

tree for the purpose of illustration of the message passing rules below. However in

92 Marginalization and Belief Propagation

compressive sensing the graph is far from being a tree; it typically is a complete

graph. Indeed we assume that the entries of the measurement matrix are iid

Gaussian, so the matrix is dense. This is one important difference between the

compressive sensing and coding models In coding our analysis will rely heavily

on the fact that the graph is sparse and that when we look at very large instances

the Tanner graph will “locally” be a tree. At first glance it therefore appears that

message-passing techniques which explicitly rely on the Tanner graph being a

tree are of no use in the compressive sensing context. But perhaps surprisingly,

as we will see, we will still be able to analyze this situation. The key in this case

is that despite the fact that we will not face a tree, the influence of each edge

vanishes in the limit of large graphs. This relies heavily on the 1/m scaling of

the variance of the matrix elements Aai.

Let us now discuss belief propagation for the example.

example 16 (Message passing algorithm for compressive sensing) We give

the first three steps of belief propagation for the tree in Figure 5.7. As re-

marked above, the messages are continuous distributions and instead of per-

forming binary sums one has compute integrals; this is the main difference with

the coding case. In the first step, the initial messages are sent from leaf nodes:

µ̂k→k(xk) = (p0(xk))β for k = 1, . . . , 7. At the second step six variables (namely

the ones that participate in only one measurement) send messages to factor

nodes: µ1→1(x1) = (p0(x1))β , µ2→1(x2) = (p0(x2))β , µ3→2(x3) = (p0(x3))β ,

µ5→1(x5) = (p0(x5))β , µ6→1(x6) = (p0(x6))β µ7→1(x7) = (p0(x7))β . At the

third step the three factor nodes send messages to variable node 4. These are

µ̂1→4(x4) =

∫ ∫
dx1dx2 (p0(x1))β(p0(x2))βe−

β

2σ2 (y1−A11x1−A12x2−A14x4)2

,

µ̂2→4(x4) =

∫ ∫
dx3dx6 (p0(x3))β(p0(x6))βe−

β

2σ2 (y2−A22x2−A23x3−A26x6)2

,

µ̂3→4(x4) =

∫ ∫
dx5dx7 (p0(x5))β(p0(x7))βe−

β

2σ2 (y3−A34x4−A35x5−A37x7)2

.

Note that all integrals are certainly convergent as long as the prior p0(·) is in-

tegrable. This time, contrary to the coding example where binary sums could

easily be computed, in general the integrals cannot be performed analytically

but have to be evaluated numerically. One exception where a complete analyt-

ical calculation is easy, is the case where the priors are Gaussians. This leads

to messages that are Gaussians throughout the whole belief propagation algo-

rithm. A mixture of Bernoulli and Gaussian priors also leads to explicit although

rather complicated formulas. This last case is sometimes considered as a model

of a sparse prior in the context of compressive sensing. Note however, that the

Laplacian prior ce−
λ
σ2 |xk| does not lead to completely analytically tractable in-

tegrals because of the absolute value.

At this point we can compute the marginal µ4(x4). Indeed all messages in-

5.5 Message Passing in Compressed Sensing 93

coming into variable node 4 are known, so

µ4(x4) = p0(x4)µ̂1→4(x4)µ̂2→4(x4)µ̂3→4(x4)

To get the marginal p(x4 | y) we normalize µ4(x4),

p(x4 | y) =
µ(x4)∫
dx4 µ(x4)

.

Finally, the computation of other marginals requires further steps of belief prop-

agation. ♦

LASSO estimate and min-sum rules

We remarked in 3.4 that the LASSO estimate can be obtained by taking the

prior p0(xi) = e−
λ
σ2 |xi|, and letting β → +∞. Taking the β → +∞ limit of the

message passing rules developed here leads to the so-called min-sum rules. It is

instructive to work this out in detail for the current example. To obtain a well

defined limit for the message passing rules it is convenient to define

êa→i = − 1

β
ln µ̂a→i, and ei→a = − 1

β
lnµi→a.

Then the initial messages from leaf square nodes to variables are ε̂k→k(xk) =
λ
σ2 |xk| for k = 1, . . . , 7. At the second step the six variables k = 1, 2, 3, 5, 7

participating in a single measurement send messages to factor nodes: εk→k(x1) =
λ
σ2 |xk|. At the third step the three factor nodes send messages to variable node

4. These are deduced from the finite β messages by applying the Laplace method

to the integrals,

ê1→4(x4) = min{ λ
σ2
|x1|+

λ

σ2
|x2|+

1

2σ2
(y1 −A11x1 −A12x2 −A14x4)2}

ê2→4(x4) = min{ λ
σ2
|x3|+

λ

σ2
|x6|+

1

2σ2
(y2 −A22x2 −A23x3 −A26x6)2},

ê3→4(x4) = min{ λ
σ2
|x3|+

λ

σ2
|x6|+

1

2σ2
(y3 −A34x4 −A35x5 −A37x7)2}.

The ”marginal” for node 4 is

e4(x4) =
λ

σ2
|x4|+ ê1→4(x4) + ê2→4(x4) + ê3→4(x4)

and the LASSO estimate for variable node 4 is simply x̂4 = argmin e4(x4). These

relations constitute the min-sum algorithm.

There is also an alternative route how to derive the min-sum relations. The

belief-propagation equations (sometimes also called sum-product algorithm) were

derived from the distributed law once we applied it to a factor graph which is a

tree. It led to the marginalization of a function. But instead of using the oper-

ations of summing and multiplying (leading to the sum-product algorithm) we

94 Marginalization and Belief Propagation

can use as basic operations the minimization and summing. The corresponding

distributive law for this case reads

min(a+ b, a+ c) = a+ min(b, c). (5.15)

We can now formaly proceed just as in the previous case. A quick way to see this is

to use the correspondence (+,×)→ (min,+) which transforms ab+ac = a(b+c)

to min(a+ b, a+ c) = a+min(b, c). You will derive the min-sum message passing

rules from the distributive law in an exercise.

5.6 Message passing in K-SAT

We illustrate message passing for K-SAT with two applications. In the first

one we count solutions of a K-SAT formula and in the second we discuss the

determination of minimum energy assignments.

Counting solutions through message passing

Recall in the K-SAT model we introduced in Section 3.6 the number of solutions

of a K − SAT formula,

N0 =
∑
s

m∏
a=1

(1−
∏
i∈∂a

(
1 + siJai

2
)). (5.16)

We illustrate here how one could attempt to compute it by message passing

methods. Suppose we can count the number of solutions having a fixed value for

the i-th variable, namely

Ni(si) =
∑
∼si

m∏
a=1

(1−
∏
i∈∂a

(
1 + siJai

2
)). (5.17)

where the sum carries over all variables except si. The total number of solutions

is simply obtained as N0 = Ni(+1) + Ni(−1). The task of computing (5.17) is

nothing else than our marginalization problem. The factor graph associated to

(5.16) has only one type of factor (1−
∏
i∈∂a(1+siJai

2)) associated to the square

nodes. Again, message passing provides an exact solution on a tree-graph. When

the graph is not a tree it forms the basis of a solution finding message passing

algorithm, called Belief Propagation Guided Decimation (BPGD), which we will

study in Chapter 9.3. Let us for now illustrate how the marginalization proceeds

on our simple tree graph example.

example 17 (Counting solutions in 3-SAT) Consider the 3-SAT formula

shown on Fig. 5.8. Here we keep the signs Jai = ±1 associated to the edges

open in order to see more clearly the structure of the messages (so we have a

set of 29 formulas here). The factors associated to each square are the indicator

5.6 Message passing in K-SAT 95

functions of the clause. For example clause number 1 is not satisfied by the as-

signment s1 = J11, s2 = J12, s4 = J14 and is satisfied by teh 7 other assignments.

Note that contraty to coding and compressed sensing there is are no “priors“, so

no degree-one square nodes with factors attached to variable nodes. Here message

1
2
3
4
5
6
7

1− 1
8
(1 + J11s1)(1 + J12s2)(1 + J14s4)

1− 1
8
(1 + J23s3)(1 + J24s4)(1 + J26s6)

1− 1
8
(1 + J34s4)(1 + J35s5)(1 + J37s7)

Figure 5.8 Factor graph for the K-SAT counting problem. The graph represents the
formula and the factors associated to teh square nodes are the indicator functions of
each constraint written in spin language.

passing starts at leaf nodes, namely the variable nodes 1, 2, 3, 5, 6, 7 which send

the trivial initial messages µi→1(si) = µi→2(si) = µi→3(si) = 1, i = 1, 2, 3, 5, 6, 7.

In teh second step all clauses can compute one outgoing message towrads vari-

able node 4 by taking into account their factor and two incomimg messages. In

detail,

µ̂1→4(s4) =
∑
s1,s2

(
1− 1

8
(1 + J11s1)(1 + J12s2)(1 + J14s4)

)
× 1× 1,

µ̂2→4(s4) =
∑
s3,s6

(
1− 1

8
(1 + J23s3)(1 + J24s4)(1 + J26s6)

)
× 1× 1,

µ̂3→4(s4) =
∑
s5,s7

(
1− 1

8
(1 + J34s4)(1 + J35s5)(1 + J37s7)

)
× 1× 1

The binary sums are easily performed and yield µ̂a→4(s4) = 4− 1
2 (1 +Ja4s4) for

a = 1, 2, 3. In the next step we can compute the ”marginal“ for variable node 4

from the three incoming messages,

N4(s4) = µ4(s4) = (4− 1

2
(1 + J14s4))(4− 1

2
(1 + J24s4))(4− 1

2
(1 + J34s4))

(5.18)

For example if the formula has J14 = 1, J24 = 1 and J34 = −1 the number

of solutions with s4 = +1 equals N4(1) = 3 × 3 × 4 = 36 and the number of

solutions with s4 = −1 equals N4(−1) = 4 × 4 × 3 = 48. The total number

of solutions is N0 = 36 + 48 = 84. Note that we obtained this result without

going through the remaining marginalization steps. This calculation also teaches

us something about the uniform distribution over solutions. Indeed if we sample

uniformly among solutions the probabilities that a solution has s4 = ±1 are

96 Marginalization and Belief Propagation

N4(±1)/N0 = 3/7 and 4/7. We obtain this result from anaother point of view

in the next paragraph. To calculate all such probabilities one has to go through

the other marginalization steps. ♦

Message passing at positive and zero temperatures

Recall the Gibbs distribution in the finite temperature formulation of K-SAT

p(s) =
1

Z

∑
s

m∏
a=1

exp
{
−β

∏
i∈∂a

(1 + siJai
2

)}
. (5.19)

Again we associate a factor graph to this distribution with one type of factor at-

tached to the clauses, namely fa(s∂a) = exp
{
−β
∏
i∈∂a

(
1+siJai

2

)}
. We illustrate

message passing on the same tree-like example as before.

example 18 (Belief propagation at positive temperature for 3-SAT) Con-

sider again the 3-SAT formula shown on Fig. 5.8. The factors associated to the

square notes are now teh β dependent weights entering in (5.19). Message pass-

ing originates at leaf nodes 1, 2, 3, 5, 6, 7 which send the trivial initial messages

µi→1(si) = µi→2(si) = µi→3(si) = 1, i = 1, 2, 3, 5, 6, 7. In the second step all

clauses send their message to variable node 4,

µ̂1→4(s4) =
∑
s1,s2

exp
{
−β

8
(1 + J11s1)(1 + J12s2)(1 + J14s4)

}
× 1× 1,

µ̂2→4(s4) =
∑
s3,s6

exp
{
−β

8
(1 + J23s3)(1 + J24s4)(1 + J26s6)

}
× 1× 1,

µ̂3→4(s4) =
∑
s5,s7

exp
{
−β

8
(1 + J34s4)(1 + J35s5)(1 + J37s7)

}
× 1× 1

Using e−βn = 1 + (e−β − 1)n for n ∈ {0, 1} we can easily calculate the binary

sums. For example

µ̂1→4(s4) =
∑
s1,s2

(
1 + (e−β − 1)(

1 + J11s1

2
)(

1 + J12s2

2
)(

1 + J14s4

2
)

)
= 4 + (e−β − 1)(

1 + J14s4

2
). (5.20)

At this step we can already calculate the ”marginal“ µ4(s4) by multiplying all

messages incoming into variable node 4

µ4(s4) =(4 + (e−β − 1)(
1 + J14s4

2
))(4 + (e−β − 1)(

1 + J24s4

2
))

× (4 + (e−β − 1)(
1 + J34s4

2
)) (5.21)

and the true marginal is obtained as usual by normalization ν(s4) = µ4(s4)/(µ4(1)+

µ4(−1)). For the remaining marginals one has to perform extra message passing

steps. ♦

5.6 Message passing in K-SAT 97

Given a formula and given that solutions exist for this formula, when we take

β → +∞ the Gibbs distribution tends to the uniform distribution over solutions.

Therefore in the limit we have

lim
β→+∞

νi(si) =
Ni(si)
N0

(5.22)

This is easily checked explicitely in the example above: using e−β → 0 in (5.21))

we find ν4(±1) = 3/7 and 4/7.

We now turn to the zero temperature case in more detail. Suppose we want to

determine the assigments s that minimize the K-SAT Hamiltonian H(s) (??).

When the graph associated to the formula is a tree message passing methods yield

an exact solution; while in the non-tree case they form the basis of algorithms for

finding solutions that we study at the end of this course (Survey Propagation).

As for the LASSO estimator, we can take two alternative routes. We can directly

set up the min-sum message passing rules by a proper use of the distributive law

(5.15), or we can look at the β → +∞ limit of the BP rules. The second method

is somehow more convenient for us since we have allready developped all the

finite β formalism. This is illustrated with our running example.

example 19 (Zero temperature limit: min-sum for 3-SAT) We take the same

3-SAT formula as in Fig. 5.8. The correct limiting behavior of messages is cap-

tured by the definition (as for LASSO)

êa→i = − 1

β
ln µ̂a→i, and ei→a = − 1

β
lnµi→a.

The initial messages from leaf nodes 1, 2, 3, 5, 6, 7 are ei→1(si) = ei→2(si) =

ei→3(si) = 0, i = 1, 2, 3, 5, 6, 7. Next, all clauses send a message to variable node

4,

ê1→4(s4) = min
s1,s2

((
1 + J11s1

2
)(

1 + J12s2

2
)(

1 + J14s4

2
) + 0 + 0),

ê2→4(s4) = min
s3,s6

((
1 + J23s3

2
)(

1 + J24s4

2
)(

1 + J26s6

2
) + 0 + 0),

ê3→4(s4) = min
s3,s6

((
1 + J34s4

2
)(

1 + J35s5

2
)(

1 + J37s7

2
) + 0 + 0).

The minima are easily calculated directly from these expressions. For example

testing all four possibilities (s1, s2) = (±J11,±J12) yields ê1→4(s4) = 0. This can

also be obtained directly from (5.20). Similarly we have ê2→4(s4) = ê3→4(s4) = 0.

The resulting ”marginal“ for variable node 4 vanishes for both values of s4 = ±1,

namely

e4(s4) = ê1→4(s4) + ê2→4(s4) + ê3→4(s4) = 0 (5.23)

Since e4(s4) = min∼s4 H(s) we deduce that any there exist zero energy assign-

ments (so assignments that satisfy the formula) with both values s4 = ±1.

♦

98 Marginalization and Belief Propagation

Problems

5.1 Min-Sum Message Passing rules. In class we discussed how to compute

the marginal of a multivariate function f(x1, . . . , xn) efficiently, assuming that

the function can be factorized into factors involving only few variables and that

the corresponding factor graph is a tree. We accomplished this by formulating

a message-passing algorithm. The messages are functions over the underlying

alphabet. Functions are passed on edges. The algorithm starts at the leaf nodes

and we discussed how messages are computed at variable and at function nodes.

Recall from the derivation that the main property we used was the distributive

law. Consider now the following generalization. Consider the so-called commu-

tative semiring of extended real numbers (including ∞) with the two operations

min and + (instead of the usual operations + and ∗).
(i) Show that both operations are commutative.

(ii)Show that the identity element under min is ∞ and that the identity element

under + is 0.

(iii)Show that the distributive law holds.

(iv)If we formally exchange in our original marginalization + with min and ∗ with

+, what corresponds to the marginalization of a function?

(v)What are the message passing rules and what is the initialization?

5.2 Application to the Lasso estimate. The goal of this problem is to show

that in case the factor graph associated to the measurement matrix is a tree

we can solve the Lasso minimization problem by using the min-sum algorithm.

Recall that the Lasso estimate is

x̂lasso(y) = argminx

{
1

2
‖y −Ax‖22 − λ‖x‖1

}
.

Consider first the minimum cost given that xi is fixed.

Ei(xi) = min∼xi

{
1

2
‖y −Ax‖22 − λ‖x‖1

}
.

where min∼xi denotes minimization of the expression in the bracket with respect

to all variables, except xi which is held fixed. Ei(xi) is a function of a single real

variable whose minimizer yields the i-th component of x̂lasso(y).

Consider the Tanner graph in Figure 6.7 in the notes and write down the

factors associated to factor nodes. Pick your favourite variable, say variable 4,

and describe the steps of the min-sum algorithm for the computation of E4(x4).

6 Coding: Belief Propagation and
Density Evolution

Message passing methods have been very successful in providing efficient and

analyzable algorithms for the coding problem. In this and the next chapter we

provide an introduction to this analysis. In the last lecture we learned how to

marginalize a Gibbs distribution whose factor graph is a tree, by emloying by

employing message passing rules. We saw that on trees message passing starts at

the leaf nodes and that a node which has received messages from all its children

processes the messages and forwards the result to its parent node. On a tree this

messsage-passing algorithm is equivalent to MAP decoding since we are com-

puting without any approximation the marginals of the posterior distribution.

From now on we will refer to this algorithm as BP and leave the term “message-

passing” as a generic term to encompass all local algorithms which follow the

basic message-passing paradigm, i.e., where an outgoing message along an edge

is only a function of the messages incoming at the same time along all other

edges incident to the node.

If the graph is not a tree then we can still use BP, but we need to define a

schedule which determines when to update what messages. It is not clear how well

such an algorithm will perform. It is the aim of the present and the subequent

chapter to clarify these issues. We will carry out the analysis in detail for the

BEC and then explain how the general case can be treated. The BEC has the

advantage that its analysis can be done by pen and paper. The general case is

conceptually not much harder, but there are a signficant number of details which

one has to take care of. This makes the analysis more difficult.

6.1 Message-Passing Rules for Bit-wise MAP Decoding

We illustrated the message passing rules for coding on a small coding example

in Section 5.4. Recall that the Gibbs distribution has two type of factors: ehisi

and 1
2 (1 +

∏
j∈∂a sj). The first kind of factor is associated to a square nodes î of

degree one attached to variable nodes i and generates a message µî→i(si) = ehisi .

The other relevant messages flow from the usual parity checks to variable nodes

µ̂a→i(si) and from variable nodes to usual parity checks µi→a(si). Thus for coding

100 Coding: Belief Propagation and Density Evolution

the general BP equations (5.9), (5.10) read

µi→a (si) = ehisi
∏

b∈∂ira
µ̂b→i (si) (6.1)

µ̂a→i (si) =
∑
∼si

1

2
(1 +

∏
j∈∂a

sj)
∏

j∈∂ari
µj→a (sj) (6.2)

In the binary case of interest here these equations can be simplified by adopting a

convenient parametrization of the messages. Indeed we already remarked at the

end of Section 5.3 that their normalizations cancel out in the final computation

of “marginals”. So all that should matter are the half-loglikelyhood ratios

li→a =
1

2
ln

{
µi→a(+1)

µi→a(−1)

}
, l̂a→i =

1

2
ln

{
µ̂a→i(+1)

µ̂a→i(−1)

}
(6.3)

which do not involve the normalization. To see the form that the first BP equation

(6.1) takes with this parametrization, we write this equation for each value si =

±1, take the ratio

µi→a (+1)

µi→a (−1)
= e2hi

∏
b∈∂ira

µ̂b→i (+1)

µ̂b→i (−1)
, (6.4)

and then take the logarithm to obtain

li→a = hi +
∑

b∈∂ira
l̂b→i. (6.5)

Reducing the second BP equation (6.2) to a form involving only the loglikelihood

ratios (6.3) involves a little more algebra. First we write (6.2) for each spin value

si = ±1 and take the ratio,

µ̂a→i (+1)

µ̂a→i (−1)
=

∑
∼si(1 +

∏
j∈∂a\i sj)

∏
j∈∂ari µj→a (sj)∑

∼si(1−
∏
j∈∂a\i sj)

∏
j∈∂ari µj→a (sj)

. (6.6)

Next we divide the numerator and denominator by
∏
j∈∂ari µj→a (−1) and use

the identity

µj→a (sj)

µj→a (−1)
= elj→a(sj+1) = (cosh lj→a)(1 + sj tanh lj→a) (6.7)

to obtain

µ̂a→i (+1)

µ̂a→i (−1)
=

∑
∼si(1 +

∏
j∈∂a\i sj)

∏
j∈∂ari(1 + sj tanh lj→a)∑

∼si(1−
∏
j∈∂a\i sj)

∏
j∈∂ari(1 + sj tanh lj→a)

. (6.8)

6.1 Message-Passing Rules for Bit-wise MAP Decoding 101

In order to perform the summations in the numerator and denominator we first

expand the products into a sum of monomials of the spin variables

(1±
∏

j∈∂a\i

sj)
∏

j∈∂ari
(1 + sj tanh lj→a)

= (1±
∏

j∈∂a\i

sj)
∑

J⊂∂a\i

∏
j∈J

sj
∏
j∈J

tanh lj→a

=
∑

J⊂∂a\i

∏
j∈J

sj
∏
j∈J

tanh lj→a ±
∑

J⊂∂a\i

∏
j∈Jc

sj
∏
j∈J

tanh lj→a (6.9)

When we sum this expression over spin assignments the only monomials that

survive correspond to the subsets J = ∅ in the first sum and Jc = ∅ in the

second sum. Therefore the ratio (6.4) reduces to the simple form

µ̂a→i (+1)

µ̂a→i (−1)
=

1 +
∏
j∈∂a\i tanh lj→a

1−
∏
j∈∂a\i tanh lj→a

(6.10)

Finally taking the logarithm and using 1
2 ln 1+x

1−x = atanhx we arrive at

l̂a→i = atanh

{ ∏
j∈∂a\i

tanh lj→a

}
(6.11)

Let us now look at the “marginals” computed from the BP equations. We will

call them BP marginals and denote them by νBP
i (si) to distinguish them from

the true marginals νi(si) of the Gibbs distribution. As repeatedly pointed out

on a tree the BP marginals and true marginals are the same. Adapting (5.11) to

the present setting,

νBP
i (si) =

ehisi
∏
a∈i µ̂a→i(si)

ehi
∏
a∈i µ̂a→i(+1) + e−hi

∏
a∈i µ̂a→i(−1)

(6.12)

In order to express the BP marginals in terms of the loglikehood ratios we divide

the numerator and denominator by ehi
∏
a∈i m̂ua→i(+1) and use (6.3) to deduce

νBP
i (si) =

e(hi+
∑
a∈∂i l̂a→i)(si+1)

1 + e2(hi+
∑
a∈∂i l̂a→i)

= 1 + si tanh(hi +
∑
a∈∂i

l̂a→i) (6.13)

From this marginal one can compute the BP magnetization of the i-th bit (to be

distinguished from the true magnetization)

mBP
i =

∑
si=0,1

siν
BP
i (si) = tanh(hi +

∑
a∈∂i

l̂a→i) (6.14)

The BP estimate for bit i is then

ŝBP
i = sign(mBP

i) (6.15)

102 Coding: Belief Propagation and Density Evolution

There is a nice interpretation of (6.14). The BP magnetization is the same as

that of a system constituted by a single spin with Gibbs distribution (at β = 1)

e−lisi

2 cosh li
, li = hi +

∑
a∈∂i

l̂a→i (6.16)

In the context of statistical mechanics the estimate li, for the total likelihood

ratio associated to bit i, is called a local mean magnetic field or simply local mean

field.

Summary of BP equations for coding

To summarize, in the case of transmission over a binary channel the messages

can be compressed into a single real quantity. In particular, if we choose this

quantity to be the half-loglikelihood ratio (6.3) then the processing rules take on

a particularly simple formli→a = hi +
∑
b∈∂ira l̂b→i

l̂a→i = atanh

{∏
j∈∂a\i tanh lj→a

}
(6.17)

The BP estimate of a bit is given by

ŝBP
i = sign(tanh(hi +

∑
a∈∂i

l̂a→i)) (6.18)

For the special case of the BEC one can make further simplifications as dicussed

in Section 6.3.

6.2 Scheduling on general Tanner graphs

If the Tanner graph is a tree, then message-passing starts from the leaf nodes

and messages propagate through the graph until a message has been sent on each

edge in both directions. However, cycle-free parity-check codes do not perform

well. This is true even if we allowed optimal decoding. Hence we have to use

codes whose Tanner graph has cycles.

Given a factor graph with cycles, the order in which messages are computed

has to be defined explicitly and in principle different schedules might result in

different performance. We call such an order a schedule. A naive scheduling which

is convenient for analysis of belief propagation is the flooding or parallel schedule.

In this schedule at each step every outgoing message is updated according to the

incoming messages in the previous step.

In more details. Every iteration consists of two steps. In the first step we

compute the outgoing messages along each edge at variable nodes and we forward

them to the check node side. In the second step we then process the incoming

messages at check nodes, and compute for every edge at check nodes the outgoing

6.3 Message Passing and Scheduling for the BEC 103

messsage and send it back to variable nodes. What about the initial condition?

At the very beginning, none of the messages except the ones coming from the

channel are defined. So in order to get started, we set all “internal” messages to

be “neutral” messages. E.g., if we represent messages as log-likelihood ratios, this

means that we set all internal messages to 0. One can check that for a tree this

prescription reduces to the initial conditions dictated by the theory developped

in Chapter ??.

Let us formalize the above discussion. Iterations are indexed by “time”, a

discrete integer t ≥ 1. At iteration t in the first step we have messages flowing

(in parallel) from variable to check nodes, l
(t)
i→a, and in the second step we have

messages flowing from check to variable nodes, l̂
(t)
a→i. They satisfyl

(t)
i→a = hi +

∑
b∈∂ira l̂

(t−1)
b→i

l̂
(t)
a→i = atanh

{∏
j∈∂a\i tanh l

(t)
j→a

}
(6.19)

The iterative process is initialized with l
(0)
i→a = l̂

(0)
a→i = 0. The total estimated

likelihood ratio for bit i at time t is

l
(t)
i = hi +

∑
a∈∂i

l̂
(t)
a→i (6.20)

and the BP estimate at time t for the bit is

ŝBP,t
i = sign(tanh l

(t)
i) (6.21)

6.3 Message Passing and Scheduling for the BEC

The BEC is a very special binary input memoryless channel. As depicted in

Fig. 1.2, the transmitted bit is either correctly received at the channel output

with probability 1 − ε or erased by the channel with probability ε and thus,

nothing is received at the channel output.1 The erased bits are denoted by “?”.

For example, if si = 1 (resp. si = −1) is transmitted in the BEC, then the set

of possible channel observations is {1, ?} (resp.{−1, ?}). The loglikelihood ratios

corresponding to the various channel observations are

hi = log(
p(yi | si = 1)

p(y | si = −1)
) =

1
2 log(1−ε

0) = +∞ y = 1,
1
2 log(εε) = 0, y = ?,
1
2 log(0

1−ε) = −∞, y = −1.

Now, since the initial condition for the internal messages is l
(0)
i→a = 0, l̂

(0)
a→i = 0

the BP equations (6.19) imply that at later times l
(t)
i→a = 0, l̂

(t)
a→i{±∞, 0}. This

allows to further simplify the BP equations.

According to the variable-node rule the outgoing message from a variable node

1 But note that the position of the erased bit is known.

104 Coding: Belief Propagation and Density Evolution

is +∞ (or −∞) if at least one incoming message from one of its neighbors is +∞
(or −∞), otherwise it is equal to 0. Note that it is not possible that a variable

node receives both +∞ and −∞ simultaneously. This is due to the fact that by

assumption the transmitted word is a valid codeword and that the channel never

introduced mistakes.

Since tanh li→a ∈ {±1, 0}, we can use tanh li→a = sign(li→a) to simplify the

updating rule of check nodes to the following equation,

sign(l̂a→i) =
∏

j∈∂a\i

sign(lj→a). (6.22)

This discussion shows that on the BEC, knowing the sign of all incoming

messages is sufficient to compute outgoing messages, thus we can assume that

the set of messages is {±1, 0} instead of {±∞, 0}. At check nodes the operation

is then simple multiplication. At variable nodes, if at least one of the incoming

edges is non-zero, then all non-zero incoming messages must in fact be the same

and the outgoing message is this common value. Otherwise, when all incoming

messages are 0, the outgoing message is also 0.

For the BEC, but only for the BEC, we can implement the parallel schedule in a

more efficient manner. For this channel, some thought shows that the messages

emitted along a particular edge can only jump once, namely from 0 to either

the value +1 or −1. After the value has jumped it stays constant thereafter.

Further, the message can only jump if at least one of the incoming messages

jumped. Therefore, rather than recomputing every message along every edge in

each iteration, we can just follow changes in the messages and see if they have

consequences. As a consequence, we have to “touch” every edge only once and

so the complexity of this algorithm scales linearly in the number of edges.

6.4 Two Basic Simplifications

To analyze the performance of the (l, r)-regular LDPC ensemble over a channel,

we pick a code C uniformly at random from the ensemble of graphs and run

the message passing algorithm. For a given code C and channel parameter ε, let

PBP,b(C, sin, ε, t) denote the average bit error probability of the message passing

decoder for codeword sin at iteration t. Explicitely,

PBP,b(C, sin, ε, t) =
1

n

n∑
i=1

1

2
(1 + Eh|sin [sin

i ŝ
BP,(t)
i]) (6.23)

where we recall that Eh|sin is the expectation with respect to channel out-

puts given the input word (see Chapter 3). We will study the behavior of

PBP,b(C, sin, ε, t) in terms of ε and t as a measure of performance of the code

C.
For the binary erasure channel, we either can decode a bit correctly, or the

bit is still erased at the end of the decoding process. Therefore, in this case

6.4 Two Basic Simplifications 105

we typically compute the bit erasure probability. If we want to convert this

into an error probability, then we can imagine that for all erased bits we flip

a coin uniformly at random. With probability one-half we will guess the bit

correctly and with probability one-half we will make a mistake. Therefore, the

bit erasure and the bit error probability are the same up to a factor of one-half.

In our calculations we will always compute the erasure probability for the erasure

channel. But our language will sometimes reflect the general case and so we will

talk about error probabilities.

Restriction To The All-One Codeword

In Chapter 3 we showed that the bit-wise MAP error probability is independent

of the transmitted codeword as long as the channel is symmetric. Something

similar holds for the BP decoder. Therefore we can analyze the error probality

of the BP decoder assuming that the all-one codeword was transmitted (i.e., the

codeword, all of its components are 1, in the spin language where the components

are from the set {±1}). In formulae, we claim that (recall Eh = Eh|1)

PBP,b(C, sin, ε, t) = PBP,b(C, ε, t)

=
1

n

n∑
i=1

1

2
(1− Eh[ŝ

BP,(t)
i]) (6.24)

This is true in a more general setting than the present one. In general, for the

statement to hold we need two kinds of symmetry to hold: channel symmetry

and decoder symmetry. Decoder symmetry here means that at check nodes the

magnitude of the outgoing message is only a function of the magnitude of the

incoming messages, and that the sign of the outgoing message is the product

of the signs of the incoming messages. At variable nodes, we require that if

the signs of all the incoming messages are reversed then the outgoing message

also just changes by a reversal of the sign. This is obviously the case for the

BP decoder. But often one often implements simplified versions for which the

symmetry conditions also hold.

For the BEC and BP decoding it is particularly easy to see why (6.24) is

true. If you go back to the message-passing rules for this case, you will see

that both at check nodes as well as at variable nodes we can determine if the

outgoing message is an erasure or not by only looking how many of the incoming

messages are erasures, but we do not need to know the values of the incoming

messages. Therefore, the final erasue probability only depends on the erasure

pattern created by the channel, but is independent of the transmitted codeword.

The general case is proved by using the two symmetry conditions stated above.

The proof is not very difficult and we leave it to the reader.

106 Coding: Belief Propagation and Density Evolution

Concentration

The second major simplification stems from the fact that, rather than analyzing

individual codes, it suffices to assess the ensemble average performance. When

this is true the individual behavior of elements of an ensemble is with high

probability close to the ensemble average. More precisely one can prove the

following statement [?].

Let C, chosen uniformly at random from the Gallager ensemble LDPC(dv, dc, n),

be used for transmission over a BMS channel. Then, for any given δ > 0, there

exists an α > 0, α = α(dv, dc, δ), such that

P{|PBP,b(C, ε, t)− E [PBP,b(C, ε, t)] | > δ} ≤ ε−αn. (6.25)

where here P and E refer to the code ensemble.

In words, all except an exponentially (in the blocklength) small fraction of

codes behave within an arbitrarily small δ from the ensemble average. Therefore,

assuming sufficiently large blocklengths, the ensemble average is a good indicator

for the individual behavior and it seems a reasonable route to focus one’s effort on

the design and construction of ensembles whose average performance approaches

the Shannon theoretic limit.

6.5 Concept of Computation Graph

Message passing takes place on the local neighborhood of a node. At each it-

eration, variable nodes send their beliefs along their edges toward check nodes

and, then, the check nodes compute the outgoing message for each of their edges

according to the beliefs of incoming edges and send it back to the variable nodes.

Afterwards, each variable node updates the outgoing messages along its edges

according to beliefs returned back on its edges.

Therefore, after t iterations, the belief of a variable node depends on its initial

belief and the beliefs of all the nodes placed within (graph) distance 2t or less.

The graph consisting of these nodes is called the computation graph of that

variable node of height t. For example, the factor graph of a (2, 4, 6)-regular

LDPC code is shown in Fig. 6.1(a) and the computation graph of node 1 with

height 1 is also depicted in Fig. 6.1(b).

If a computation graph is tree, then no node is used more than once in the

graph. Therefore the incoming messages of each node are independent. But note

that by increasing the number of iterations, the number of nodes in a compu-

tation graph grows exponentially and thus in at most c log n steps, where c is

some suitable constant, some node will necessarily be reused. It is clear that

small computation graphs are more likely to be tree-like than large ones and

that the chance of having a tree-like computation tree increase if we increase the

blocklength.

Let us discuss this last point in more detail. Let Tt denote the computation

6.5 Concept of Computation Graph 107

(a) (b)

Figure 6.1 (a) The Tanner graph of a (2, 4)-regular LDPC code with 6 variable nodes;
(b) The corresponding computation graph of node 1 for the first iteration.

graph of a variable node chosen uniformly at random from the set of variable

nodes of height t in the (dv, dc, n)-regular LDPC ensemble. If the height t is kept

fixed then

lim
n→∞

P (Tt is a tree) = 1. (6.26)

We only give a sketch of the proof. We are given the randomly chosen variable

node and we construct its computation graph of height t by growing out its “tree”

one node at a time, breath first. We use the principle of deferred decisions. This

means that rather than first constructing a particular code, then checking if the

correspoding computation graph is a tree and then averaging over all codes we

perform the averaging over all codes at the same time as we grow the tree, i.e.,

we defer the decision of how edges are connected until we look at a particular

edge and reveal its endpoints. Note that a computation graph of a fixed height

has at most at certain number of nodes and edges in there. At each step when

we reveal how a particular edge is connected there are two possible events. The

newly inspected edge is either connected to a node which is already contained in

the computation graph. In this case we terminate the procedure since we know

that the computation graph is not a tree. Or the edge is connected to a new

node, maintaining the tree structure. Since not yet revealed edges are connected

uniformly at random to any not yet filled slot, the probability of reconnecting

to an already visited node vanishes like 1/n, where n is the blocklength. By

the union bound, and since we only perform a fixed number of steps, it follows

that the probability that the computation graph is indeed a tree behaves like

1−O(1/n), which proves the claim.

108 Coding: Belief Propagation and Density Evolution

6.6 Density Evolution

We will now show how to compute the bit error probability under BP decoding.

Expression (6.24) shows that in principle, given a code C from the ensemble,

and a variable node i selected uniformly at random, we should compute the

expectation of ŝ
BP,(t)
i . According to (6.21) we should determine the probability

distribution of l
(t)
i . A priori the difficulty here is that this depends on messages

that are not independent. But, fortunately the results in sections ?? and 6.5

allow to by-pass this problem at least in the limit where n grows large and t is

fixed (but arbitrarily large).

From the concentration of the error probability (6.25) in the large block-length

limit it suffices to compute the average over the code ensemble of the error

probability,

PBP,b(dv, dc, ε, t) = lim
n→+∞

E[PBP,b(C, ε, t)] (6.27)

Since the computation graph Tt of a random vertex of fixed height t is a tree

with probability 1−O(1/n) we get

PBP,b(dv, dc, ε, t) = lim
n→+∞

E[PBP,b(C, ε, t)|Tt is a tree] (6.28)

Our task is therefore reduced to the computation of the probability distribution

of l
(t)
i on a tree. This problem can handled quite easily, at least in principle,

because the incoming messages to each node of this tree graph are independent.

It is common to refer to the iterative equations governing the probability dis-

tributions on the tree as the Density Evolution (DE) equations. For the BEC

these are a simple set of algebraic (polynomial) equations and we first give their

derivation in this simple case. For general BMS channels these are integral equa-

tions, but as we will see conceptually their derivation is not much more difficult.

DE equations for the BEC

Consider a computation tree Tt with height t. We divide this computation graph

to t + 1 levels, from 0 to t. Level 0 contains the leaf nodes and the 1st level

contains the parent check nodes and the grandparent variable nodes of the leaf

nodes (Fig. 6.2).

Every variable node at the `-th level is the root of a computation tree with

height `. However, its root has degree dv − 1. Consider {0,+1,−1} the outgoing

message emitted by a variable nodes towards its parent check node in the `+1-th

level. It is equal to either 0 (erasure message) with probability x` or a known

value (±1) with probability 1− x`.
Now consider level `+1. Each variable node is connected to dv−1 check nodes

and each check node is connected to dc− 1 variable nodes of `-th level. Consider

{0,+1,−1} the outgoing message emitted by a check node towards its parent

6.6 Density Evolution 109

Level t

Level t− 1

Level t− 2

Level 1

Level 0

. . .

· · ·

...

Figure 6.2 A computation graph of (2, 3)-regular LDPC code with height t. The graph
is split to t+ 1 levels.

variable node in the same level. We call y` the probability that this message is

an erasure.

The outgoing message of a check node is an erasure message, if at least one of

its incoming messages is 0. Since the incoming messages are independent, then

the probability that a check node at level `+ 1 sends an erasure message to its

parent variable node is

y` = 1− (1− x`)dc−1 (6.29)

The outgoing message from a variable node of `+ 1-th level, i.e. x`+1, is erasure

message if its initial message from the channel is erasure message and all of its

children (check nodes) at level ` + 1 also send erasure messages. Moreover the

incoming messages are independent, hence

x`+1 = εydc−1
` (6.30)

These are the two DE equations for the BEC, and of course they can be merged

into a single one

x`+1 = ε(1− (1− x`)dc−1)dv−1 (6.31)

By definition, the outgoing message at level 0 is an erasure with probability

x0 = ε. Therefore, the erasure probability of the root of T which is connected to

dv check nodes of level t is

PBP,b(dv, dc, ε, t) = ε(1− (1− xt−1)dc−1)dv . (6.32)

In section 6.7 we will analyze the DE equation and draw conclusions for the

error probability of the BP decoder.

110 Coding: Belief Propagation and Density Evolution

DE equations for general BMS channels

Luckily it turns out that exactly the same type of analysis works for general

BMS channels. The DE equations for the BEC (6.29), (6.30) are “polynomial

equations” relating probabilities x`, y` of the erasure messages. They also in-

volve the channel erasure probability ε For the general case, the DE equations

are “integral equations” relating two probability distributions for the messages

of type li→a and l̂a→i after a certain number of iterations. Besides they involve

the channel distribution c(h). we will pretend that all distributions have densi-

ties. This is not really true and it is important to take into account probability

distributions which are convex combinations of densities and point masses. How-

ever, practically, this makes no difference in the formalism except for introducing

technicalities that only serve to obscure the picture.

Not very surprisingly, the DE equations will involve two types of “convolution”

operations over probability distributions. The first one is the standard convolu-

tion. Let l1 and l2 be two independent random variables with distributions a1(l)

and a2(l); then their sum l = l1 + l2 is distributed as

(a1 ⊗ a2)(l) =

∫
R2

dl1a(l1)dl2a(l2)δ(l − (l1 + l2)) (6.33)

The second type of convolution is denoted by � and is given by the distribution

of l = atanh(tanh l1 tanh l2),

(a1 � a2)(l) =

∫
R2

dl1a(l1)dl2a(l2)δ(l − atanh(tanh l1 tanh l2)) (6.34)

It is clear that ⊗ convolution is commutative and associative and that the neutral

element is a(l) = δ(l). We leave it as an exercise to the reader to show that � is

also commutative, associative and that the neutral element is a(l) = ∆∞(l) the

unit mass at infinity. However the two operations do not “mix” well together in

the sense that (a1⊗ a2)� a3 6= a1⊗ (a2 � a3). Finally let us point out that if we

are willing to bring all the random variables into a different domain, then again

we can write the � operation as a usual convolution. We will not pursue this

further here. For our purpose it sufficies to know that there are computationally

efficient ways of computing these convolutions.

We are ready to derive the DE equations. Consider again the computation

tree Tt with height t, with the division into t + 1 levels, from 0 to t as before

(Fig. 6.2). Look at level ` + 1. At a variable node, the incoming messages are

independent (real valued) random variables sent by the dv − 1 children check

nodes. Let these messages be l̂1, . . . , l̂dv−1 and their common distribution y`(l̂).

The BP equations tell us that the outgoing message from the variable node to

the check node (both at level `+ 1) is

l = h+ l̂1 + · · ·+ l̂dv−1

Let x`+1(l) denote the probability distribution of the outgoing message. Since the

outgoing random variable is the sum of a fixed number of independent random

6.7 Analysis of DE Equations for the BEC 111

variables, the density of the outgoing random variable is the convolution of the

densities of the incoming random variables, i.e.,

x`+1 = c⊗ y⊗dv−1
` (6.35)

Here we use the notation y⊗dv−1
` for yl ⊗ · · · ⊗ yl convolved dv − 1 times. This

equation is the analog of (6.30). Now we seek an equation for y` in terms of x`. At

check nodes of level `+ 1 the incoming messages are dc− 1 independent random

variables coming from the children variable nodes of level `. Call the random

messages l1, · · · , ldc−1 and denote their probability distribution by x`(l). From

the BP equations the outgoing message from check nodes to the variable node

(both at level `+ 1) is

l̂ = atanh

(
dc−1∏
i=1

tanh li)

)
and we have for the probability densities

y` = x�dc−1
` (6.36)

As above, we use the notation x�dc−1
` for xl � · · · � xl convolved dc − 1 times.

This equation is the analog of (6.29).

Equations (6.35) and (6.36) are the DE equations for general BMS channel.

Combining them into a single equation yields the so-called density evolution

equation

xl+1 = c⊗ (x�dc−1
`)⊗dv−1 (6.37)

We can now compute the bit-wise probability of error of the BP decoder. In

the final step the BP algorithm computes teh loglikehood ratio associated to the

root node as a sum of all messages incoming from dv children check nodes plus

the one coming from the channel

l = h+ l1 + · · · ldv
Since all messages are independent on the computation tree the distribution of

l is equal to c⊗ (yt−1)⊗dv , or

c⊗ (x�dc−1
t−1)⊗dv (6.38)

From (6.24) and (6.21) we see that the errors come from the events sign(tanh l) =

−1, in other words l < 0. Thus

PBP,b(dv, dc, ε, t) =

∫ 0

−∞
dl (c⊗ (x�dc−1

t−1)⊗dv)(l) (6.39)

6.7 Analysis of DE Equations for the BEC

We have seen that the bit probability of error of the BP decoder (6.32) can be

computed from the DE recursions (6.31). We will show here that a threshold

112 Coding: Belief Propagation and Density Evolution

phenomenon appears. Namely there is a noise threshold εBP, called the BP-

threshold, such that for ε < εBP the limit of PBP,b(dv, dc, ε, t) when the number

of iterations t → +∞ vanishes, while for ε > εBP this limit remains strictly

positive.

In order to compute limt→+∞ PBP,b(dv, dc, ε, t) we have to analyze the recur-

sion xt = f(ε, xt−1) where

f(ε, x) = ε(1− (1− x)dc−1)dv−1 (6.40)

and the initial condition is x0 = 1 (or equivalently x0 = ε). We ask whether the

sequence {xt} converges to 0 or not. In case it does, the decoding is successful,

otherwise it is not.

Note that the function f(ε, x) is increasing in ε and x for x, ε ∈ [0, 1]. This is

key to prove the following.

lemma 6.1 Let 2 ≤ dv ≤ dc and 0 ≤ ε ≤ 1. Let x0 = 1 and xt = f(ε, xt−1),

t ≥ 1. Then (a) The sequence {xt} is decreasing in t; (b) If ε ≤ ε′ then xt(ε) ≤
xt(ε

′).

Proof Let us first show thaat the sequence {xt} is decreasing. We use induction.

The first two elements of the sequence are x0 = 1 and x1 = f(ε, x0) = ε,

so x0 ≥ x1. Therefore, for t ≥ 2, we assume xt−1 ≤ xt−2 as the induction

hypothesis. Since f(ε, x) is increasing in x, we obtain f(ε, xt−1) ≤ f(ε, xt−2).

The left hand side is equal to xt, and the right hand side to xt−1, and we deduce

that xt ≤ xt−1. To prove the second claim, we use induction once more. Assume

that ε ≤ ε′. Then x1(ε) = ε ≤ ε′ = x1(ε). The general statement is deduced as

follows:

xt(ε) = f(ε, xt−1(ε)) ≤ f(ε′, xt−1(ε)) ≤ f(ε′, xt−1(ε′)) = xt(ε
′), (6.41)

where the first inequality follows from the fact that f(ε, x) is increasing in ε, and

the second inequality follows from it being increasing in x, together with the

induction hypothesis.

From the first part of the previous lemma, it follows that xt(ε) converges to a

limit in [0, 1], limt→+∞ xt(ε) = x∞(ε). From teh continuity of the function (6.40)

we conclude that the limit of the density eveolution iterations is a solution of

the fixed point equation

x∞(ε) = f(ε, x∞(ε)). (6.42)

From the second part of the lemma, it follows that if xt(ε) → 0 for some ε,

then xt(ε
′)→ 0 for all ε′ < ε. Let x∞(ε) = limt→∞ xt(ε). Then x∞(ε), as well as

the error probability

lim
t→+∞

PBP,b(dv, dc, ε, t) = ε(1− (1− x∞(ε))dv−1)dc , (6.43)

are increasing in ε as shown in Figure 6.3. Hence we can define the quantity

εBP = sup{ε : x∞(ε) = 0}

6.8 Analysis of DE equations for general BMS channels 113

Figure 6.3 Left: Monotonicity of x∞ as a function of ε. For dv ≥ 3, dc > dv, x∞ jumps
at the threshold. For dv = 2, dc > dv x∞ changes continuously at the threshold.
Right:The threshold εBP is the largest channel parameter so that f(ε, x)− x < 0 for
the whole range x ∈ [0, 1].

which we call the BP threshold.

There is a graphical way to characterize this threshold. Note that x∞(ε) is a

solution of the fixed point equation x = f(ε, x). Thus, if f(ε, x) − x < 0 for all

x ∈ [0, ε], then x∞(ε) = 0. For the converse, as soon as there is a fixed point

f(ε, x) = x in the interval]0, ε], we have that x∞ > 0. In fact it is easy to check

that this condition can be further simplified since there never can be a fixed

point in]ε, 1] as f(ε, x) < ε. Therefore, if f(ε, x) − x < 0 for all x ∈ [0, 1], then

x∞ = 0. For the converse, as soon as there is a fixed point f(ε, x) = x in the

interval]0, 1], we have that x∞(ε) > 0. This condition is graphically depicted in

Figure 6.3.

example 20 For the (3, 6)-regular ensemble, we get εBP ≈ 0.4294. Note that

the rate of this ensemble is R = 1 − dv
dc

= 1
2 . Therefore, the fraction 0.4294 has

to be compared to the erasure probability that an optimum code (say, a random

linear code) could tolerate, which is εShannon = 1 − R = 1
2 . We conclude that

already this very simple code, together with this very simple decoding procedure

can decode up to a good fraction of Shannon capacity.

6.8 Analysis of DE equations for general BMS channels

This section is not needed for the main development of these notes and can

be skipped in a first reading.

The elementary analysis for the BEC can be extended to the class of general

symmetric channels. Although the main ideas are the same, the functional nature

114 Coding: Belief Propagation and Density Evolution

of the DE equation (6.37)

xt+1 = c⊗ f(c, xt), f(c, x) = c⊗ (x�dc−1)⊗dv−1 (6.44)

makes the analysis technically more challenging. Here we give a brief version of

the theory, and refer to ?? for a thorough development.

Ordering by degradation of symmetric distributions

The analysis for the BEC rests on the monotonicity in ε and x of the function

f(ε, x). We will need analogous properties for the functional on the right hand

side of the DE recursion (6.37). The key is to introduce a partial order relation

between distributions.

We already noted that the DE equations preserve the symmetry property of the

initial channel distribution. In other words when we initialize the DE recursion

with x0(l) = c(l), which satisfies the symmetry condition c(l) = e−2lc(−l), we

have for all t ≥ 1, xt+1(l) = e−2lxt(−l). For this reason, we may restrict ourselves

to the space of “symmetric distributions” satisfying a(l) = e−2la(−l).
Let Mk(a) =

∫
dla(l)(tanh l)k. It is not difficult to see that the symmetry

condition for a implies∫
dla(l)(tanh l)2k−1 =

∫
dla(l)(tanh l)2k (6.45)

for all integers k ≥ 1. Symmetric distributions can be entirely characterized by

their even moments: if two symmetric distributions a and b have the sam set

of even moments, M2k(a) = M2k(b), then they must be equal. Indeed, by the

symmetry condition their odd moments are also equal, and since all moments are

less than 1, Carleman’s criterion is satisfied; thus one can reconstruct a unique

measure from the set of even moments and a = b.

Let us now define ordering by degradation. We say that a2 is degraded with

respect to a1, and write a2 � a1 if an only if M2k(a2) ≤M2k(a1) for all k ∈ N∗.
The following example gives the intuitive meaning of this concept.

example 21 Consider the likelihood distribution of the BEC channel cε(h) =

εδ(h)+(1−ε)∆∞(h). Note that it is symmetric and that the moments are M2k =

M2k−1 = 1−ε for k ≥ 1. Take two channels cε1 and cε2 with ε2 > ε1. According to

our definition we have cε2 � cε1 because 1− ε2 < 1− ε1; in other words “cepsilon2

is degraded with respect to cε1” means that “cepsilon2
is more noisy than cε1”.

We leave it as an exercise to the reader to show that the same interpretation

applies to our other basic symmteric channels, the BSC and BAWGNC.

As a side remark note that we can associate a “symmetric channel” to any

symmetric distribution a. The idea is to think of the distribution as a the “likeli-

hood distribution” of some channel. Explicitely, The transition probability of the

channel can be explicitely calculated through the identities p(y|+ 1)dy = a(l)dl

and p(y|−1)dy = a(−l)dl where l = 1
2 ln p(y|+1)

p(y|+1) . There is a nice characterization

6.8 Analysis of DE equations for general BMS channels 115

of the relation a2 � a1 in terms of the associated channels p2(y|x) and p1(y|x).

Namely there exists a channel q(y|x) such that p2(z|x) =
∑
y q(z|y)p1(y|x). In

other words the channel associated to a2 is more noisy than the one associated

to a1.

Ordering by degradation is preserved under the two convolutions operations

⊗ and �. More precisely if a1 � a2 and b are symmetric distributions we have:

a2⊗ b � a1⊗ b, b⊗a2 � b⊗a1 and b�a2 � b�a1. The proof of these assertions

is the subject of an exercise.

Entropy distance, entropy functional and moment expansions

For the BEC, besides monotonicity of f(ε, x), an important ingredient was the

continuity of the function with respect to ε and x. Here we introduce a suitable

distance in the space of symmetric distributions that allows to prove analogous

statements. We do not wish to introduce sophisticated topological language here

and we proceed in a pedestrian way that will be sufficient for our purposes.

For any two symmetric distributions a and b define

d(a, b) =
∑
k≥1

|M2k(a)−M2k(b)|
2k(2k − 1)

(6.46)

It is easy to see that this is a well defined distance, i.e. it is symmetric, satisfies

the triangle inequality and vanishes if and only if a = b. We call it the entropy

distance because there is a natural relation with an entropy functional.

This entropy functional is defined as

H[x] =

∫
dl x(l) ln(1 + e−2l) (6.47)

This is precisely the Shannon entropy H(Y |X) corresponding to a symmetric

channel whose likelihood distribution is x(l). Using ln(1 + e−2l) = ln 2− ln(1 +

tanh l), expanding the logarithm in powers of tanhh, and using the equality of

even and odd moments we get the moment expansion

H[x] = ln 2−
+∞∑
k=1

M2k(x)

2k(2k − 1)
(6.48)

We now collect a few useful tricks that will allow to efficiently use these quan-

tities in the analysis of the DE recursion. By linearity of this entropy functional

H[a− b] = −
+∞∑
k=1

M2k(a)−M2k(b)

2k(2k − 1)
(6.49)

In particular when a � b we have M2k(a) < M2k(b) and therefore

d(a, b) = H[a− b], if a � b. (6.50)

116 Coding: Belief Propagation and Density Evolution

The following inequalities are handy; for a � b and any x symmetric

H[x⊗ (a− b)] ≤ H[a− b], H[x� (a− b)] ≤ H[a− b] (6.51)

To prove the second inequality we use the moment expansion and the fact that

moments are multiplicative for the � operation, M2k(a� b) = M2k(a)M2k(b),

H[x� (a− b)] = −
+∞∑
k=1

M2k(x⊗ a)−M2k(x⊗ b)
2k(2k − 1)

=

+∞∑
k=1

M2k(x)
M2k(b)−M2k(a)

2k(2k − 1)

≤
+∞∑
k=1

M2k(b)−M2k(a)

2k(2k − 1)

= H[a− b]

The first inequality is less strightforward because the moments are not muti-

plicative for the usual convolution ⊗. But we can use the duality rule H((a −
b)⊗ (a′ − b′)) = −H((a− b) � (a′ − b′)) (see exercises) as follows

H[x⊗ (a− b)] = −H((x−∆∞)⊗ (a− b)] (6.52)

=

+∞∑
k=1

M2k(∆∞ − x)
M2k(b)−M2k(a)

2k(2k − 1)
(6.53)

=

+∞∑
k=1

(M2k(∆∞)−M2k(x))
M2k(b)−M2k(a)

2k(2k − 1)
(6.54)

≤
+∞∑
k=1

M2k(b)−M2k(a)

2k(2k − 1)
(6.55)

= H[a− b] (6.56)

Analysis of DE recursion and the BP threshold

Let us first prove that the functional f(c, x) on the right hand side of the DE

recursions (6.37), is “increasing” with respect to the distributions c and x. Since

ordering by degradation is preserved by convolution we obviously have f(c2, x) �
f(c1, x) when c2 � c1. Now, notice that if a2 � a1 and b2 � b1 then a2 ⊗ b2 �
a1 ⊗ b2 and a1 ⊗ b2 � a1 ⊗ b1, so also � a2 ⊗ b2 � a1 ⊗ b1. Generalizing, for

ai � bi, i = 1, . . . , n we have a1 ⊗ · · · ⊗ an � b1 ⊗ · · · ⊗ bn. The same statements

are true if we replace ⊗ by �. Thus for x2 � x1 we get x�dc−1
2 � x�dc−1

2 , and

then (x�dc−1
2)⊕dv−1 � (x�dc−1

2)⊕dv−1, and finaly f(c, x2) � f(c, x1).

Consider a family of channels cε parametrized by ε (for example a noise level).

We say that the family of channels is ordered by degradation when cε ≺ c′ε for

ε < ε′. The BEC, BEC or BAWGNC are three such families.

We are now ready to prove the analog of Lemma 6.1

6.8 Analysis of DE equations for general BMS channels 117

lemma 6.2 Let 2 ≤ dv ≤ dc and cε be family of channels ordered by degra-

dation. Let x0 = δ()̇ and xt = f(cε, xt−1), t ≥ 1. Then (a) The sequence of

distributions {xt} is decreasing in t in the sense xt+1 ≺ xt; (b) If cε ≺ cε′ then

xt(cε) ≺ xt(cε′).

Proof We first show the claims by induction. We have x0 = δ()̇ and x1 =

f(c, x0) = c, so x0 � x1. Therefore, for t ≥ 2, we assume xt−1 ≺ xt−2 as the

induction hypothesis. Since f(c, x) is increasing in x, we obtain f(c, xt−1) ≺
f(c, xt−2) and we deduce that xt ≺ xt−1. To prove the second claim assume that

cε ≺ cε′ . Then x1(cε) = cε ≺ cε′ = x1(cε′). The general statement is deduced

similarly to the case of the BEC: xt(cε) = f(cε, xt−1(cε)) ≺ f(cε′ , xt−1(cε)) ≺
f(cε′ , xt−1(cε′)) = xt(cε′).

From statement (a) of the Lemma of the Lemma says that DE iterations give

a ”decreasing” sequence of probability distributions x0 = δ()̇ � x1 = c � x2 �
· · · � xt � This means that for each k ≥ 1 we have an increasing sequence

of moments M2k(x0) = 0 < M2k(x1) = M2k(c) < M2k(x2) < . . .M2k(xt) < . . . ,

and since this sequence is bounded by 1, it converges to a real number in [0, 1].

Let m∞2k be the limits for each k ≥ 1. Since even and odd moments are equal, odd

moments also converge towards the same set of numbers m∞2k−1 = m∞2k. Since

|m∞k |−1/k ≥ 1 Carleman’s criterion, namely that
∑
k ≥ 1|m∞k |−1/k = +∞, is

satisfied thus the set of numbers {m∞k } are the moments of some probability

distribution x∞ with moments M2k−1(x∞) = M2k(x∞) = m∞2k−1 = m∞2k. To

summarize, we have xt → x∞ in the sense d(xt, x∞)→ 0.

lemma 6.3 The limiting distribution x∞ is a solution of the DE fixed point

equation x∞ = f(c, x∞).

Proof In the case of the BEC this statement was quite trivially obtained directly

from the continuity of f(ε, x). For general channels we use the tools introduced

in the previous paragraph. It is sufficient to show d(x∞, f(c, x∞)) = 0 because

then all moments of x∞ and f(c, x∞ are equal and by Carleman’s criterion the

two distributios must be equal. By the triangle inequality for any t,

d(x∞, f(c, x∞)) ≤ d(x∞, xt+1) + d(xt+1, f(c, xt)) + d(f(c, xt), f(c, x∞)) (6.57)

The second term vanishes because xt+1 = f(c, xt). We now argue that the lim-

its of the first and third terms when t → +∞ vanish. By construction of x∞,

limt→+∞M2k(xt) = Mx∞), which implies limt→+∞ d(x∞, xt+1) = 0 by domi-

nated convergence. To compute the limit of the third term we recall that xt � x∞

118 Coding: Belief Propagation and Density Evolution

so

d(f(c, xt), f(c, x∞)) = H(f(c, xt)− f(c, x∞)

= H(c⊗ ((x�dc−1
t)⊗dv−1 − (x�dc−1

∞)⊗dv−1))

≤ H((x�dc−1
t)⊗dv−1 − (x�dc−1

∞)⊗dv−1)

= H((x�dc−1
t − x�dc−1

∞ + x�dc−1
∞)⊗dv−1 − (x�dc−1

∞)⊗dv−1)

=

dv−1∑
p=1

(
dv − 1

p

)
H((x�dc−1

t − x�dc−1
∞)⊗p ⊗ (x�dc−1

∞)⊗dv−1−p)

≤
dv−1∑
p=1

(
dv − 1

p

)
H(x�dc−1

t − x�dc−1
∞)

= (2dv−1 − 1)H(x�dc−1
t − x�dc−1

∞)

Each term of the last sum is estimated thanks to similar tricks,

H(x�dc−1
t − x�dc−1

∞) = H((xt − x∞ + x∞)�dc−1 − x�dc−1
∞)

=

dc−1∑
q=1

(
dc − 1

q

)
H((xt − x∞)�q � x�dc−1−q

∞)

≤ (2dc−1 − 1)H((xt − x∞))

Putting these results together we obtain the simple inequality

d(f(c, xt), f(c, x∞)) ≤ (2dv−1 − 1)(2dc−1 − 1)H((xt − x∞))

= (2dv−1 − 1)(2dc−1 − 1)d(xt, x∞)

which implies (by an argument above) limt→+∞ d(f(c, xt), f(c, x∞)) = 0.

From statement (b) of the lemma, it follows that if xt(cε)→ ∆∞ (in the sense

that d(xt,∆∞)→ 0) for a channel cε, then xt(cε′)→ ∆∞ for a less noisy channel

cε′ ≺ cε. Hence we can define a BP threshold as

εBP = sup{ε : x∞(ε) = ∆∞}

Not surprisingly (with a bit more work) one can show that the DE fixed point

allows to calculate the probability of error

lim
t→+∞

PBP,b(dv, dc, ε, t) =

∫ 0

−∞
dl (cε ⊗ (x�dc−1

∞)dv)(l), (6.58)

For ε < εBP we have x∞ = ∆∞ which yields a vanishing probability of error. It

is also possible to show that above εBP this is an increasing function of ε.

Examples

In your homework you will implement DE for the (3, 6)-ensemble and the AWGNC.

You will then be able to compare your prediction to the predictions which

6.9 Exchange of limits 119

you previously derived by running simulations of the BP algorithm and the

BAWGNC.

If we consider e.g., the BSC, then DE predicts a threshold for the (3, 6)-

ensemble of εBP = 0.084. This means that as long as the channel introduces

fewer than 8.4 percent errors, the BP decoder will with high probability be able

to recover the correct codeword from the received word. Note that for rate one-

half the maximum number of errors which a capacity-achieving code can tolerate

is around 11 percent. So we see that, as for the BEC, the simple (3, 6)-regular

ensemble achieves a good fraction of capacity under BP decoding.

6.9 Exchange of limits

At this point you might be slightly worried. We have defined density evolution

by looking at the erasure fraction which remains after ` iterations when we take

the blocklength to infinity. Subsequently we have analyzed DE by looking what

happens if we take more and more iterations. In short, we have looked at the

limit lim`→∞ limn→∞.

This is certainly a valid limit, but if the implication is sensitive to the order in

which we take the limit then one might worry how well experiments for “prac-

tical length” of lets say thousands of bits to hundreds of thousands of bits and

“practical number of iterations” lets say dozens to hundreds of iterations might

fit the theory. At least for the BEC there is a fairly simple and straightforward

analytic answer – the limit is the same regardless of the order and can also be

taken jointly as long as both quantities tend to infinity!

We will not prove this result here. The key is to consider the converse limit

limn→∞ lim`→∞ and to prove that it gives the same result. Note that due to

the special nature of the BEC, the performance is monotonically decreasing in

the number of iterations (things only can get better if we perform further itera-

tions). From this basic observation we can deduce the following: Let `(n) be any

increasing function so that `(n) tends to infinity if n tends to infinity. Then, for

any channel parameter ε, the error probability under the limit limn→∞ lim`→∞
is no larger than the error probability under the joint limit when ` = `(n), which

in turn is no larger than the error probability under the limit lim`→∞ limn→∞.

If now we can show that the two extreme cases have the same limit, then any

joint limit also has this same limit.

For the BEC the limit limn→∞ lim`→∞ can in fact be analyzed and this is

what was done in [6]. The technique is to use the so-called Wormald method, a

method which we will encounter soon when we will analyze simple algorithms to

solve the K-SAT problem.

For the general case the situation is more complicated. Experiments and “com-

putations” show that also in the general case the limit does not depend on the

order. But in order to show this rigorously one currently has to impose some

further constraints on the ensemble, see ??.

120 Coding: Belief Propagation and Density Evolution

6.10 BP versus MAP thresholds

This is a good point to make a small digression on issues that are treated in

detail in part III. In the language of statistical mechanics the BP threshold

corresponds to a dynamical phase transition in the sense that we have here a

sharp change in behavior of the algorithm. The MAP probability of error also

displays a threshold behavior (in the limit of infinite block length), i.e it vanishes

for ε < εMAP and is strictly positive for ε > εMAP. Clearly we always have εBP <

εrmMAP since the MAP decoder is the one among all decoders that minimizes

the error probability. There is an important conceptual difference between the

two thresholds. The MAP threshold can also be shown to be a singularity of

the (infinite block-length) Shannon conditional entropy limn→+∞
1
nE[H(X|Y)]

(or in view of (??)) of the free energy in thermodynamic limit. This entropy is

a continuous convex function of ε which vanishes for ε ≤ εMAP and is strictly

positive for ε > εMAP. In this sense, this threshold coresponds to a static phase

transition in teh sense introduced in Chapters ?? and ??. We stress here that

the infinite block-length Shannon conditionnal entropy has no singularity at the

BP threshold: dynamical thresholds related to algorithms are not visible on free

energies. Very interestingly, and perhaps surprisingly from the point of view of

coding at least, although the MAP and BP phase transitions are of a different

conceptual nature, they are deeply related. In particular we will see in Part III

that one can also compute the MAP threshold and probability of error from the

DE equations!

Problems

6.1 Belief Propagation for (3, 6) Ensemble and AWGN Channel. In the

first homework you have implemented a program which can generate random

elements from a regular Gallager ensemble. We will now use this, together with

the message-passing algorithm discussed in class, to simulate transmission over

a BAWGN channel.

We will use elements from the (3, 6)-ensemble of length n = 1024. For every

codeword we send we generate a new code. This way we get the so called en-

semble average. As discussed in class last week, when transmitting with a binary

linear code over a symmetric channel, we can in fact assume that the all-zero

(in 0/1 notation) codeword was sent since the error probability is independent

of the transmitted codeword. This simplifies our life since we do not need to im-

plement an encoder. We assume that we send the codeword over a binary-input

additive white Gaussian noise channel. More precisely, the input is ±1 (with

the usual mapping). The channel adds to each component of the codeword an

independent Gaussian random variable with zero mean and variance σ2. At the

receiver implement the message-passing decoder discussed in class. It is typically

easiest to do the computations with likelihoods. Since a random element from

the (3, 6) ensemble typically does not have a tree-like factor graph the scheduling

of the messages is important. To be explicit, assume that we use a parallel sched-

6.10 BP versus MAP thresholds 121

ule. This means, we start by sending all initial messages from variable nodes to

check nodes. We then process these messages and send messages back from check

nodes to all variable nodes. This is one iteration. For each codeword perform 100

iterations and then make the final decision for each bit.

Plot the negative logarithm (base 10) of the resulting bit error probability as a

function of the capacity of the BAWGN channel with variance σ2. This capacity

does not have a closed form but can be computed by means of the numerical

integral

C(σ2) =

∫ 1

−1

σ√
2π(1− y2)

e−
(1−σ2 tanh−1(y))2

2σ2 log2(1 + y)dy.

If the code and the decoder where optimal and the length of the code were infi-

nite, where should you see the phase transition (rapid decay of error probability)?

6.2 Gallager Algorithm A. In class we discussed the BP algorithm which

is the “locally optimal” message-passing algorithm. One of its downsides in a

practical application is that it requires the exchange of real numbers. Hence,

in any implementation messages are quantized to a fixed number of bits. One

way to think of such a quantized algorithm is that the message represents an

“approximation” of the underlying message that BP would have sent.

Assume that we are limited to exchange messages consisting of a single bit.

Recall that for BP a positive message means that our current estimate of the

associated bit is +1, whereas a negative message means that our current estimate

is −1 (the magnitude of the BP message conveys our certainty). So we can think

of a message-passing algorithm which is limited to exchange messages consisting

of a single bit, as exchanging only the sign of their estimate.

The best known such algorithm (and historically also the oldest) is Gallager’s

algorithm A. It has the following message passing rules.

We assume that the codewords and the received word have components in

{0, 1}.
(i) Initialization: In the first iteration send out the received bits along all edges

incident to a variable node.

(ii)Check Node Rule: At a check node send out along edge e the XOR of the

incoming messages (not counting the incoming message along edge e).

(iii)Variable Node Rule: At a variable node. Send out the received value along

edge e unless all incoming messages (not counting the incoming message

on edge e) all agree in their value. Then send this value.

Assume that transmission takes place over the BSC(p) and that we are using

a (3, 6)-regular Gallager ensemble. Write down the density evolution equations

for the Gallager algorithm A.

6.3 Density Evolution via Population Dynamics. In class we have seen

the density evolution (DE) for transmission over the BEC. This was relatively

easy since in this case the “densities” are in fact numbers (erasure probabilities).

122 Coding: Belief Propagation and Density Evolution

For general channels, DE is more involved since it really involves the evolution of

densities. These are the densities of messages which you would see at the various

iterations if you implemented the BP message-passing decoder on an infinite

ensemble for a fixed number of iterations.

An quick and dirty way of implementing DE for general channels is by means of

a population dynamics approach. Here is how this works. Assume that transmis-

sion takes place over a given BMS channel and that we are using the (l, r)-regular

Gallager ensemble. Pick a population size N . The larger N the more accurate

will be your result but the slower it will be.

(i) Pick an initial population, call it V0. This set consists of N iid log-likelihoods

associated to the given BMS channel, assuming that the transmitted bit is

1 (we are using spin notation here). More precisely, each sample is created

in the following way. Sample Y according to p(y | x = 1). Compute the

corresponding log-likelihood value, call it L.

(ii)Starting with ` = 1, where ` denotes the iteration number, compute now the

densities corresponding to the `-th iteration in the following way.

(iii)To compute C` proceed as follows. Create N samples iid in the following way.

For each sample, call it Y , pick r−1 samples from C`−1 with repetitions. Let

these samples be namedX1, . . . , Xr−1. Compute Y = 2 tanh−1(
∏r−1
i=1 tanh(Xi/2)).

Note, these are exactly the message-passing rules at a check node.

(iv)To compute V` proceed as follows. Create N samples iid in the following way.

For each sample, call it Y , pick l − 1 samples from C` with repetitions.

Let these samples be named X1, . . . , Xl−1. Further, pick a sample from

V0, call it C. Compute Y = C +
∑l−1
i=1Xi. Note, these are exactly the

message-passing rules at a variable node.

We think now of each set V` and C` as a sample of the corresponding distribu-

tion. E.g., in order to construct this distribution approximately we might use a

histogram applied to the set. Recall, that we assume here the all-zero codeword

assumption. Hence, in order to see whether this experiments corresponds to a

successful decoding, we need to check whether in V` all samples have positive

sign and magnitude which converges (in `) to infinity.

Implement the population dynamics approach for transmission over the BAWGNC(σ)

channel using the (3, 6)-regular Gallager ensemble. Estimate the threshold using

this method. Plot the threshold on the same plot as the simulation results which

you performed for your last homework. Hopefully this vertical line, indicating

the threshold, is somewhere around where the error probability curves show a

sharp drop-off.

7 Interlude: message passing for the
Sherrington-Kirkpatrick Spin Glass

This Chapter applies message passing methods to the Sherrington-Kirkpatrick

(SK) model of a spin glass (see Section 2.6). The SK model is a very particular

random spin system defined on a complete graph with iid random interaction

strength associated to each edge.

The impatient reader can very well jump ahead directly to the next chapter

on compressed sensing. But there are good reasons for the present interlude.

Certainly, the conceptual and historical role of the SK model in our theoretical

understanding of random spin systems cannot be underestimated. For us, the

message passing analysis of this model will serve as a steping stone towards the

technically involved but related compressed sensing problem. Here we explore

message passing methods within the SK model chapter and then apply what we

have learned to compressive sensing in Chapter 8.

Both applications are similar to coding in their general initial outline. How-

ever there is a fundamental difference: the SK and compressed sensing models

are defined on complete graphs (the graph for compressed sensing is biparttite

complete). This is as far as one can get from locally tree-like graphs, so one

might think that that BP simply should not work very well for such models and

that this should be the end of the story. But in fact, perhaps surprizingly, the

story is much more complicated and interesting. Belief Propagation works well

for compressed sensing and for the SK model in its high temperature phase. For

the low temperature phase we will see in part III that message passing methods

work if they are suitably “upgraded” to a new level of sophistication.

Because of the denseness of the graph, message passing algorithms a priori

involve Θ(n) messages flowing on edges at each iteration step. From the point

of view of complexity this is not very good (recall in coding for sparse graphs

this complexity is Θ(n)). However, as we will see, the denseness of the graph

in fact allows to simplify the BP equations and bring down this complexity to

linear order. In the SK model the simplified equations one ends up with are the

celebrated Thouless-Anderson-Palmer (TAP) equations. In statistical mechanics

these equations were initially derived quite heuristically by correcting the naive

mean field approximation by an Onsager ”reaction term”. Here we will discover

that the Onsager recation term just comes for free in the BP formalism.

The same mechanisms will be encountered again in te framework of compressed

sensing, and this is enough motivation for studying the SK model first. But there

124 Interlude: message passing for the Sherrington-Kirkpatrick Spin Glass

is one more reason. For the SK model the degrees of freedom are binary spins,

and therefore similarly to coding the messages can immediately be parametrized

by real numbers. In compressed sensing the degrees of freedom are signal com-

ponents, i.e. real numbers in general (continuous spins) and the messages are

functions of these real variables. So the practical implementation of BP would

be much too costly (the quantization of messages drastically increases teh com-

plexity). Fortunately, a somewhat technical approximation allows to effectively

reduce them to a set of real numbers.

An analog of density evolution can be derived from the TAP equations; for

historical reasons this goes under the strange name of replica symmetric solution

equations (see the notes). The replica symmetric fixed point equation predicts a

threshold behaviour and is natural to ask whether or not there is a relation with

the exact thermodynamic phase transition. The necessary tools to answer this

difficult question will be developed in part III. Although this is not yet required

for the developments to come in the next chapters, we already give in Section

7.4 the main aspects of the exact solution to the SK model.

7.1 Sherrington-Kirkpatrick model and belief propagation approach

Sherrington-Kirkpatrick model

The Sherrington-Kirkpatrick model of a spin glass was very briefly introduced in

the examples of Section 2.6 and this is the good place to give more details. The

model is defined on a complete graph with n vertices. The degrees of freedom

are binary spins si = ±1, i = 1, . . . , n attached to each vertex. The Hamiltonian

is

H(s) = −
n∑
i 6=j

Jijsisj − h
n∑
i=1

si, (7.1)

where h is a constant magnetic field and Jij are n(n− 1)/2 iid random variables

(the “coupling constants”) associated to the edges of the complete graph. In

popular versions of the model one chooses Jij ∼ N (0, J2/n) or Jij = ±J/
√
n

with iid Bernoulli(1/2) signs; J > 0 a constant.

Why are the coupling constant scaled by 1/
√
n? That this is the right scaling

can be seen by looking at the fluctuations of the Hamiltonian. The mean and

variance of H(s) are respectively equal to −h
∑n
i=1 si and (n− 1)J2/2. Thus for

general spin assignmenets the energy of a general spin assignment has a standard

deviation of O(
√
n) around a mean O(n) and we expect the thermodynamic limit

to make sense and be non-trivial. Later on it will often be useful to explicitely

extract the scaling by setting Jij = J̃ij/
√
n where J̃ij ∼ N (0, J2) or J̃ij = ±J .

The corresponding Gibbs distribution (e−βH(s))/Z is itself random. As is usual

for random Gibbs distributions, there are two levels of randomness: the first one

associated to quenched or frozen variables (here the coupling constants Jij) and

7.1 Sherrington-Kirkpatrick model and belief propagation approach 125

the second one corresponding to the spin assignments distributed according to

the Gibbs distribution. We refer back to Chapter 2 a more extensive discussion

of these two levels of randomness.

One of the major achievements of the theory of random spin system is teh

derivation of an exact formula for the average free energy of the SK model,

namely− limn→+∞ E[lnZ]/n, as well as a proof of the concentration of−(lnZ)/n

as n → ∞. But this is a long story spanning more than 25 years of statistical

mechanics. Let us warn the newcomer that the similarity of (7.1) with the one of

the Curie-Weiss model should not lead to the false impression that the path to

the solution is easy, and embarking into it at the present stage would distract us

too much from our present goal. As explained in the introduction in the present

chapter we concentrate on the message passing approach. A brief comparison of

the findings with the exact solution is given in Section 7.4 and aspects of the

exact solution will be studied in Part III.

Belief propagation equations

We now look at BP equations for the SK model. It will be clear that these

equations are the same for any Ising model with pairwise interactions (as defined

in Sect. 2.1). The specificities due to the SK model will really come in the bext

section.

To proceed systematically with the formalism of 5, we first set up the factor

graph formulation. The vertices i = 1, . . . , n of the initial graph G play the role

of variable nodes. On every edge (i, j) ≡ a we place a factor node with kernel

fa(si, sj) = eβJijsisj . We then attach extra degree-one factor nodes î to each

variable node i. The kernel associated to î is fi(si) = eβhsi .

Further, we let µ̂a→i(si) denote the message which flows from the factor node

a to the variable i. In a similar manner, µi→a(si) is the message flowing from

variable i to factor node a. There is also a “trivial” message µî→i(si) = fi(si) =

eβhsi = flowing from degree-one factor nodes to variable nodes. Since all messages

depend on binary variables si = ±1 we can use the same type of parametrization

used for coding in Chapter 6 and set,

ĥa→i =
1

2β
ln

{
µ̂a→i(+1)

µ̂a→i(−1)

}
, hi→a =

1

2β
ln

{
µi→a(+1)

µi→a(−1)

}
. (7.2)

Up to the factor β−1 these are the usual half-loglikelihood variables associated to

the messages. In the context of spin systems they are also called cavity magnetic

fields. The reason comes from their physical interpretation which will shortly

become clear. This interpretation is also the reason why we prefer here the letter

“h′′ instead of “`′′ used in Chapter [?].

126 Interlude: message passing for the Sherrington-Kirkpatrick Spin Glass

The general BP equations (5.9), (5.10) read

µi→a (si) = ehsi
∏

b∈∂ira
µ̂b→i (si) (7.3)

µ̂a→i (si) =
∑
∼si

eβJijsisj
∏

j∈∂ari
µj→a (sj) (7.4)

An exercise shows that parametrization (7.2) leads to

{
hj→a = hj +

∑
b∈∂j\a ĥb→j ,

ĥa→j = 1
β atanh{tanh(βJij) tanh(βhi→a)}.

(7.5)

Note the similarity with (6.19) in coding theory. Equ. (7.5) reduce to such

“coding-like“ equations by setting β = 1 and letting Jij → +∞ in which case

the factor nodes correspond to degree two parity checks.

There is a special feature of systems with degree two factors that we have not

encounterd yet explicitely. Equs (7.5) can be conveniently reduced to a single

one with messages flowing on the original graph G. To see this note that because

a factor b has degre two, a directed edge b→ j can be identified with a directed

edge i → j on the original graph G where i is the unique vertex in ∂b \ j. In

other words, setting hi→j = ĥb→j , (7.5) become

hi→j =
1

β
atanh

{
(tanh(βJij) tanh(β(hi +

∑
k∈∂i\j

hk→i))
}

(7.6)

This message passing equation does not refer anymore to the factor graph. Mes-

sages flow on teh original graph G (the complete graph in the case of the SK

model).

The BP-marginal, νBP
i (si), at vertex i is determined from its log-likelihood

variable

hi +
∑
a∈∂i

ĥa→i, or equivalently hi +
∑
k∈∂i

hk→i (7.7)

Explicitly, the normalized marginal is

νBP

i (si) =
eβ(hi+

∑
k∈∂i hk→i)si

2 cosh(β(hi +
∑
k∈∂i hk→i))

. (7.8)

The BP estimate for the magnetization, is by definition the average spin com-

puted from the BP-marginal

mBP

i =
∑

si∈{±1}

siν
BP

i (si) = tanh(β(hi +
∑
k∈∂i

hk→i)). (7.9)

We will call mBP
i the BP-magnetization to distinguish it from the (true) thermal

equilibrium magnetization mi = 〈si〉.
Let us pause a second to give a physical interpretation of these formulas. A

single spin s in the presence of a magnetic field h has a Hamiltonian H(s) = −hs

7.2 From belief propagation to Thouless-Anderson-Palmer equations 127

and thus a magnetization tanh(βh) (if you have never checked this simple fact do

it immediately please!). Therefore one interprets hi +
∑
k∈∂i hk→i as an effective

magnetic field felt by spin si. This is often called the local field or also the

mean field. The local field is the sum of the external field hi and a cavity field

hi,cav ≡
∑
k∈∂i hk→i. The later is called cavity field because it is an effective field

produced by the rest of the system in a cavity left out when one removes vertex

i from the graph. Hence the denomination ”cavity fields” for the messages hk→i
(and more generally ĥa→i, hi→a).

Flooding schedule

From the perspective of traditional statistical mechanics one would view the BP

equations as fixed point equations and try to find all solutions. When multiple

solutions arise the important question is: which one to choose? Such issues are

discussed in Part III.

For the moment we are interested in the algorithmic standpoint. Recall from

Chapter 5 when the underlying graph is a tree the initial conditions and iterations

are clearly determined (note that this is also the situation where the BP equations

certainly have a unique solution). But when the graph is not tree-like we have

to specify initial conditions and a schedule to solve the equations iteratively.

Just as in coding we adopt the flooding schedule and the initialization is just

given by the “prior” that we have about the local field. We therefore set

hti→j =
1

β
atanh

{
(tanh(βJij) tanh(β(hi +

∑
k∈∂i\j

ht−1
k→i))

}
, h0

i→j = 0. (7.10)

The BP-estimate of the magnetization at time t is,

mt
i = tanh

{
β(hi +

∑
j∈∂i

htj→i)
}
. (7.11)

What is the complexity of this schedule on a complete graph? The complete

graph has n(n1)/2 edges so at each iteration step of the flooding schedule we

exchange a quadratic number of messages, and the complexity of message passing

is Θ(n2) times the number of iterations.

7.2 From belief propagation to Thouless-Anderson-Palmer
equations

As just noted above because the graph is complete, a single iteration of BP

has quadratic complexity which is costly. Fortunately one can simplify the BP

equa- tions and bring the complexity down to order Θ(n). The key to the sim-

plification is that the coupling constants are weak. Indeed, recall that we have

Jij = J̃ij/sqrtn (with fluctuations of J̃ij = O(1)). So we assume in general that

128 Interlude: message passing for the Sherrington-Kirkpatrick Spin Glass

the coupling constants Jij are small when n → +∞, and perform an expan-

sion of the message passing equations. This has be done with care however and

typically one must go beyond the lowest order term in order to obtain correct

results. Interestingly, these simplififications of message-passing equations lead to

the Thouless-Anderson-Palmer (TAP) equations. The TAP equations (in their

iter- ative form) have a complexity of Θ(n) at each iteration. Thus they provide

a linear complexity algorithm to compute an algorithmic “TAP-estimate” of the

magnetization.

Interestingly, these simplififications of message-passing equations lead to the

Thouless-Anderson-Palmer (TAP) equations. The TAP equations (in their iter-

ative form) have a complexity of Θ(n) at each iteration. Thus they provide a

linear complexity algorithm to compute an algorithmic “TAP-estimate” of the

magnetization.

Consider the BP iteration (7.10) at step t. Using the local field

ηi ≡ hi +
∑
k∈∂i

ĥk→i (7.12)

we can rewrite (7.10) (see also (??)) as

hti→j =
1

β
atanh

{
tanh(βJij) tanh(βηt−1

i − βht−1
j→i)

}
.

Now, since Jij is of order 1/
√
n we Taylor expand both tanh and atanh This

yields

hti→j = Jij tanh(βηt−1
i − βht−1

j→i) +O(β2J3
ij). (7.13)

This equation shows that each cavity field is O(Jij). On the other hand ηt−1
i

is the sum of hi and n − 1 such cavity fields. Therefore we expect ht−1
j→i to be

much smaller than ηt−1
i and we further expand the tanh in (7.13) in powers of

the cavity field,

hti→j = Jij tanh(βηt−1
i)− βJijht−1

j→i(1− (tanh(βηt−1
i))2) +O(β2J3

ij). (7.14)

Recalling (7.11) we can rewrite the cavity field as,

hti→j = Jijm
t−1
i − βJijht−1

j→i
(
1− (mt−1

i)2
)

+O(β2J3
ij) (7.15)

Now we seek to express ht−1
j→i on the right hand side of this equation, in terms of

the magnetization. This will allow to approximate cavity fields entirely in terms

of the magnetization. We note that if we interchange the roles of i and j in (7.15)

(note Jij = Jji) and use ĥt−1
j→i = O(J), we get

htj→i = Jijm
t−1
j +O(βJ2

ij). (7.16)

Replacing (7.16) in (7.15) we obtain

hti→j = Jijm
t−1
i − βJ2

ijm
t−1
j

(
1− (mt−1

i)2
)

+O(β2J3
ij). (7.17)

7.2 From belief propagation to Thouless-Anderson-Palmer equations 129

Replacing 7.17 in (7.11) for mt
j we arrive at

mt
j = tanh

{
β

(
hj +

∑
i∈∂j

Jijm
t−1
i − βmt−1

j

∑
i∈∂j

J2
ij

(
1− (mt−1

i)2
))}

+O(β3J3
ij).

(7.18)

Finally, dropping teh error terms O(β3J3
ij) we arrive at teh TAP equations.

It hould be said that in the statistical mechanics literature the TAP equations

correspond to the fixed point form, and their original derivation is through a

heuristic “mean field” argument (see the notes for references and history).

We note that dropping O(β3J3
ij) terms may not be harmless because at each

iteration these errors accumulate. Some thought shows that the accumulated

error is O(tβ3/n3/2), so at least for t << n3/2/β3/2 the error remains small.

Discussion of TAP equations for the SK model

With the scaling of the coupling constant made explicit the TAP equations are

mt
j = tanh

{
β

(
hj +

1√
n

∑
i∈∂j

J̃ijm
t−1
i − β

n
mt−1
j

∑
i∈∂j

J̃2
ij

(
1− (mt−1

i)2
))}

+O(β3J3
ij).

(7.19)

nly estimates of the magnetization are involved and there no messages flowing

on edges anymore. At each iteration step magnetisation estimates at vertices of

the graph are updated and there are n such updates, so the complexity is now

Θ(n) times the number of iterations.

The local field in (7.19) is given by the external field hi plus a cavity field (an

approximation of the original cavity field discussed in Sect. 7.1)

hti,cav =
1√
n

n∑
i=1

J̃ijm
t−1
i − β

n
mt−1
j

n∑
i=1

J̃2
ij

(
1− (mt−1

i)2 (7.20)

This is the field produced by the rest of the spins when node i is removed from

the graph. Each contribution has an interpretation. The first term is the usual

“Curie-Weiss mean field” already discussed in Chapter 4 (when Jij = J/n in

the CW model). This term is the average field exerted by the system on spin

i, but this average “overcounts” the influence of i itself on the system. This

“back reaction” should be subtracted, and this is exactly what the second term

in (7.20) does. This term is called an Onsager reaction term.

The two sums in (7.20) have the same order of magnitude. This also explains

why it was needed to Taylor expand to higher orders when we derived the TAP

equations from BP. A naive (but wrong) justification of this statement would run

as follows. Assuming that the terms in the sums of (7.20) are independent or

even weakly correlated, the central limit theorem and the law of large numbers

implie that both sums are of order one with respect to n. This argument is much

too naive but still reasonably suggests that the CW mean field and Onsager

reaction term both contribute equally to the total cavity field.

130 Interlude: message passing for the Sherrington-Kirkpatrick Spin Glass

The natural initial condition for (7.19) follows from the one in (7.10), which

means m0
i = tanh(βhi). Obviously as we iterate, the magnetizations mt1 will

acquire a complicated dependence on J̃ij ’s. Thus it is far from true that the

terms in the sums (7.20) are independent or even weakly correlated. It turns

out that the central limit theorem never applies to the first sum which therefore

does not tend to a Gaussian r.v as n → +∞. The law of large number applies

to the second sum only in a “high temperature” regime. In this regime the sum

concentrates on its average. This is the regime that we will study discuss in

the next section. There is a “low temperature” regime where the sum does not

concentrate which we briefly discuss in Section 7.4. The reader may already

appreciate how intricate and subtle the SK model is.

It is worth to point out that the TAP equations take their simplest form when

J̃ij ∼ ±J with Ber(1/2) signs. indeed then J̃2
ij = J2, and setting

qt−1 ≡
1

n

n∑
i=1

(mt−1
i)2 (7.21)

we get

mt
j = tanh

{
β

(
hj +

1√
n

n∑
i=1

J̃ijm
t−1
i − βJ2mt−1

j (1− qt−1)

)}
+O(β3J3

ij).

(7.22)

We point out that the parameter qt which appears here is an algorithmic ver-

sion of of the Edwards-Anderson paremeter qEA = 1
n

∑n
i=1〈si〉2 which plays an

important role in the exact solution of the model.

A parenthesis: the CW model revisited

Recall that the exact solution of the CW model in Chapter 4 led us to the fixed

point equation

m = tanh(β(h+ Jm)) (7.23)

Here the local field is just the sum of the external field h and the CW mean field

Jm.

Why is it that there is no Onsager reaction term is not needed here? One

can repeat the same theory developed in this chapter for (non random) coupling

constants Jij = J/n. Starting from BP equations and then approximating them

to leading orders in coupling constants we obviously find again (7.18). At this

point, setting Jij = J/n one easily sees that the cavity field becomes O(1/n) and

only the usual CW mean field remains. We are lead to the iterative equations

mt
j = tanh(β(h+

J

n

n∑
i=1

mt−1
i)) (7.24)

7.3 Evolution equations for TAP iterations - replica symmetric equation 131

Since the right hand side does not depend on j we can seek a uniform solution

mt
j = mt. Equation (7.23) becomes

mt = tanh(β(h+ Jmt−1)). (7.25)

To summarize, for the CW model the TAP equation reduces to the CW equation

because teh Onsager term is negligible.

This remark teaches us an important lesson. Recall that the exact solution for

the magnetization is found by selecting the fixed point of (7.23) which minimises

the free energy. The BP approach leads to the iterative form (7.25) which we

should solve with the initial condition m0 = 0. Whether the estimate mt con-

verges to the (true) magnetisation depends on the region of the phase diagram

in the (β, h) plane. Such intimate connections between algorithmic and thermo-

dynamic solutions will be discussed in more depth in Part III, so we close this

parenthesis here.

7.3 Evolution equations for TAP iterations - replica symmetric
equation

The goal of density evolution in coding and state evolution in compressive sensing

was to write down an iterative equation that tracks the average behavior of the

algorithm. This can also be done for the TAP iterations.

We consider the Gaussian model, but the results are independent of the precise

distribution of J̃ij for a wide class of distibutions. Recall expression (7.11) for

the BP-magnetization,

mt
i = tanh

{
β(h+

1√
n

∑
j∈∂i

f tj→i)
}

(7.26)

The TAP approximation consists in replacing the exact cavity field f
(t)
i→j by (note

we have set for convenience hj→i = fj→i/
√
n)

f tj→i ≈ J̃ijmt−1
j − β√

n
mt−1
i J̃2

ij(1− (mt−1
j)2) (7.27)

We will shorlty show that these random variables have mean O(1/
√
n) and vari-

ance E[(mt−1
i)2] +O(n−1/2). Assuming that the cavity fields incoming in node i

- that is fj→i, j = 1, . . . , n - are sufficiently weakly correlated, we conclude that

when n→ +∞
1√
n

∑
j∈∂i

f tj→i ∼ N (0, qt−1) (7.28)

Numerical computations (see exercises) show that this is indeed true at least in a

portion of the plane (β, h). This is the “high temperature regime”. As explained

in the previous section this is not true when the Onsager term is dropped and the

132 Interlude: message passing for the Sherrington-Kirkpatrick Spin Glass

Curie-Weiss contribution alone is retained; moreover there is a “low temperature”

regime where the assumption of weak correlation of cavity fields fails alltogether.

Let us discuss one heuristic argument to gain some further intuition. Consider

an SK model on a random regular graph of vertex degree d (instead of the

complete graph). This is a locally tree-like graph so it is quite natural to consider

the BP algorithm in exactly the same way as we did in chapter 6. For a fixed

number of iterations t and n large enough the neiborhood of a vertex is a tree

with probability 1 − O(dt/n), so that the messages ĥ
(t)
i→j are independent. Now

consider the limit d→ +∞. In this limit the meaningful scaling is Jij = J̃ij/
√
d

and one is led to consider a sum d cavity fields 1√
d

∑
j∈∂i f

t
j→i) which might

behave as a Gaussian. This argument requires (at least) to interchange the limits

d→ +∞ and n→ +∞ which may not always be legitimate.

Before proceeding further let us briefly indicate how the mean and variance

are computed. For the Gaussian model the main trick is to use the integration

by parts formula ∫
dxxf(x)

e−
x2

2

√
2π

=

∫
dx f ′(x)

e−
x2

2

√
2π

(7.29)

We will see that this will again play an important role in Chapter 13 where

rigorous techniques will be developped. For the Bernoulli or other distributions

this simple formula cannot be used directly which complicates matters. For the

mean, integrating by parts with respect to J̃ij

E[J̃ijm
t−1
j] = E[

∂mt−1
j

∂J̃ij
]

= E[(1− (mt
j)

2)
∂βhti→j

∂J̃ij
]

= E[(1− (mt
j)

2)
(β√

n
mt−1
i +

2β

n
J̃ijm

t−1
j (1− (mt−1

i)2)
)
] (7.30)

which leads us to E[f tj→i] = O(1/
√
n). For the variance a similar calculation

shows

Var[f tj→i] = E[J̃2
ij(m

t−1
j)2] +O(

1√
n

)

= E[
∂

∂Jij
(J̃ij(m

t−1
j)2)] +O(

1√
n

)

= E[(mt−1
j)2] + E[J̃ij

∂(mt−1
j)2

∂Jij
] +O(

1√
n

)

= E[(mt−1
j)2] +

2√
n
E[J̃ijm

t−1
j (1− (mt−1

j)2)
∂(f t−1

i→j

∂Jij
] +O(

1√
n

)

= E[(mt−1
j)2] (7.31)

We are now in a position to write down the evolution equations for the av-

erage behavior of the TAP iterations. These are the so-called replica symmetric

7.4 Exact solution of the SK model 133

equations. Set

mt = E[mt
i], and qt = E[(mt

i)
2] (7.32)

Thanks to (7.28) we can take the expectation of Equ. (7.26) and of its square

also. This leads tomt =
∫ +∞
−∞ du e−

u2

2√
2π

tanh
{
β(h+ u

√
qt−1)

}
,

qt =
∫ +∞
−∞ du e−

u2

2√
2π

tanh2
{
β(h+ u

√
qt−1)

}
.

(7.33)

Since the initial condition for the TAP iterations is m0
i = 0 within the present

approach we take m0 = q0 = 0.

The fixed point form of (7.33) are called the replica symmetric equations. The

name comes from the original method used to derive them (see the notes). The

solutions of the fixed point equations display an interesting threshold behaviour

when h = 0. Then The fixed point version of (7.33) becomes (we use that tanh

is an odd function)

m = 0, q =

∫ +∞

−∞
du

e−
u2

2

√
2π

tanh2(βu
√
q). (7.34)

There exists a trivial fixed point q = 0 for all β, and for β < 1 it is unique and

stable. For β > 1 the trivial fixed point is unstable, and a second stable non

trivial fixed point q 6= 0 appears. This is similar to the situation we encountered

with the CW fixed point equation and therefore suggests that a phase transition

occurs in this model at (β = 1, h = 0). This conclusion is only the tip of the

iceberg and the phase transition in the SK model turns out to be a very subtle

one. In the next section we briefly review the exact solution and we will come

back to the subject in part III.

7.4 Exact solution of the SK model

In Chapter 4 we solved exactly the CW model and learned that the free energy

could be expressed in variational form (4.12). This is also true for the SK model,

however the variational expression and its derivation are considerably more sub-

tle. The correct solution was first provided by Parisi using a purely algebraic

method called the replica method. Since then, the solution has been rederived in

a more probabilistic way which goes under the name cavity method. The cavity

method which will be discussed in Part III can be seen as a message passing

method that improves upon BP by taking into account long-range correlations

that BP neglects.

Here we briefly review the Parisi formula for exact free energy− limn→+∞
1
nE[lnZ].

This formula was proved much later by Talagrand. From this formula one can

infer the existence of a high temperature phase were the RS fixed point equations

are exact, and a low temperature phase where they are not. The phase transition

134 Interlude: message passing for the Sherrington-Kirkpatrick Spin Glass

line separating these two phases in the (β, h) plane is called the Almeida-Thouless

(AT) line.

Let x : q ∈ [0, 1] → x(q) ∈ [0, 1] be a non-decreasing cumulative distribution

function. Call X the space of such cumulative distribution functions. Define the

free energy functional

fP [x] ≡ − ln 2− f(0, h;x)− β2

2

∫ 1

0

qx(q)dq (7.35)

where f(q, h;x) satisfies the partial differential equation

∂f

∂q
+

1

2

∂2f

∂h2
+
x(q)

2
(
∂2f

∂h2
)2 = 0 (7.36)

with “final” condition f(1, h;x) = ln cosh(βh). for teh SK model we have the

exact formula

− lim
n→+∞

1

n
E[lnZ] = sup

x∈X
fP [x] (7.37)

To gain some insight into these rather complicated formulas let us consider a

lower bound to (7.37) obtained by taking

x(q) =

{
0, q ∈ [0, q̄],

1, q ∈ (q̄, 1]
(7.38)

This is the cumulative distribution of P (q) = δ(q− q̄). The free energy functional

fP(x) reduces to the so-called replica symmetric free energy function,

fRS(q̄) ≡ − ln 2− β2

4
(1− q)2 −

∫ +∞

−∞
du,

e−
u2

2

√
2π

ln cosh(βh+ βu
√
q), (7.39)

and we have the lower bound

− lim
n→+∞

1

n
E[lnZ] ≤ sup

q̄∈[0,1]

fRS(q̄). (7.40)

The r.h.s is called the RS free energy and we will shortly explain that it is equal

to the true free energy in the high temperature phase.

If we want to solve the variational problem on the right hand side of (7.40)

we set f ′RS(q̄) = 0 which can easily seen to be equivalent to one of the RS fixed

point equation

q̄ =

∫ +∞

−∞
du

e−
u2

2

√
2π

tanh2
{
β(h+ u

√
q̄)
}

(7.41)

So the RS free energy is equal to fRS(q∗) where the maximizer q∗ is a solution

of the fixed point equation. The RS equation for the magnetization is obtained

by differentiating the RS free energy with respect to the magnetic field (recall

7.5 Notes 135

Chapter 2, Section 2.4)

dfRS(q∗)

dh
=
∂fRS(q∗)

∂h
+
∂fRS

dq
|q∗
dq∗
dh

=
∂fRS(q∗)

∂h

=

∫ +∞

−∞
du

e−
u2

2

√
2π

tanh
{
β(h+ u

√
qt−1)

}
(7.42)

An important breakthrough towards the complete proof of (7.37) was the

derivation of the lower bound (7.40) by Guerra and Toninelli. This lower bound

(7.40) is tight, i.e. the RS solution exact, above the AT line given by the equation

β−2 =

∫ +∞

−∞
du,

e−
u2

2

√
2π

(1− tanh2(βh+ βu
√
q∗))

2 (7.43)

That the RS solution cannot be exact below the AT line can be seen by computing

the entropy and noticing that it becomes negative below this line. Recall from

Chapter 2 Equ. (2.18), that sRS = ∂fRS/∂(1/β). A calculation (see exercises)

then shows that the condition sRS > 0 is precisely equivalent to the region above

the AT line.

The AT line separates a high temperature phase where the replica symmetric

solution is exact, from the low temperature phase where this is not so. Below the

AT line the free energy functional (7.35) has a supremum for non-trivial cdf’s

and P (q) 6= δ(q− q̄). In particular the fixed point equation becomes an equation

for a non trivial distribution dx(q)
dq = P (q) = 6= δ(q − q̄). As will be discussed

in Part III this is related to the lack of concentration of the EA parameter

qEA = 1
n

∑n
i=1〈si〉2 and the fact that correct description of the Gibbs state 〈− 〉

is in terms of a convex superposition of exponentially many extremal states.

Although the Parisi formula for the free energy has the status of a mathematical

theorem, the underlying physical nature of the low temperature phase and its

precise mathematical description still offer many challenges.

7.5 Notes

In 1936 Onsager was concerned with the dielectric properties of molecular liq-

uids where the so-called ”Onsager reaction terms” are important and correct

the earlier 1912 theory of Debye. The term “cavity field” was also coined by

him. Bethe had similiar insights for magnetism. In 1977 Thouless, Anderson and

Palmer (TAP) where the first to point out the importance of the Onsager term

in random spin systems. The TAP paper includes a non-algorithmic derivation

of the Onsager term through a diagrammatic expansion in the high temperature

regime. The SK model has played a very important role in the development of

methods and concepts of spin glass theory. These were developed through the

70’s and 80’s by many physicists and it remained an open mathematical problem

136 Interlude: message passing for the Sherrington-Kirkpatrick Spin Glass

for more than 25 years to prove their validity. This was accomplished a decade

ago in break through works of Guerra and Talagrand.

Problems

7.1 Belief propagation equations for pairwise spin systems. Consider a

spin system on a general graph G = (V,E) with Hamiltonian

(s) = −
∑

(i,j)∈E

Jijsisj

Derive BP equations as in (7.5) for this system.

7.2 Distribution of cavity fields in the TAP theory. The goal of this

exercise is to numerically justify some of the heuristic arguments of this chapter.

When we discuss state evolution for compressive sensing we will encounter similar

arguments and hopefully these will seem familiar. Consider the SK model with

i.i.d Bernoulli(1/2) coupling constants J̃ij = ±1 or J̃ij Gaussian with zero mean

and unit variance. The TAP approximation to the BP equations reads

m
(t)
j = tanh

{
β(h+

∑
i6=j

ĥ
(t)
i→j)

}
where the update of the cavity fields is

ĥ
(t)
i→j =

1√
n
J̃ijm

(t−1)
i − β

n
m

(t−1)
j (1− (m

(t−1)
i)2)

and the initialization ĥ
(0)
i→j = 0.

Take a number N = 50 of realizations (coupling constants) of the system

of size n = 500 or 1000 and an iteration number say t = 10. Try values of

(h, T = β−1) in the high temperature regime. The following should be suitable

(h = 0.5, T = 1.2) and (h = 1, T = 0.8).

(i) Plot the histogram of the total cavity field

ĥ(t)
cav =

∑
i 6=j

ĥ
(t)
i→j .

This field is equal to a ”Curie-Weiss” field to which the ”Onsager reaction

term” is subtracted. Plot the histogram of the total Curie-Weiss contribu-

tion

h
(t)
CW =

∑
i 6=j

1√
n
J̃ijm

(t−1)
i .

(ii)Check that the Edwards-Anderson parameter

q(t) =
1

n

n∑
i=1

(m
(t)
i)2.

is concentrated on its empirical mean over the N realizations.

7.5 Notes 137

(iii)Compare both histograms with the Gaussian distribution of zero mean and

variance equal to the Edwards-Anderson parameter. You should observe

that the histogram of the cavity field agrees with this Gaussian.

7.3 Replica symmetric equations. Consider the RS equations fixed point equa-

tions for m and q. Show that for h = 0 besides the trivial fixed point m = 0, q = 0

for β > 1 there is another non-trivial fixed point m = 0, q 6= 0 that is stable.

Furthermore show that for h 6= 0 there is a unique fixed point for all β.

7.4 Almeida-Thouless line. Compute the entropy from the RS free energy

fRS(q∗) and derive the formula giving the AT line.

8 Compressive Sensing: Approximate
Message Passing and State
Evolution

Recall that a meaningful estimator for the compressive sensing problem is the

Least Absolute Shrinkage Selection Operator (LASSO), given by

x̂1(y, λ) = argminx

{1

2
‖y −Ax‖22 + λ‖x‖1

}
. (8.1)

where the parameter λ has to be adjusted to the best possible value that mini-

mizes the “risk”.

The use of this estimator can be justified from several points of views as

discussed in Chapters 1 and 3. For example one can settle for this estimator

because, in the noiseless limit and for a certain range of parameters, the `1
and `0 minimization problems are equivalent. Another point of view is that the

“zero temperature” version of the MMSE estimator for a Laplacian prior yields

the LASSO estimator, and the Laplacian prior is a simple and tractable model

for sparse signals with unknown distribution. A “justification” for using this

estimator can also be given in hindsight. We will see that this estimator works

well in a fairly general setting. Moreover, together with the right structure for

the measuring matrix we can even, in some cases, get optimal performance in

terms of its asymptotic (in the size) behavior if we look at the required number

of measurements compared to the sparsity of the signal. However it is a long

road until we can arrive at this conclusion in Chapter 14, so for the moment we

will not worry about this, and we simply want to implement the LASSO in an

algorithmically efficient manner.

The basic idea to implement LASSO is straightforward. We first set up a factor

graph corresponding to (8.1). Given the factor graph we can mechanically write

down the message-passing rules following the general framework about factor

graphs set out in Chapter 5, no thinking required. Since the LASSO asks for the

best global minimizer x̂(y, λ) our starting point is the min-sum algorithm. This

is to some degree a matter of convenience and alternative derivations exist which

start with the BP algorithm. Quite surprisingly this works although the graph

is dense and not at all sparse.

In principle this program only takes a few lines and we could stop at this point.

But there are a few issues. We will see that for the straightforward message-

passing algorithm the number of messages which need to exchanged in each

iteration is of quadratic oder in the graph size. This is true since the graph is

dense. The second problem is that the messages are functions and not numbers as

8.1 LASSO for the Scalar Case 139

was the case for coding. This increases the complexity even further. Fortunately,

as we will see, one can approximate the original message-passing algorithm to

(i) first simplify the messages to numbers, and (ii) bring down the number of

messages which need to be exchanged in each iteration to linear order. The final

algorithm we derive is called AMP, where AMP stand for approximate message-

passing.

Besides the pratical motivation to reduce complexity there is also another,

perhaps more important, reason for going through these simplifications. The

performance of the resulting AMP algorithm can be (rigorously) analyzed in

detail. This would be out of the question for the original min-sum algorithm.

Finally, even though the AMP algorithm is an approximation, it works very

well, and moreover its performance can be caracterised precisely. In the context

of coding we were able to assess the performance of the BP algorithm thanks

to DE. Recall that in the large-size limit the state of the BP algorithm is given

in terms of a distribution (density). DE then allows us to track this state as a

function of the iteration. It is possible to develop a similar formalism for the

AMP algorithm. In the context of compressive sensing, this formalism is called

state evolution (SE). As we will see, one can derive recursive equations for the

MSE whose average behavior is tracked by SE.

An important application of SE is a principled way to compute an optimal

threshold parameter λ. We will aslo discuss a related application which consists

of determining an “algorithmic phase transition line“ in the phase diagram of

compressive sensing. Remarquably this line is independent of the noise level and

determines the region of equivalence of the `1 and `0 problems. It was first derived

by Donoho and Tanner by completely independent means.

8.1 LASSO for the Scalar Case

We begin with the analysis of a toy problem, namely the estimation of a scalar

signal corrupted by noise. This turns out to be not only an interesting non-trivial

problem, but also an important ingredient for the solution of the estimation of

vector signals. Let then

y = x+ z,

where z ∼ N (0, σ2). We asssume that the scalar signal x is “sparse” in the sense

that it is a random variable with mass of weight 1 − ε at x = 0 and mass of

weight ε distributed (in an unknown way) for x 6= 0. More formally, this is the

class Fε of distributions of the form

p0(x) = (1− ε)δ(x) + εφ0(x).

140 Compressive Sensing: Approximate Message Passing and State Evolution

where φ0(x) is non-negative continuous distribution function normalized to one.

The LASSO estimator

x̂1(y, λ) = argminx

{1

2
(y − x)2 + λ|x|

}
.

corresponds to the Hamiltonian

H(x|y) =
1

2
(y − x)2 + λ|x|.

Let us check where this Hamiltonian takes on its minimum. For x > 0 its

derivative with respect to x equals −(y − x) + λ. Setting this derivative to 0 we

get the solution x̂ = y − λ, which is valid if y > λ. On the other hand for x < 0

the derivative is −(y − x)− λ. Setting this derivative to 0 we get the condition

x̂ = y+λ, which is valid if y < −λ. For the remaining case −λ < y < λ one checks

the inequality 1
2y

2 ≤ 1
2 (y−x)2 +λ|x| which means that x̂ = 0. Summarizing, we

get the estimator

x̂1(y, λ) = η(y ; λ) ≡

y − λ, if y > λ,

0, if −λ < y < λ,

y + λ, if y < −λ.

This is called the “soft thresholding estimator” and η(y ; λ) is called the “soft

thresholding function”. The corresponding graph is shown in Figure 8.1.

−λ
λ

y − λ

y + λ

y

Figure 8.1 Graph of the soft-threshold function η(y ; λ).

In the above estimator we need to choose the threshold λ. How shall we choose

this value? One possible criterion is to solve the following minimax problem:

“choose the best λ for the worst prior p0(x).” In mathematical terms we compute

the minimax-MSE

inf
λ

sup
p0(·)∈Fε

E[|x̂1(y, λ)− x|2]. (8.2)

Writing it explicitly and making teh change of variables y → x+ z teh minimax-

MSE equals

inf
λ

sup
p0(·)∈Fε

∫
dxdz p0(x)

1√
2πσ2

e−
1

2σ2 z
2

[η(x+ z , λ)− x]2. (8.3)

8.1 LASSO for the Scalar Case 141

It is natural to set λ = ασ and to determine α instead of λ. Mathematically this

is of course equivalent, but the interpretation is that it is natural to choose the

threshold on the scale of the noise. Performing the change of variables x→ σx,

z → σz, and noting that

σp0(σx) = (1− ε)δ(x) + εφ
(σ)
0 (x), φ

(σ)
0 = σφ0(σx)

is a normalized distribution belonging to Fε (in other words the ensemble Fε is

scale invariant) we see that (8.3) equals

σ2 inf
α≥0

sup
p0∈Fε

∫
dxp0(x)

∫
dz
e−

z2

2

√
2π

[η(x+ z ; α)− x]2 (8.4)

This shows that the solution of the minimax problem is essentially independent

of the noise level. The only thing that really depends on the noise level is the

overall scale of the minimax-MSE. It should be clear that this is so because

since Fε is scale invariant, σ2 is the only scale or “dimensionful quantity” in the

problem, so dimensional analysis tells us that the minimax-MSE is proportional

to σ2. This is generally not true for the usual MMSE estimator used when the

prior is known and introduces another scale besides σ2 in the problem.

It turns out that one can compute the worst case distribution and best possible

α exactly. Let us set

Mscalar(ε, α, p0) ≡
∫
dxp0(x)

∫
dz
e−

z2

2

√
2π

[η(x+ z ; α)− x]2 (8.5)

and

Mscalar(ε, α) ≡ sup
p0∈Fε

Mscalar(ε, α, p0), Mscalar(ε) ≡ infαMscalar(ε, α) (8.6)

For fixed α the worst case distribution turns out to be (Donoho and Johnson

1994/ make an exercise)

p0,worst(x) = (1− ε)δ(x) +
ε

2
δ+∞(x) +

ε

2
δ−∞(x).

Using this expression one easily deduces that

Mscalar(ε, α) = ε(1 + α2) + (1− ε)
[
2(1 + α2)Φ(−α)− 2α

e−
α2

2

√
2π

]
, (8.7)

where Φ(α) =
∫ α
−∞

e−
u2

2√
2π
du the cdf of a standardized Gaussian. To find the best

possible α we now minimize (8.7) over α. Setting its derivative to zero we obtain

ε =
2
(
e−

α2

2√
2π
− αΦ(−α)

)
α+ 2

(
e−

α2
2√

2π
− αΦ(−α)

) (8.8)

The right hand side is a monotone decreasing function of α, thus given ε there

142 Compressive Sensing: Approximate Message Passing and State Evolution

exist a unique optimal αbest(ε) found by inverting (8.8). Finally, the minimax-

MSE for the scalar problem is

Mscalar(ε) = Mscalar(ε, αbest(ε)). (8.9)

8.2 The vector case: preliminaries

From the point of view of statistical physics (8.1) is equivalent to minimizing the

Hamiltonian (or cost function)

H(x|y,A) =

m∑
a=1

1

2
(ya − (Ax)a)2 + λ

n∑
i=1

|xi| (8.10)

We explained in Chapter 3 that this cost function can be interpreted as a spin-

glass Hamiltonian. The matrix A and the observation y are random, but once we

have a realization they are considered fixed. These are the quenched variables.

The degrees of freedom reside in the signal components xi. These are “continuous

spins” since xi ∈ R rather than the usual binary variable si ∈ {±1}.
In the formulation above we are looking for the global minimum of the Hamil-

tonian. For the scalar case this could be done analytically, but now in the vector

case this is not possible and we have to settle for an algorithmic solution. Accord-

ing to the factor graph framework developed in Chapter ?? we use the min-sum

algorithm. The underlying factor graph is the complete bipartite graph with vari-

able nodes corresponding to the signal components xi, and two types of factor

nodes corresponding to the factors

1

2
(ya − (Ax)a)2, and λ|xi|.

A straightforward application of the message opassing rules leads to the following

equations involving two ypes of messages, call them Êa→i(xi) and Ei→a(xi),

i = 1, · · · , n and a = 1, · · · ,m,E
t+1
i→a(xi) = λ|xi|+

∑
b∈∂i\a Ê

t
b→i(xi),

Êt+1
a→i(xi) = minx\xi

{
1
2 (ya − (Ax)a)2 +

∑
j∈∂a\iE

t+1
j→a(xj)

}
.

(8.11)

In addition we have the initialization{
E0
i→a(xi) = λ|xi|,

Ê0
a→i(xi) = minx\xi{ 1

2 (ya − (Ax)a)2 +
∑
j∈∂a\i λ|xj |}.

(8.12)

The min-sum estimate at time t, call it x̂ti(λ), is computed from

x̂ti = argminxiE
t
i (xi), (8.13)

where

Eti (xi) = λ|xi|+
∑
b∈∂i

Êtb→i(xi). (8.14)

8.3 Quadratic Approximation 143

Recall that in chapter 5 we discussed the BP equations for compressive sensing.

As explained there, the min-sum equations (8.11) can be obtained by taking the

β → +∞ limit of BP equations. Alternatively one can derive them by a direct

application of the distributive law to the min and + operations (see problems in

chapter 5.

We stress here that x̂t in (8.13) is the min-sum estimate (an algorithmic quan-

tity) and although one might hope that as t→ +∞ it converges to the LASSO

estimator x̂1(y, λ) this is far from obvious a priori. We will have the occasion to

introduce two other related estimates in this chapter and we come back to the

issue of their comparison in Section 8.8.

Running min-sum on a complete bi-partite graph with a bi-partition of size n

and m respectively, requires to transmit Θ(mn) messages at each iteration. For

large instances this complexity is prohibitive. We will now show that we can get

away with linear complexity. To be sure, the algorithm which we now develop

is no longer exact, but it is a good approximation. Further, recall that we are

not operating on a tree and so even a full fledged BP is not necessarily optimal.

There is therefore no reason to insist on an exact implementation of the BP

algorithm.

How can we derive such an approximation? The model and the situation is

analogous to that of the SK model. Therefore, it should not come as a sur-

prise that the methodology which we follow for the analysis is also similar.

We have seen in the previous chapter that for the SK model we can go from

the BP equations to the TAP equations by exploiting the fact that the in-

teraction coefficients are small, explicitly by exploiting that Jij ∼ N (0, 1
n) or

Jij ∼ Ber(1/2) in {+ 1√
n
,− 1√

n
}. In the present case we can also exploit the fact

that Aai ∼ N (0, 1
m), so that each entry is O(1/

√
m). As shown in section 8.4

this leads to significant simplifications and linear complexity. Note that these

simplifications will appear even more clearly with the Bernoulli(1/2) ensemble

Aai ∈ {+ 1√
m
,− 1√

m
}.

Before we takle this derivation there is one complication we first have to deal

with. Contrary to the SK or coding models the “spin variables” (here the signal

components) are not binary and therefore the min-sum messages cannot be ex-

actly parametrized by numbers (the log-likelihood variables in the binary case).

However it turns out that a “quadratic approximation” of the messages is possi-

ble, which approximates each message by a set of two real numbers. This is the

subject of the next section.

8.3 Quadratic Approximation

The following is a fairly long somewhat mechanical and technical calculation. In a

first reading the reader may just look at formulas (8.15) and (8.17) that define the

parametrization, and then skip forward directly to the message passing equations

144 Compressive Sensing: Approximate Message Passing and State Evolution

(8.18) and (8.19). These equations are all that is needed for the derivation of the

AMP algorithm in Section 8.4.

A simple but crucial observation is that in the message passing expression

(8.11) for Êt−1
a→i(xi) the xi dependence only enters as Aaixi in (Ax)a. Now since

Aaixi ∼ 1√
m

this contribution is small as m tends to infinity. We can therefore

consider the Taylor expansion of Êt+1
a→i(xi) in powers of Aaixi and keep only the

lowest order terms,

Êt+1
a→i(xi) = Êt+1

a→i(0)− αt+1
a→i(Aaixi) +

1

2
βt+1
a→i(Aaixi)

2 +O((Aaixi)
3), (8.15)

where the Taylor coefficients αt+1
a→i and βt+1

a→i are real numbers that we will de-

termine later. These are two real valued messages that approximate Êt+1
a→i(xi).

Equation (8.15) constitutes the quadratic approximation for Êt+1
a→i(xi): in terms

of two real valued messages αt+1
a→i and βt+1

a→i. Replacing (8.15) in the message

passing equation (8.11) for Et+1
i→a(xi) we get

Et+1
i→a(xi) ≈ Et+1

i→a(0) + λ|xi| − xi
∑
b∈∂i\a

Abiα
t
b→i +

x2
i

2

∑
b∈∂i\a

A2
biβ

t
b→i

= Et+1
i→a(0)− λ(at1)2

2at2
+

λ

at2

{
at2|xi|+

1

2
(xi − at1)2

}
(8.16)

where

at1 =

∑
b∈∂i\aAbiα

t
b→i∑

bı∂i\aA
2
biβ

t
b→i

, at2 =
λ∑

b∈∂i\aA
2
biβ

t
b→i

.

The second equality in (8.16) has been obtained by completing the square. A

calculation similar to the one presented for the scalar LASSO case shows that

the minimum of the term in brackets in (8.16) is equal to η(at1 ; at2) ≡ xt+1
i→a.

Thus, when the right hand side of (8.16) is expanded around its minimum one

finds (up to an irrelevant constant)

Et+1
i→a(xi) = Constant +

1

2γt+1
i→a

(xi − xt+1
i→a)2 +O((xi − xi→a)3) (8.17)

where

xt+1
i→a = η(at1 ; at2), γt+1

i→a =
at2
λ
η′(at1 ; at2) (8.18)

Equation (8.17) constitutes the quadratic approximation for Et+1
i→a(xi). In these

formulas η(y ; λ) is the same soft thresholding function that was used in the

scalar case. The expansion would be exact and the cubic remainder absent for

λ = 0 in which case η(y ; 0) = y. For λ 6= 0 the absolute value is not dif-

ferentiable at the origin so the derivation involves a few technical subtleties

that are worth discussing. Why can one hope that it is a good approximation

to expand Et+1
i→a(xi) near its minimum? One way to understand this is to re-

call the connection between min-sum and BP. For β → +∞ the BP messages

are proportional to e−βE
t+1
i→a(xi), a weight that is dominated by xi close to the

8.4 Derivation of the AMP Algorithm 145

minimum of the exponent. Once this is accepted, it remains to find this min-

imum and write down the Taylor expansion around it. From the scalar min-

imisation problem we learn that the minimum of (8.16) over xi is attained

at xti→a = η(at1 ; at2). The expansion is best performed by first assuming that

xti→a > 0, i.e. xti→a = η(at1 ; at2) = at1 − at2. In this case we can set |xi| = xi and

the first derivative of (8.16) is λ
at2

(at2 + (xi − at1)) which vanishes at xti→a. The

second derivative is equal to λ/at2 = λ/(at2η
′(at1 ; at2)) = 1/γti→a. Therefore (8.17)

holds when xti→a > 0. The reader can work out the case xti→a < 0 is a similar way.

Finally we consider the singular case xti→a = 0, i.e. η(at1 ; at2) = η′(at1 ; at2) = 0.

At the origin the first derivative of |xi| has a jump, and the second derivative is

formally infinite. Therefore we have to take γti→a = 0 which is consistent with

γti→a =
at2
λ η
′(at1 ; at2).

The final step is to determine αtb→i and βtb→i. For this we replace (8.17) in the

second min-sum equation (8.11). Then we compare with the expansion (8.15).

After some long but exact algebraic calculations this yields

αta→i =
ya −

∑
j∈∂a\iAajx

t
j→a

1 +
∑
j∈∂a\iA

2
ajγ

t
j→a

, βta→i =
1

1 +
∑
j∈∂a\iA

2
ajγ

t
j→a

. (8.19)

Let us summarize these calculations. The quadratic approximation assumes

that the expansions (8.15) and (8.17) to second order are good approximations

and neglects cubic and higher order terms. The min-sum equations (8.11) then

reduce to the set of message passing equations (8.18), (8.19) for real valued

messages xti→a, γti→a, αta→i, β
t
a→i.

8.4 Derivation of the AMP Algorithm

First simplications of (8.18) and (8.19)

Our derivation rests on the assumption that the term in the denominator of

(8.19)

1 +
∑

j∈∂a\i

A2
ajγ

t
j→a

can be treated as independent of a and i. Why might this be true? Note that

A2
aj ∼ 1

m and that we sum over m − 1 terms. This sum is therefore up to a

negligible term equal to the empirical mean of γtj→a over all edges of the graph,

and we therefore expect this to concentrate on a value independent of i and a.

In the sequel we set

1 +
∑

j∈∂a\i

A2
ajγ

t
j→a ≡

θt
λ

(8.20)

146 Compressive Sensing: Approximate Message Passing and State Evolution

and we treat θt as independent of a and i. The determination of θt is discussed

later on. We also set

rta→i = ya −
∑

j∈∂a\i

Aajx
t
j→a, (8.21)

so that (8.19) become

αta→i =
λ

θt
rta→i, βta→i =

λ

θt
. (8.22)

Let us now look at at1 and at2. From βtb→i = λ/θt we deduce that the denominator

of at1 and at2 is equal to

λ

θt

∑
b∈∂i\a

A2
bi

Furthermore we note that
∑
b∈∂i\aA

2
bi ≈ 1 since the Abi are iid ∼ N (0, 1

m) (for

the Bernoulli model this sum is exactly equal to (m− 1)/m which tends to 1 in

the large system size limit). With these remarks we obtain

at1 =
∑
b∈∂i\a

Abirb→i, at2 = θt. (8.23)

Replacing in the first message passing equation (8.18) one finds

xt+1
i→a = η

(∑
b∈∂i\a

Abir
t
b→i ; θt

)
. (8.24)

The current form of the message-passing rules (8.21) and (8.24). We still need

an equation for the updates of θt. This is now easily obtained by multiplying the

second equation in (8.18) by A2
ai and summing over i. We get

1 +
∑
i∈∂a

A2
aiγ

t+1
i→a = 1 +

∑
i∈∂a

A2
ai

at2
λ
η′(at1 ; at2) (8.25)

which, in the large size limit, becomes equivalent to (using (8.20), A2
ai ∼ 1/m,

and (8.23))

θt+1 = λ+
θt
m

∑
i∈∂a

η′(
∑
b∈∂i\a

Abir
t
b→i ; θt) (8.26)

Notice a nice property of the tresholding function: the derivative η′ = 0 when

η = 0 and η′ = 1 when η 6= 0. This prompts us to introduce a notation for the

“0-absolute value of a real number“,

|z|0 =

{
1, if z 6= 0,

0, if z = 0.

The update equation for θt can now be written in the nice form

θt+1 = λ+
θt
m

∑
i∈∂a

|xt+1
i→a|0. (8.27)

8.4 Derivation of the AMP Algorithm 147

We have simplified (8.18), (8.19) down to (8.21),(8.24) and (8.27) but at this

point we still have Θ(nm) messages to update at each iteration. A further sim-

plification bringing this complexity down to linear order is the subject of the

next subsection.

But before we address this issue it is useful to first consider the estimate

obtained by minimizing Ei(xi) (see Equs. (8.13), (8.14)). Without going into

similar calculations as above in detail, the reader should not be surprized that

within the quadratic approximation

Eti (xi) ≈
1

2γti
(xi − x̂ti)2 +O((xi − x̂ti)3), (8.28)

where

x̂ti = η(ãt1 ; ãt2), (8.29)

and

ãt1 =

∑
b∈∂iAbiα

t
b→i∑

b∈∂iA
2
biβ

2
b→i

, ãt2 =
λ∑

b∈∂iA
2
biβ

t
b→i

. (8.30)

This leads to the estimate at time t of the form

x̂ti = η(
∑
b∈∂i

Abir
t
b→i ; θt). (8.31)

In (8.31) all messages rtb→i entering nodes i are involved, wheras in (??) the

message rta→i is ommitted. This is a usual feature of mesage passing.

Finals steps

We are now ready to proceed to the final steps leading to the AMP algorithm.

From (8.24) we have

xt+1
i→a = η(

∑
b∈∂i

Abir
t
b→i −Aairta→i ; θt)

≈ η(
∑
b∈∂i

Abir
t
b→i ; θt)−Aairta→iη′(

∑
b∈∂i

Abir
t
b→i ; θt) (8.32)

= x̂ti −Aairta→i|x̂ti|0, (8.33)

The second approximate equality above is obtained by a Taylor expansion to

first order in Aair
t
a→i ∼ 1/

√
m. If you go back to chapter 7 you will see that

a similar step was performed when we derived the TAP equations from teh BP

equations for the SK model. This step is crucial and will lead to an “Onsager

reaction term”. The last equality follows by remarking again that that η′ = 1

(resp. η′ = 0) whenever η 6= 0 (resp. η = 0) and using (8.31). Replacing this

148 Compressive Sensing: Approximate Message Passing and State Evolution

result in (8.21),

rta→i = ya −
∑

j∈∂a\i

Aaj x̂
t−1
j +

∑
j∈∂a\i

A2
ajr

t−1
a→j |x̂

t−1
j |0

= (ya −
∑
j∈∂a

Aaj x̂
t−1
j) +

∑
j∈∂a

A2
ajr

t−1
a→j |x̂

t−1
j |0 +Aaix̂

t−1
i −A2

air
t−1
a→i|x̂

t−1
i |0.

We see that rta→i consists of a main term which is of order one and which is

independent of i and the last two terms which do depend on i but which are of

order 1/
√
m and 1/m. So let us write

rta→i = rta + δrta→i.

Up to leading order this yields for the main term

rta ≈ ya −
∑
j∈∂a

Aaj x̂
t−1
j + rt−1

a

∑
j∈∂a

A2
aj |x̂t−1

j |0.

and for the next order term

δrta→i ≈ Aaix̂t−1
i

Using again A2
ai ∼ 1

m (note again for the Bernoulli model this is exact) the last

two equations are summarized as

rta = ya −
∑
j∈∂a

Aaj x̂
t−1
j + rt−1

a

‖x̂t−1‖0
m

, δrta→i = Aaix̂
t−1
i . (8.34)

Moreover, replacing rtb→i = rtb + δrtb→i = rtb + Abix̂
t−1
i in the LASSO estimate

(8.31) we find

x̂ti = η(
∑
b∈∂i

Abir
t
a +

∑
b∈∂i

A2
bix̂

t−1
i ; θt)

= η(
∑
b∈∂i

Abir
t
a + x̂t−1

i ; θt). (8.35)

Finally using the leading term in (8.33) the update equation (8.27) for θt becomes

θt+1 = λ+ θt
‖x̂t‖0
m

. (8.36)

The first equation in (8.35) and (8.34), (8.36) form the AMP algorithm.

8.5 AMP algorithm for the LASSO

Let us now collect the fruits of our efforts and discuss the AMP algorithm. Recall

that we are in the framework of an unknown prior signal distribution. With only

minor extra effort we can derive a variant of AMP adapted to the case of a known

(sparse) prior signal distribution when the MMSE estimator is used instead. This

is discussed in Section 8.9.

8.5 AMP algorithm for the LASSO 149

The final AMP iterative equations (8.35), (8.34) we have arrived at can be

written in a somewhat more compact notation{
x̂ti = η(x̂t−1

i + (AT rt)i ; θt),

rta = ya − (Ax̂t−1)a + rt−1
a
‖x̂t‖0
m .

(8.37)

These have to be supplemented with the update equation (8.36) for the threshold,

θt+1 = λ+ θt
‖x̂t‖0
m

(8.38)

Note the estimate x̂t obtained by this algorithm is an approximation of the min-

sum estimate (8.13). For conceptual clarity, and also because we will shortly

introduce another slightly more convenient variant, we will sometimes call it the

λ-AMP estimate and the corresponding algorithm the λ-AMP algorithm.

Clearly, in (8.37) the “messages” now do not flow on edges but are emitted

“isotropically” by vertices. In other words there are Θ(n) messages to update at

each iteration; we have gained one order of complexity with respect to the initial

message passing equations. This is similar to the situation we encountered with

the TAP and BP equations for the SK model.

There are two reasons to somehow state the updates for θt as a separate

equation. First, this equation does not depend on the vertices of the graph and

as such is not really a message passing equation. Second there are other ways to

update θt which are somewhat less costly in terms of computation and in practice

lead to similar algorithmic performance. Here we discuss a variant of AMP with

a simpler update of θt and whose performance can be precisely assessed as shown

in the next two sections.

In the scalar case we saw in Section 8.1 that the threshold in η is naturally set

on the scale of the noise, i.e. λ = ασ (and then the best possible α is determined

by solving a minimax problem). In that case, σ was the standard variation of

y − x. By analogy, for the vector case it is natural to take θt on the scale of the

standard devistion of (AT rt)i which is the term added to the estimate xt−1
i in

the first AMP equation (8.37). A rough guess for this standard deviation is√
rTE[AAT]rt =

1

m
‖rt‖22.

Therefore we may take the heuristic value for the soft threshold at time t

θt =
α√
m
‖rt‖2 (8.39)

and replace it directly in the first AMP equation (8.37). This completely defines

a useful variant of the AMP algorithm whose performance we will assess in

Section 8.6. The corresponding algorithm and estimate x̂t will be called α-AMP

algorithm and α-AMP estimate.

The AMP algorithm is almost the same than the much older Iterative Soft

150 Compressive Sensing: Approximate Message Passing and State Evolution

Thresholding (IST) algorithm{
x̂ti = η(x̂ti + (AT rt)i ; α√

m
‖rt‖2),

ra
t = ya − (Ax̂t−1)a.

The fundamental difference between IST and AMP lies in the “Onsager recation

term”, namely rt−1
a
‖x̂t−1‖0

m . One can run experiments and check that this term

is responsible for the improved performance of AMP over IST. One typically

obtains a much smaller empirical MSE with much lesser iterations.

From the law of large numbers, one could perhaps hope that, when the IST

algorithm is tested numerically for a given signal, the unthresholded estimate

x̂ti + 1√
m

∑m
b=1 Ãbir

t
b has a Gaussian histogram (here we set A = 1√

m
Ã). It is the

subject of an exercise to show that this is not so. Correlations between the terms

in the sum develop along the trajectory of the IST algorithm and the law of large

numbers does not hold. Remarkably, it turns out that when the extra Onsager

correction term is added to rtb (so the AMP algorithm is used) the histogram of

the unthresholded estimate becomes Gaussian! The Onsager term has the effect

of cancelling the correlations between the terms in the sum.

Again, the situation is exactly analogous to the one in the SK model. We saw

that the naive Curie-Weiss local field, namely 1√
n

∑n
i=1;i 6=j J̃ijm

t−1
i , does not

have a Gaussian histogram; whereas when the Onsager correction is added the

TAP local field, namely 1√
n

∑n
i=1;i6=j J̃ijm

t−1
i −βm(t−1)

j (1−qt−1), has a Gaussian

histrogram.

8.6 Heuristic Derivation of State Evolution

In coding theory we derived DE equations that track the state of the BP al-

gorithm, i.e. the probability distributions of messages. Density evolution then

allows to compute the probability of a decoding error and more generally to

assess the performance of a coding ensemble. There exist a similar formalism

called State Evolution (SE) that tracks the state of the α-AMP algorithm and

allows to calculate its performance. For the “state” at time t we take ‖x̂t − x‖2
the quadratic error of the estimator x̂t with the input signal x. State Evolution

tracks the average behavior of the state in the large size limit. In other words we

seek an update equation for

τt = lim
n→+∞

1

n
E[‖x̂t − x‖2] (8.40)

where the expectation is over the ensemble of measurement matrices, input sig-

nals and noise. The large system size limit (or “thermodynamic limit”) is defined

as n,m → +∞ with fixed undersampling rate δ = m/n and fixed sparsity pa-

rameter ρ = k/m = εδ. We interchangeably take take (δ, ρ) or (δ, ε) as our free

parameters.

The key feature that allows us to derive a closed form equation relating τt+1

8.6 Heuristic Derivation of State Evolution 151

to τt is the Gaussianity of the untresholded estimate (given the input signal). As

explained in the previous section numerical experiments show with the Onsager

term present the sum 1√
m

∑
b∈∂i Ãbir

t
b behaves as if the law of large numbers

applied (from now on we set Ã = 1√
m
A). Effectively, one could therefore remove

the Onsager term from the algorithm if one sampled afresh the measurement

matrix at each time step so that the law of large numbers applies. This obser-

vation is at the basis of the “conditioning technique” (originally developped by

E. Bolthauzen for the derivation of the RS equation from the TAP equations in

the SK model) which allows for a rigorous derivation of SE. The rigorous proofs

would lead us too far here, and we will simply accept based on numerical obser-

vations, that the Onsager term rt−1
a
‖x̂t‖0
m can be removed if simultaneously we

replace the quenched measurement matrix elements Ãbi by new iid realizations

Ãtbi sampled afresh from N (0, 1) or uniformly from {−1,+1}.
In other words we are analyzing the following set of equations

{
x̂ti = η(x̂ti + 1√

m
(Ãt T rt)i ; α√

m
‖rt‖2),

ra
t = (1√

m
(Ãtx)a + za)− 1√

m
(Ãtx̂t−1)a.

(8.41)

where to be consistent we have also replaced the measurements y = 1√
m
Ãx+ z

by “new measurements” at each time step yt = 1√
m
Ãtx+ z, za ∼ N (0, 1).

We will show that in thermodynamic limit: (i) the first argument of the

thresholding function in (8.41) tends to a Gaussian with mean x and variance

(σ2 +
τ2
t

δ)1/2; (ii) the second argument α√
m
‖rt‖2) tends to α(σ2 +

τ2
t

δ)1/2. Thus

from (8.41) each component of the α-AMP estimate at time t+ 1 is distributed

as the random variable

x̂t+1 = η(x+

√
σ2 +

τ2
t

δ
u ; α

√
σ2 +

τ2
t

δ
) (8.42)

where u ∼ N (0, 1) and x ∼ p0(·). Using definition (8.40) (and the symmetry

with respect to permutation of vertices) the corresponding normalized average

MSE satisfies the SE equation

τ2
t+1 = E[(x̂t+1 − x)2]

=

∫
dx p0(x)

∫
du

e−
u2

2

√
2π

[
η(x+

√
σ2 +

τ2
t

δ
u ; α

√
σ2 +

τ2
t

δ
)− x

]2

. (8.43)

The consequences of SE for the phase diagram of the phase diagram of the AMP

algorithm are discussed in the next section. For completeness we give a somewhat

informal proof of this update equation.

152 Compressive Sensing: Approximate Message Passing and State Evolution

Technical details leading to (8.43)

Let us first show point (i) above. Merging the two equations together in (8.41)

the first argument of teh thresholding function is

xi +
1√
m

m∑
b=1

Ã
(t)
bi zb +

n∑
j=1

(δij −
1

m
(Ã(t)>Ã(t))ij)(x̂

(t−1)
j − xj) (8.44)

We discuss the behavior of each sum in (8.44), in the thermodynamic limit.

Clearly, given z, from the central limit theorem

1√
m

m∑
b=1

Ã
(t)
bi zb (8.45)

tends to a Gaussian with zero mean and variance 1
m

∑m
b=1 z

2
b → σ2. Next,

again by the central limit theorem, one shows that the matrix entries (δij −
1
m (Ã(t)>Ã(t))ij) tend to a zero mean Gaussian with variance 1/m. By looking

at the covariance of these entries we see that they are independent to leading

order. Thus the term
n∑
j=1

(δij −
1

m
(Ã(t)>Ã(t))ij)(x̂

(t)
j − xj) (8.46)

is also a Gaussian, with zero mean and variance

1

m

n∑
j=1

(x̂
(t)
j − xj)

2 =
1

δ

1

n
‖x̂(t) − x‖22 →

τ2
t

δ

In the very last step we use conecntration of the Euclidean norm on its average.

Finally, one can look at the covariance of the two approximate Gaussian variables

in (8.45) and (8.46) and show that they are approximately independent. Let us

summarize: we have obtained that in the thermodynamic limit (8.45) is N (0, σ2),

that (8.46) is N (0, 1
δ (τ (t))2), and that they are independent. Thus their sum is

N (0, σ2 + 1
δ (τ (t))2) and the first argument of the thresholding function (8.44)

tends to the random variable

x+ (σ2 +
1

δ
(τ (t))2)1/2u (8.47)

where u ∼ N (0, 1) and x ∼ p0(·) as announced.

It remains to show point (ii). Using the second equation in (8.41) and expand-

ing the Euclidean norm,

‖r‖22 =

m∑
b=1

(
zb +

1√
m

n∑
i=1

A
(t)
bi (xi − x̂(t)

i)

)2

=

m∑
b=1

z2
b +

2√
m

m∑
b=1

n∑
i=1

zbÃ
(t)
bi (xi − x̂(t)

i)

+

m∑
b=1

n∑
i=1

n∑
j=1

Ã
(t)
bi Ã

(t)
bj (xi − x̂(t)

i)(xj − x̂(t)
j)

8.7 Performance of AMP 153

Clearly the first term tends to α2σ2. By similar arguments as in point (i) the

second term can be shown to tend to zero and the third term to α2

δ (τ (t))2. Thus

in the thermodynamic limit

α√
m
‖rt‖2 → α

√
σ2 +

1

δ
(τ (t))2. (8.48)

as announced.

8.7 Performance of AMP

In this section we derive the phase diagram of AMP in the plane of parameter

(ε, δ) where we recall that ε = k/n is the fraction of non-zero components in

the signal and δ = m/n is the fraction of measurements (also called undersam-

pling rate). It is also common in the literature, but somehow less natural, to

parametrize the phase diagram in terms of (ρ, δ) where ρ = k/m = ε/δ.

The phase diagram of the algorithm is deduced from a study of SE updates

(8.43) and the first question we should address is to determine the multiplicity

of solutions of the corresponding fixed point equation

τ2 =

∫
dxp0(x)

∫
du
e−

u2

2

√
2π

[
η
(
x+

√
σ2 +

τ2

δ
u ; α

√
σ2 +

τ2

δ

)
− x
]2

. (8.49)

It is the subject of an exercise to show that this equation has a unique solution

τ2
∗ (ε, δ, α, p0, σ) in the extended real line [σ2,+∞]. Therefore the SE iterations

will tend this fixed point solution.

It is useful to note for further use the following property of the fixed point

solution,

τ2
∗ (ε, δ, α, p0, σ) = σ2τ2

∗ (ε, δ, α, pσ0 , 1), (8.50)

where pσ0 (x) = σp0(σx) = (1− ε)δ(x) + σp0(σx). To prove (8.50) we set τ = στ1
and notice that τ1 satisfies the fixed point equation (8.49) with σ and p0 replaced

by 1 and pσ0 respectively. This last point is seen by making the change of variables

x→ σx and using the property η(σy ; σλ) = ση(y ; λ).

We also remark that pσ0 ∈ Fε if p0 ∈ Fε, in other word the class of distributions

Fε is scale invariant. This scale invariance property will play a crucial role as we

will shortly see.

Minimax Criterion and noise sensitivity phase transition

We have to make a suitable choice for the parameter α in the α-AMP algorithm.

Recall, since p0 is unknown, we must choose the best possible α given the worst

possible p0 ∈ Fε. Formally we have to compute the minimax-MSE,

inf
α≥0

sup
p0∈Fε

τ∗
2(ε, δ, α, p0, σ), (8.51)

154 Compressive Sensing: Approximate Message Passing and State Evolution

Using (8.50) and the scale invariance of Fε we find

inf
α≥0

sup
p0∈Fε

τ∗
2(ε, δ, α, p0, σ) = σ2 inf

α≥0
sup
p0∈Fε

τ∗
2(δ, ρ, α, pσ0 , 1)

= σ2 inf
α≥0

sup
p0∈Fε

τ∗
2(δ, ρ, α, p0, 1)

≡ σ2M(ε, δ). (8.52)

The quantity M(ε, δ) is the rate of change (or the ”response”) of the minimax-

MSE under variations of the noise. It is often called the noise sensitivity.

Remarkably, the noise sensitivity is independent of the level of noise. A look

at the derivation above shows that this is due to the scale invariance of the class

of sparse distributions. It turns out that scale invariance has more consequences:

it allows to easily derive an explicit formula for the noise sensitivity

M(ε, δ) =

{
Mscalar(ε)

1− 1
δMscalar(ε)

δ > δc(ε)

+∞ δ < δc(ε),
(8.53)

where δc(ε) = Mscalar(ε). Moreover the minimax point p0,worst, αbest is the same

as the one for the scalar problem in Section 8.1.

Figure 8.2 shows the phase diagram of the AMP algorithm. The curve δc(ε)

ρ

δ

Figure 8.2 Left: the algorithmic noise sensitivity phase transition line in the (ε, δ)
plane. Right: the same line in the (δ, ρ) plane.

is an algorithmic phase transition line, which separates the (ε, δ) plane in two

regions. Below the curve the undersampling rate is too small and noise sensitivity

(as well as minimax-MSE) is infinite, and there is no hope to recover the sparse

signal with the AMP estimate. Above the curve, the sampling rate is large enough

so that we can recover the signal with finite error.

We point out that the noise sensitivity phase transition line has a rather ex-

plicit parametrized form whose derivation is the subject of an exercise.
δ =

2 e
−α

2

2√
2π

α+2
(
e
−α2

2√
2π
−αΦ(−α)

)
ε =

2
(
e
−α

2

2√
2π
−αΦ(−α)

)
α+2
(
e
−α2

2√
2π
−αΦ(−α)

) .
(8.54)

8.8 Relations between λ-AMP, α-AMP and LASSO 155

Derivation of (8.53)

The starting point is again a scaling argument applied to the fixed point equation

(8.49). With the change of variables x→
√
σ2 + τ2

δ x we obtain

τ2 = (σ2 +
τ2

δ
)Mscalar(ε, α, p

τ
0) (8.55)

with

Mscalar(ε, α, p
τ
0) =

∫
dxpτ0(x)

∫
du
e−

u2

2

√
2π

[η(x+ u , α)− x]2 (8.56)

and pτ0(x) =
√
σ2 + τ2

δ p0(
√
σ2 + τ2

δ x). Looking back at the solution of the

LASSO for the scalar problem we see that Mscalar(ε, α, p
τ
0) is noting else than

the scalar MSE for a scaled signal distribution pτ0 and noise level σ2 = 1. Re-

mark also that scale invariance of Fε implies

sup
p0∈Fε

Mscalar(ε, α, p
τ
0) = sup

p0∈Fε
Mscalar(ε, α, p0) = Mscalar(ε, α) (8.57)

where the supremum is attained for p0 worst.

Suppose the parameters are such that Mscalar(ε, α) > δ. Then replacing p0 by

p0,worst in (8.55) we find that the only solution is τ∗(ε, δ, α, p0,worst, σ) = +∞.

Therefore we necessarily have supp0∈Fε τ∗ = +∞ when Mscalar(ε, α) > δ. On the

other hand if Mscalar(ε, α) < δ we also have Mscalar(ε, α, p
τ
0) < δ and Equ. (8.55)

has a finite solution,

τ2
∗ = σ2 Mscalar(ε, α, p

τ∗
0)

1− 1
δMscalar(ε, α, p

τ∗
0)

(8.58)

This ratio is an increasing function of Mscalar(ε, α, p
τ∗
0) so it also follows that for

Mscalar(ε, α) < δ

sup
p0∈Fε

τ2
∗ = σ2 Mscalar(ε, α)

1− 1
δMscalar(ε, α)

. (8.59)

Now it remains to minimise over α. Recall infαMscalar(ε, α) = Mscalar(ε). So when

α varies over the positive real line, Mscalar(ε, α) varies over [Mscalar(ε),+∞[. Since

the ratio in (8.59) is an increasing function of Mscalar(ε, α) which diverges at

Mscalar(ε, α) = δ (and remains infinite thereafter), its minimum is attained at

Mscalar(ε) when Mscalar(ε) < δ and at +∞ when Mscalar(ε) > δ. This is precisely

the statement of (8.53).

8.8 Relations between λ-AMP, α-AMP and LASSO

We wish to revisit here a few issues that have perhaps been swept under the

rug. We started by formulating a minimization problem (8.1) which yields the

LASSO. We cannot a priori solve this problem analytically (except for the scalar

156 Compressive Sensing: Approximate Message Passing and State Evolution

case) so we settled for a min-sum approach. After several natural approximations

of the min-sum equations we where led to the λ-AMP algorithm, which gives

an estimate of the signal parametrized by λ. We switched to a variant of this

algorithm, the α-AMP algorithm, which gives an estimate parametrized by α

instead. The reason for introducing this variant is that its performance can be

neatly analyzed thanks to SE.

This approach raises two natural questions. First, what is the relation between

the λ-AMP and α-AMP algorithms and how do their performance compare? In

particular, do they have the same phase transition line? Second, what is the

relation between the true LASSO and AMP estimates? The first question is a

purely algorithmic one, whereas the second really belongs to the third part of

the course where we discuss the relations between message passing algorithms

and optimal solutions. In the present case we can quite simply obtain at least

partial answers which are worth stating immediately.

The Hamiltonian (8.10) is a convex function of x ∈ Rn, so the minima are

solutions of the stationnarity condition

AT (y −Ax) = λv (8.60)

where vi = sign(xi) for xi 6= 0 and vi ∈ [−1,+1] for xi = 0.

Take the λ-AMP equations (8.37), (8.38) and consider a fixed point (x̂∗, r∗, θ∗).

One can see that x∗ satisfies (8.60) provided we take in that equation λ =

θ∗(1− ‖x̂∗‖0m) (this is also a condition that the fixed point of λ-AMP must satisfy,

see (8.38)). We conclude that, for any fixed λ, when the λ-AMP updates converge

to a fixed point, this fixed point is also a solution of the LASSO minimization

problem (8.1).

Consider now the α-AMP update equations (8.37), (8.39) and a corresponding

fixed point (x̂∗, r∗). This time x∗ satisfies (8.60) provided we take λ = α ‖r‖2√
m

(1−
‖x̂∗‖0
m). Using the analysis of Section 8.6 (specifically (8.47) and (8.48)) this

relation becomes in thermodynamic limit

λ(α) = α
√
σ2 + τ2

∗

(
1− 1

δ

∫
dx p0(x)

∫
du

e−
u2

2

√
2π

[
η′(x+

√
σ2 + τ2

∗u ; α
√
σ2 + τ2

∗)

])
.

(8.61)

The α-AMP and λ(α)-AMP algorithms converge to the same fixed point (and

this fixed point is a solution of teh LASSO minimization problem).

These remarks also show that the two variants of AMP are equivalent in terms

of performance in the large size limit. In particular the noise sensitivity phase

transition line is the same.

8.9 A variant of AMP for the MMSE estimator

Even if this perhaps a less realistic situation, it is instructive to consider the

case of a signal with known prior distribution from the class Fε. In other words

8.9 A variant of AMP for the MMSE estimator 157

p0(x) = (1 − ε)δ0(x) + εφ0(x) for a known φ0(x). A good example to keep in

mind is a Gaussian distribution φ0(x) = (1/
√

2π)e−x
2/2; one then refers to p0(x)

as the Bernoulli-Gaussian model.

As explained in Chapter 3, in this setting the optimal estimator is the MMSE

estimator (3.33). Since we cannot a priori hope to compute it exactly we resort to

a message passing calculation. In Chapter 5 we went through the BP equations

in Example 16, and this approach can be systematically developed in order to re-

cursively compute the BP-estimate for the signal. The complexity of the message

passing step is again quadratic because the factor graph is bipartite complete;

but following the same route as in Sections 8.3, 8.4, the message-passing equa-

tions can be simplified in order to arrive at an AMP algorithm (that we will call

mmse-AMP) that is very similar to (8.37). Instead of taking this lengthy route,

by skimming through the previous results one can make an educated guess of

the form of the new algorithm.

In Section 8.5 the AMP algorithm uses the soft thresholding function η(y ; λ)

found by solving the scalar LASSO problem. The reader should not be too sur-

prised that now the AMP updates will involve a thresholding function given by

the MMSE estimator of the scalar case. Consider a scalar measurement y = x+z

of “signal” x affected by Gaussian noise with variance ν2. The thresholding func-

tion is

η0(y ; ν) = E[X|X + Z = y] =

∫
dxx p0(x)e−

(y−x)2

2ν2∫
dx p0(x)e−

(y−x)2

2ν2

. (8.62)

We stress that, contrary to the case of LASSO, η0(y ; ν) is not universal and

depends on the prior. Here ν plays the role of a threshold level analogous to

λ. The mean square error for this optimal estimator (of the scalar problem) is

the MMSE function (by convention the argument of the MMSE function is a

signal-to-noise-ratio, here ν−2)

mmse(ν−2) = E
[
(X − E[X|X + Z])2

]
=

∫
dx p0(x)

∫
dz

e−
z2

2ν2

√
2πν2

[η0(x+ z ; ν)− x]2. (8.63)

The mmse-AMP updates (for the vector case) are the similar to (8.37){
x̂t+1
i = η0(xti + (AT rt)j ; νt),

rta = ya − (Ax̂t)
(t−1)
a + btr

t−1
a .

(8.64)

with a number of differences that we now discuss. As already pointed out, nat-

urally η0 replaces η. The Onsager term is also different. In the derivations of

Section 8.4 it can be traced back to a derivative of the soft thresholding func-

tion. We can therefore guess that now

bt =
1

m

n∑
i=1

η′0
(
xt−1
i + (AT rt)a ; νt

)
. (8.65)

158 Compressive Sensing: Approximate Message Passing and State Evolution

Finally recall that for the α-AMP algorithm we expressed in Section 8.6 the

threshold level thanks to the MSE through the relation θt = α

√
σ2 +

τ2
t

δ . Here

the analysis leads to a similar conclusion, namely

ν2
t = σ2 +

τ2
t

δ
, (8.66)

(where by definition τ2
t = limn→+∞

1
nE‖x̂

(t) − x‖2). Note that the MMSE prob-

lem does not involve any parameter λ or α over which one should optimise. Note

also that to run the mmse-AMP updates (8.64) one has to precompute τt. To do

this one has to write down the corresponding SE equations.

The performance analysis follows the same steps than in Section ??. The result

is a SE recursion with η0 replacing η

τ2
t+1 = mmse((σ2 +

τ2
t

δ
)−1)

=

∫
dx p0(x)

∫
du

e−
u2

2

√
2π

[
η0

(
x+ u

√
σ2 + τ2

t ;
√
σ2 + τ2

t

)
− x
]2

. (8.67)

This equation has a nice interpretation: at time t + 1 the total quadratic error

τ2
t+1 for the mmse-AMP estimate is given by the MMSE of a scalar signal with

effective noise variance σ2 +
τ2
t

δ at time t.

Let us summarize. Equations (8.67) and (8.66) give the evolution of the MSE

and the threshold level. These quantities can be precomputed. Equations (8.64),

(8.65), (8.66) define the mmse-AMP algorithm, and allow to compute the esti-

mates for the signal.

We now turn our attention towards the phase diagram of the mmse-AMP. As

usual we must get a hold on the solutions of the fixed point equation correspond-

ing to (??). Contrary to the LASSO case where only one solution exists, here the

situation is more complicated and multiple solutions can appear. Moreover for

the LASSO the solution could be determined rather because of scale invariance.

In the present case there is no such scale invariance since p0(x) is a fixed distri-

bution but it is still possible to make qualitative statements that are valid for a

fairly wide class of distributions. Moreover the phase transition line can precisely

characterised in a simple manner. For the Bernoulli-Gauss model η0(y ; s) can

be explicitly be computed and all statements fairly explicitly checked; this is the

subject of an exercise.

Define

δ̃(p0) ≡ sup
ν
{ν−2mmse(ν−2)} (8.68)

From limν→0 ν
−2mmse(ν−2) = ε we immediately deduce the general inequality

δ̃(p0) > ε. For a sampling rate δ > δ̃(p0) there exists only one fixed point solution

called τ2
∗,good such that the ”noise sensitivity” limσ→0(τ2

∗,good/σ
2) remains finite.

Thus for δ > δ̃(p0) the algorithm yields a correct reconstruction in the small noise

limit σ → 0 (and more generally a finite error for finite noise). Now, decrease

8.9 A variant of AMP for the MMSE estimator 159

the sampling rate in the range ε < δ < δ̃(p0). One finds two or more stable

fixed points (as well as unstable ones) for all σ2 > 0. Besides the ”good” fixed

point which satisfies τ2
∗,good = O(σ2) there is a ”bad” one, i.e. τ2

∗,bad = Θ(1) as

σ → 0. Clearly, under the (natural) initial condition τ2
0 = +∞ one always tends

to the largest stable fixed point i.e τ2
∗,bad. This means that the noise sensitivity

limσ→0(τ2
∗,bad/σ

2) diverges, and exact reconstruction is not possible even for very

small noise.

We can therefore conclude that δ̃(p0) is the algorithmic phase transition thresh-

old of mmse-AMP, a remarkably neat result! This threshold is lower than the

LASSO threshold derived in Section 8.6. This is not too surprising since the later

concerns the worst case distribution for p0 ∈ Fε. Note also that the inequality

δ̃(p0) > ε now appears as trivial; it just syas that the algorithmic threshold is

higher than the “optimal” one. It is instructive to compute the phase diagram

of mmse-AMP in the (ε, δ) plane for the Bernoulli-Gauss model and compare

with the LASSO and optimal phase transition lines (see exercises). The result is

illustrated on figure ??.

Problems

8.1 A generalization of IST and its connection to LASSO. The standard

Iterative Soft Thresholding algorithm has the form{
xt+1
i = η(xti + (AT rt)i ; λ)

rt = y −Axt

starting from the initial condition x0
i = 0. Consider the following generalization.

Let θt and bt be two sequences of scalars (called respectively “thresholds” and

“reaction terms”) that converge to fixed numbers θ and b. Construct the sequence

of estimates according to the iterations{
xt+1
i = η(xti + (AT rt)i ; θt)

rt = y −Axt + btr
t−1

The goal of the exercise is to prove that if x∗, r∗ is a fixed point of these iterations,

then x∗ is a stationary point of the LASSO cost function H(x|y,A) = 1
2 ||y −

Ax||22 + λ||x||1 for λ = θ(1− b).
Note that this theorem does not say how to specify suitable sequences bt and

θt. The point of AMP is that it specifies unambiguously that one should take

bt = ||x||0/m (for θt there is more flexibility).

The proof proceeds in two steps. First, show that the stationarity condition

for the LASSO cost function is

AT (y −Ax∗) = λv,

where vi = sign(x∗i) for x∗i 6= 0 and vi ∈ [−1,+1] for x∗i = 0. Second, show that

160 Compressive Sensing: Approximate Message Passing and State Evolution

the fixed point equations corresponding to the iterations above are

x∗i + θvi = x∗i + (AT r∗)i

(1− b)r∗ = y −Ax∗

Third, remark that these two steps implie λ = θ(1− b).
8.2 Statistics of AMP and IST un-threshoded estimates. Consider a

sparse signal x0 with n iid components distributed as (1− ε)δ(x0) + ε
2δ(x− 1) +

ε
2δ(x + 1). Generate m noisy measurements y = 1√

m
Ãx + z where Ãai are iid

uniform in {+1,−1} and za are iid Gaussian zero mean and variance σ2.

Consider the AMP iterations (8.37) with the choice θ(t) = α‖r(t)‖2/
√
m. The

derivation of state evolution rests on the assumption that the i-th component,

given x0, of the un-thresholded estimate

x̂
(t)
i +

1√
m

m∑
b=1

Ãbir
(t)
b ,

has Gaussian statistics. The mean is x0i and the variance σ2 + (τ̃)(2) where

(τ̃)(2) = ‖x(t) − x0‖22/n.

Perform an experiment to check this numerically. Compute also the statistics

of the un-thresholded estimate for the IST iterations, i.e. when the Onsager term

rt−1
a
‖x̂(t)‖0
m is removed. Compare the two histograms.

Indications: Fix a signal realization x0. Try n = 4000, m = 2000, ε = 0.125

and 40 instances for A and z. Try various values for σ and α. Look at the

i-th components of the un-thresholded estimate for components such that say

x0i = +1 (or −1, or 0).

8.3 Unicity of solution of SE fixed point equation. Consider the SE

fixed point equation (8.54). Show that there is a unique fixed point solution in

[σ2,+∞] (the value +∞ included). Hint: write the fixed point equation for the

new variable τ̃2 = σ2 +τ2/δ in the form τ̃2 = F (τ̃) and show that F is a concave

function of τ̃ . Proceed graphically.

8.4 Noise sensitivity phase transition. Derive the parametrised from (8.54)

of the noise sensitivity phase transition line.

8.5 mmse-AMP algorithm. Give the details of the derivation of the mmse-

AMP algorithm (8.64), (8.65), (8.66) and those of the corresponding state evo-

lution equation (8.67).

8.6 Bernoulli-Gauss model. Consider the prior p0(x) = (1− ε)δ(x)+ ε e
− x

2

2√
2π

.

Show that the soft thresholding function (8.62) is

η0(y ; ν) =
y

1 + ν2

ε e
− y2

2(1+ν2)√
2π(1+ν2)

ε e
− y2

2(1+ν2)√
1+ν2

+ (1− ε) e
− y2

2ν2
√
ν2

8.9 A variant of AMP for the MMSE estimator 161

and the mmse function (8.62)

mmse(ν−2) = ε− ε

1 + τ2

∫ +∞

−∞
dy y2

e−
y2

2√
2π

1 + 1−ε
ε

√
1+τ2

τ2 e−
y2

2τ2

Finally analyse the solutions of the mmse-AMP fixed point equation when the

undersampling rate satisfies δ > δ̃(p0) and ε < δ < δ̃(p0). Plot the phase transi-

tion line δ̃(p0) and compare with the LASSO phase transition line.

9 Random K-SAT: introduction to
decimation algorithms

The satisfiability problem is considerably more difficult to analyze than either

coding or compressive sensing. One reason for this difficulty is that random K-

SAT is not an inference problem. Indeed, in the regime where a random formula

is SAT with high probability (i.e., in the regime where the number of clauses

per Boolean function is sufficiently small) there are exponetially many solutions

contrary to coding or compressive sensing where we typically only have one valid

solution. At first we might guess that this makes the problem easy: we are not

asking for a particular solution – any solution will do! But in fact it is exactly

this lack of uniqueness which makes the problem hard.

Why does this non-uniqueness cause trouble? Pick a specific Boolean variable.

From the perspective of this variable this means that there are typically solutions

for which this variable takes on the value 0 but also solutions for which it takes

on the value 1. In fact, of the exponentially many solutions there are typically

roughly equally many of either type. So even if the message-passing algorithm

succeeded in computing the marginals of all bits correctly (here we assume that

we put a uniform measure on all solutions and compute the marginal with respect

to this measure) all these marginals would we uniform and we cannot extract

from them a globally valid solution. Therefore a straighforward application of a

message-passing algorithm does not work. A new ingredient is needed.

One approach is quite natural given the above description. Assume for a second

that message-passing is capable of accurately computing marginals (or if you

prefer assume that they are given by an “oracle”). Then we can proceed as

follows. Compute the marginal for one variable. As long as this marginal does

not put all mass on either 0 or 1 it means that there are solutions which take

on the value 0 as well as solutions which take on the value 1 for this variable.

So in this case choose any value for this variable, and reduce the formula by

eliminating this variable and all clauses which are now satisfied. This reduction

is called the decimation step. If the marginal has all its mass on 0, then pick the

value 0, and if it has all its mass on 1 then choose 1. Again, decimate. It is clear

that this procedure will succeed in finding a satisfiable formula if one exists.

The above description assumed that message-passing is capable of exactly

computing the marginals (or that we have an oracle). Since this is generally not

the case we proceed slightly differently. Compute the marginals of all variables.

Then pick a variable with maximal bias and decimate according to this bias.

9.1 Analysis of a stochastic process by differential equations 163

The hope is that by picking variable with maximal bias we minimize the chance

of making a mistake. This will be true as long as the message-passing algorithm

predicts the marginals with reasonable accuracy. The above idea is what is used

in Belief popagation Guided Decimation (BPGD). We will talk in more detail

about this algorithm in this chapter. We will have to wait until Chapters 15, 16 in

Part III to develop an “upgraded” version of BPGD (called Survey Propagation

Guided Decimation) when we shall have more concepts and tools at our disposal.

Unfortunately, currently there does not exist a rigorous analysis for BPGD. It

is instructive to first consider the much simpler Unit Clause Propagation algo-

rithm and show how to analyse it rigorously. Unit clause propagation (UCP) is a

decimation algorithm where we dont decimate according to an aestimate of the

marginals but according to a much simpler rule. As long as degree one clauses

are present we satisfy them (this is also what BP would “tell us”), while if degree

one clauses are not present we select a variable at random and set its value at

random. This sort of algorithm has a somewhat mediocre performance, i.e., the

threshold up to which it works is much below the actual SAT-UNSAT threshold.

But it is relatively easy to analyze and it will give us the excuse of introducing

a very powerful general machinery of analyzing such types of graph processes,

called the Wormald method. This is our starting point in the next section.

9.1 Analysis of a stochastic process by differential equations

Simple algorithms can often be formulated in terms of a stochastic process and

if the state space is sufficiently simple the progress of the algorithm can often

be analyzed in terms of of a system of differential equations. Here we give an

elementary introduction to this method via a very simple toy example. We first

treat this example formally and then discuss the Wormald theorem which allows

to make the analysis rigorous. Although the Wormald theorem is rather long to

state it has a rather general applicability and it is often not very hard to verify

the hypothesis.

A toy example

Consider n particles in a box of volume V . Think of n and V as large with the

initial density of particles ρ = n/V fixed as n, V → +∞. These particles can

annihilate each other according to a simple model. Assume that time is discrete

and takes integer values. At each time instant and for each pair of particles (i, j)

present, the probability that these two particles annihilate each other is equal

to 1/V 2. How will the number of particles evolve? Let N(t) denote the number

of particles which are left at time t, with N(0) = N . This is a stochastic process

164 Random K-SAT: introduction to decimation algorithms

described by its current state N(t). We have the relationship

N(t+ 1) = N(t)− 2
∑
(i,j)

1{(i, j) is annihilated between t and t+ 1}. (9.1)

It is easy to write down the expected progress in one time step given the current

state N(t). We have

E[N(t+ 1) | N(t)] = N(t)− 2
N(t)(N(t)− 1))

2

1

V 2
(9.2)

= N(t)− ρ2N(t)(N(t)− 1))

n2
. (9.3)

This means that

E[N(t+ 1)−N(t) | N(t)] = −ρ2N(t)2

n2
+O(

1

n
) (9.4)

As long as the number of remaining particles is large one may hope that N(t)

concentrates on its expectation. If this is the acse we can drop the expectation.

Wormald’s theorem essentially makes this step rigorous. Dropping the expecta-

tion and setting N(t) = nz(t/n)) we have

nz(
t

n
+

1

n
)− nz(t

n
) = −ρ2z(

t

n
)2 +O(

1

n
) (9.5)

The natural time scale is τ = t/n and for n >> 1 we are lead to consider the

differential equation

dρ(τ)

dτ
= −ρ2ρ(τ)2. (9.6)

One easily verifies that with initial condition z(0) = 1 the solution is z(τ) =
1

τρ2+1 . If we undo the scalings we see that according to this model the expected

number of remaining particles evolves as n2

tρ2+n . In this derivation we have re-

placed a a stochastic process by a deterministic description. One might hope that

the behavior of specific instances of N(t) are close to the deterministic solution.

Wormald’s theorem gives general conditions under which this is indeed correct.

The Wormald Theorem

There are myriads of versions of increasing sophistication. We will be content

with stating and applying one particular incarnation.

theorem 9.1 Let Y
(n)
i (t) be a sequence (indexed by n) of real valued random

processes, 1 ≤ i ≤ k, where k is fixed, so that for all 1 ≤ i ≤ k, all 0 ≤ tm(n),

and all n ∈ N |Y (n)
i (t)| ≤ Bn, for some constant B. Let I = {(y1, . . . , yk) :

P{Y (n)(0) = (y1n, . . . ykn)} > 0, for some n} and let D be some open con-

nected bounded set containing the closure of {(0, y1, · · · , yk) : (y1, · · · , yk) ∈
I}. Denote by H(t) the history of the processes up to time t, i.e., H(t) =

{Y (n)(0), . . . , Y (n)(t)}.
Suppose there are functions fi : Rk+1 → R, 1 ≤ i ≤ k such that:

9.2 The Unit-Clause Propagation Algorithm 165

1. [Trend] For all i and uniformly for all t < tD

E[Yi(t+ 1)− Yi(t) | H(t)] = fi(
t

n
,
Y

(n)
1 (t)

n
, · · · ,

Y
(n)
k (t)

n
) + o(1).

2. [Tail] For all i and uniformly for all t < tD

Pr(|Y (n)
i (t+ 1)− Y (n)

i (t)| > n
1
5 | H(t)) = o(n−3).

3. [Regularity] For each i, the function fi is a Lipschitz continuous on D.

Then we have:

a. [Differential equation] For (0, ẑ0, · · · , ẑk) ∈ D the system of differential equa-

tions
dzi
dτ

= fi(τ, z1, · · · , zk), 1 ≤ i ≤ k,

has a unique solution in D for zi : R→ R passing through zi(0) = ẑi, 1 ≤ i ≤
k, and which extends to points arbitrarily close to the boundary of D.

b. [Concentration] Almost surely

Y
(n)
i (t) = zi(

t

n
)n+ o(n),

uniformly for 0 ≤ t ≤ min{tD, nτmax} and for each i, where zi(τ) is the

solution in (a) with ẑi(0) =
Y

(n)
i (0)

n and where τmax is the maximum time until

the solution can be extended before reaching ε-close to the boundary of D where

ε is arbitrary but strictly positive.

In our simple toy example the stochastic process is Y (n)(t) = N(t) (it is

indexed by the initial number of particles). There is a ”trend“ governed by the

function f(tn ,
N(t)
n) = −ρ2N(t)2

n2 in (9.4). We leave it as an exercise to check that

all conditions of the theorem are satisfied. This allows to conclude that almost

surely N(t) = n2

ρt+n for t finite with respect to n.

9.2 The Unit-Clause Propagation Algorithm

Suppose that we have an algorithm that allows to find solutions of random K-

SAT formulas with uniformly positive probability (uniformly with respect to the

size n of the formulas) for some range of densities, say α < αalg. Then invoking

the threshold behavior (1.11) guaranteed by Friedgut’s theorem we conclude that

the formula is almost surely satisfiable for α < αalg. We also get an algorithmic

lower bound on the sat-unsat threshold, α < αs. The challenge is to find an

algorithm that is sufficiently simple to analyze rigorously and at the same time

finds solutions (with positive probability) in a ”decent“ range of densities.

The unit clause propagation (UCP) algorithm is a simple and important paradigm

among a class of similar algorithms that provably find solutions with positive

166 Random K-SAT: introduction to decimation algorithms

probability. The analysis of these algorithms is base on the differential equation

method. variants of UCP are discussed in the exercises.

We briefly recall the setting and notations of Chapter ??. We have n Boolean

variables xi ∈ {0, 1} out of which we can construct 2K
(
n
K

)
clauses (disjunctions)

containing K variables each one being negated with probability 1/2. A random

formula from the ensemble F(n,m,K) is sampled by taking m clauses uniformly

at random with replacement. We will often think of the number of variables

contained in a clause as the length of a clause. For a K-SAT formula all clauses

have length K.

UCP algorithm

Before stating the algorithm formally we describe the spirit. The algorithm sets

the value of one variable at a time according to a rule to be specified and re-

duces the formula. The clauses that are satified by the setting of the variable

are removed from the formula. Those that are not satisfied are shortened, which

simply means the variable is removed from the formula. Initially all clauses have

length K and as the algorithm proceeds some clauses disappear and others be-

come shorter. If eventually all clauses disappear, the formula is satisfied and we

have found a solution. If suddenly a clause of length zero appears then we have

failed. Indeed a clause of length zero appears when the variable that we set is

contained in two clauses of length one and the variable can satisfy only one of

them, so that a contradiction appears. Clauses of length one obvioulsy play a

special role and are called unit clauses.

Note that the algorithm never backtracks. Once a variable is fixed, the value

stays fixed and is never changed.

We still have to specify a rule to set variables one at a time. The rule is the

simplest possible. As long as there are unit clauses present in the formula we

set their unique variable to the value that satisfies the unit clause. Once a unit

clause appears (since we do not backtrack) we are anyway forced to do so if

we want to satisfy the formula. When there are no unit clauses we simply set a

variable at random.

The pseudocode of the UCP algorithm is given in figure 1.

Algorithm 1: Unit Clause Propagation algorithm

1. Forced step: if the formula contains unit clauses choose one and satisfy it.

Reduce the formula.

2. Free step: if the formula does not contain unit clauses, choose a variable at

random and set its value at random. reduce the formula.

3. Iterate these two steps.

For simplicity we discuss explicitly the analysis of UCP for K = 3. The gen-

eralization to any K ≥ 3 is straightforward (see exercises). We define ’time“ t as

9.2 The Unit-Clause Propagation Algorithm 167

the number of steps i.e. the number of variables fixed. At time t the remaining

formula has n − t variables. The number of clauses of length i = 1, 2, 3 at time

t is denoted Ci(t). The state of the stochastic process associated with UCP is

given by C(t) = (C1(t), C2(t), C3(t).

An crucial property of the UCP algorithm (and similar ones discuss in the ex-

ercises) that makes the differential equation tractable is the uniform randomness

property. This property means that at any time step t, given that the state C(t),

the formula belongs to the uniformly random ensemble constructed out of n− t
variables and Ci(t) clauses of length i = 1, 2, 3. here we only give an intuitive

justification of this statement. At a free step we set a variable at random (and

reduce the formula) so no information is revealed about the reduced formula. At

a forced step the variable is not set at random because it has to satisfy a unit

clause. However this unit clause itself is random (it contains the variable or its

negation with probability 1/2) so from the point of view of the reduced formula

this is equivalent to a free step. In both cases at each UCP step we get no infor-

mation about the reduced formula which tehrefore remains uniformly random.

In other words the reduced formula could as well have been generated on the fly

at the current time t from the uniform ensemble with n − t variables and Ci(t)

clauses of length i = 1, 2, 3. Generating formulas on the fly given the current

state of the algorithm is sometimes called the principle of deferred decisions.

Differential equations

We first write down the set of ”trend“ equations. At any time t, a variable is cho-

sen among the N − t remaining ones and is set to some (permanent) value. This

will destroy a certain number of clauses, either because they become satisfied

or because they are shortened. Clauses of length 3 can only be destroyed. But

clauses of length 2 can also be created from the shortening of 3-clauses. Thus
C3(t+ 1) = C3(t)−

∑
3-clauses 1{chosen variable ∈ 3-clause}

C2(t+ 1) = C2(t)−
∑

2-clauses 1{chosen variable ∈ 2-clause}

+
∑

3-clauses 1{chosen variable ∈ 3-clause and does not satisfy it}

(9.7)

Now we compute the expectation conditioned on the current state. As explained

above from the point of view of the rest of the formula it does not matter if

the variable is set in a free or a forced step. Thus the probability that a selected

variable belongs to a clause of length i = 2, 3 is i/(n−t), and the probability that

it also does not satisfy the clause is i/2(n− t). We obtain the ”trend” equations{
E[C3(t+ 1)− C3(t)|C(t)] = − 3C3(t)

N−t .

E[C2(t+ 1)− C2(t)|C(t)] = − 2C2(t)
(N−t) + 3C3(t)

2(N−t) .
(9.8)

At this step we need to check that all the conditions of the Wormald theorem

are fulfilled. Obviously the number of clauses is at all times smaller than αn.

Also the initial condition is deterministic. Further, steps are small with high

168 Random K-SAT: introduction to decimation algorithms

probability, so the tail condition is also easily checked. The function giving the

trend is Lipschitz for τ ∈ [0, 1[. In conclusion according to the Wormald theorem

almost surely C2(t) = nc2(τ), C3(t) = nc3(τ) with τ = t/n, where c2(τ) and

c3(τ) satisfy a differential equation up to any fixed time strictly bounded away

from τ = 1.

The differential equations are{
dc3(τ)

dτ = − 3c3(τ)
1−τ ,

dc2(τ)
dτ = 3c3(τ)

2(1−τ) −
2c2(τ)
1−τ ,

(9.9)

with initial conditions c3(0) = α, c2(0) = 0. It is straightforward to check that

the solution of the differential equations (9.9) is

c3(τ) = α(1− τ)3, c2(τ) =
3α

2
τ(1− τ)2, (9.10)

As τ → 1 the total number of clauses of length 2 and3 becomes o(n).

Unit clause process

The reader will have noticed that we did not write a differential equation for

C1(t). Indeed as long as the algorithm does not fail C1(t) = O(1) and the changes

at each time step are of the same order, so that the process does not concentrate

on the solution of a differential equation (and if at some time C1(t) = Θ(n) the

algorithm has already failed anyway). The number of unit clauses is correctly

described by a Galton-Walton branching process This process starts with a free

step which generates cascade of unit clauses. When a variable is set (in a free or

a forced step) an average of C2(t)× 2/2(n− t) = C2(t)/(n− t) unit clauses are

born. Thus the rate of the Galton-Walton process is

ρ1(τ) ≡ c2(t)

1− τ
=

3α

2
τ(1− τ) (9.11)

This is a parabola (see figure ??) which remains strictly less than 1 for all times,

only if α < 8/3. This ensures that the expected number of unit clauses created

during a cascade

1 + ρ1(τ) + (ρ1(τ))2 + (ρ1(τ))3 + · · · = 1

1− 3α
2 τ(1− τ)

(9.12)

remains O(1) for all τ ∈ [0, 1[. When α > 8/3 the expected number of unit clauses

grows without limit and the algorithm almost certainly fails. In the exercises we

show from the birthday problem that that contradictions will be generated with

high probability when C1(t) = Θ(
√
n).

Final steps of the analysis

That the algorithm fails for α > 8/3 can also be seen as follows. Note C2(t)
n−t is the

density of 2-clauses at time t. Therefore if α > 8/3 there exist a time where the

9.3 Belief Propagation Guided Decimation 169

density of 2-clauses is above 1. Using the uniform randomness property we have

at this time a random 2-SAT formula with density larger than 1 (with possibly

additional 3-clauses). But such a formula is unsatisfiable with high probability.

So UCP cannot possibly succeed.

Now let us prove that if α < 8/3 then the algorithm succeeds with strictly

positive probability. In this case at any point in time C1(t) = O(1) hence the

probability that a variable is connected to two unit clauses is negligible and the

probability that a 0-clause is created is also negligible. Some care has to be taken

to make this argument completely rigorous. In particular, as we discussed we can

only guarantee the accuracy of the prediction up to a time very close to τ = 1. So

we need in addition an argument which guarantees that the remaining formula

is satisfiable with high probability. If we look at the solution of the differential

equation, we see that if we run the algorithm long enough for α < 8
3 then there

is a time strictly before τ = 1 where the sum of the 2-density plus the 3-density

is strictly less than 1. We can now argue as follows. Drop a random variable from

each 3-clause. Then the resulting formula is satisfiable with high probability.

9.3 Belief Propagation Guided Decimation

In the preceding section we introduced and analysed a very simple algorithm,

called unit clause propagation. This analysis established a non-trivial lower

bound for the SAT/UNSAT threshold and this threshold is in particular al-

gorithmic, i.e., we have an efficient algorithm which works up to this threshold.

On the downside, the UCP algorithm is not very powerful and so the threshold

is quite low.

We now introduce and illustrate a more powerful algorithm, called Belief Prop-

agation Guided Decimation (BPGD). The basic idea is similar to that of the UCP

algorithm. At each step we pick a variable and fix its value. This variable belongs

to a certain number of clauses. We remove the clauses it satisfies and shorten the

ones it does not satisfy, i.e., we decimate the formula and get a reduced formula.

The difference with UCP lies in how we choose the variable we decimate and

how we set its value. In the UCP algorithm, the choice was either forced upon us

by the presence of unit clauses or was random when no unit clauses are present.

In the BPGD algorithm we use belief propagation to guide the selection of the

variables that we fix.

We first introduce a version of the algorithm which is guaranteed to succeed

if the formula is satisfiable and the factor graph corresponding to the formula is

a tree. We will then apply the algorithm to formulas from the random ensemble

F(n,m,K). A rigorous analysis of BPGD is currently out of reach and we will

therefore have to be assess the performance through experiments. In Chapter 16

we will introduced a even more powerful algorithm.

170 Random K-SAT: introduction to decimation algorithms

Counting and finding solutions by decimation

We briefly recall the formulation of K-SAT in Chapter 3. Given a formula we can

introduce the associated factor graph with the variable nodes connected to factor

nodes by full or dashed edges according to whether a variable xi, i = 1, · · · , n
appear negated or not in a clause c = 1, · · · ,m. From the indicator functions of

the clauses,

fc(x∂c) = 1−
∏
i∈∂a

1 + (−1)xiJic
2

(9.13)

we form the zero temperature partition function

N0 =
∑
x

m∏
c=1

fc(x∂c). (9.14)

The ”marginal”

µi(xi) =
∑
∼xi

m∏
c=1

fc(x∂c) (9.15)

counts the number of solutions with xi fixed. Suppose we can compute a marginal

for some node i and suppose that µi(xi) > 0 for xi = 0 or xi = 1 (or both) then

we know that the formula is satisfiable. Moreover we also know the total number

of solutions µi(0) + µ(1) = N0.

Suppose for an instant that all the marginals are given to us by an oracle

or that we have some way to compute them. Then the last remarks obviously

implies that we know the number of solutions. The following decimation process

uses the marginals to find solutions.

Algorithm 2: Decimation process

1. Pick an arbitrary variable i and compute (or consider) the marginal µi(xi).

2. If µi(0) > 0 (there exists an assignment with xi = 0), then:

1.Set xi = 0 in all clauses in ∂i.

2.Eliminate all those clauses where xi appears negated.

3.Remove xi from the other clauses where does not appear negated.

If on the other hand µi(0) = 0 (there doesnt exist an assignmenet with

xi = 0), then:

1.Set xi = 1 in all clauses in ∂i.

2.Eliminate all those clauses where xi does not appear negated.

3.Remove xi from the other clauses where xi appears negated.

3. Repeat the process until no variables are left.

Of course many variants of this process can be considered. However they are

not of practical to use since generally we do not know the exact marginals,

and this decimation is more of conceptual value. There is one case where the

9.3 Belief Propagation Guided Decimation 171

decimation process can be implemented: we saw in Chapter ?? how to find the

exact marginals when the factor graph is a tree. The following simple example

serves as a reminder and as an illustration of the decimation process. In the

next paragraph we shall formulate the extension of these ideas to general factor

graphs.

example 22 Consider the formula F = x1∧ (x1∨x2∨x3). The corresponding

factor graph is shown in Figure 9.1. We express the indicator functions of each

Figure 9.1 Factor graph of the equation F = x1 ∧ (x1 ∨ x2 ∨ x3)

factor node as

fa(x1) = 1− 1

2
(1 + (−1)x1), fb(x1, x2, x3) = 1− 1

8

3∏
i=1

(1 + (−1)xi) (9.16)

and form the ”zero temperature partition function” that counts the number of

solutions,

N0 =
∑

x1,x2,x3

fa(x1)fb(x1, x2, x3). (9.17)

The factor graph is a tree and therefore we have access to the exact marginals

using BP. So we can apply the decimation process.

We first pick variable node 1 and compute its marginal µ1(x1). For the conve-

nience of the reader let us recall in detail the use of message passing rules. We

initialize leaf node messages, µ1→a(x1) = fa(x1) and µ2→b(x2) = µ3→b(x3) = 1.

To compute all messages that flow in node x1 one iteration suffices,

µa→1(x1) = fa(x1) =

{
0 if x1 = 0,

1 if x1 = 1
(9.18)

and

µb→1(x1) =
∑
∼x1

fb(x1, x2, x3)µ2→b(x2)µ3→b(x3) =

{
4 if x1 = 0,

3 if x1 = 1
(9.19)

Finally, multiplying the two incoming messages into node x1 yields the marginal,

µ(x1) = µb→1(x1)µa→1(x1) =

{
0 if x1 = 0,

3 if x1 = 1.
(9.20)

172 Random K-SAT: introduction to decimation algorithms

This already tells us that F has 3 solutions. To find a solution, according to the

decimation process, since µ1(0) = 0, we set x1 = 1. The reduced formula then

becomes F ′ = x2 ∨ x3. We now pick node 2 and compute its marginal using BP

on the reduced formula,

µ′2(x2) =
∑
∼x2

(1− 1

4
(1 + (−1)x2)(1 + (−1)x3))× 1 (9.21)

=

{
2 if x2 = 0,

1 if x2 = 1.
(9.22)

Since µ′2(0) > 0 we set x2 = 0. This choice satisfies F ′ so we remove the clause

b′, the reduced formula is empty, and for x3 we thus have two choices x3 = 0, 1.

We have found two solutions (x1, x2, x3) = (1, 0, 0) and (1, 0, 1). Of course, after

setting x1 = 0, since µ′2(1) > 0 for F ′, we can also look for solutions with x2 = 1.

This then yields a reduced formula F ′′ = x3 where we are forced to take x3 = 1

(note µ′′3(0) = 0, µ′′3(1) = 1). Thus the third solution is (1, 1, 1).

We computed µ1(0) = 0 and µ1(1) = 3 which means that there must exist

three solutions in total and also that they all have x3 = 1. The reader can check

that BP applied to F yields µ2(0) = 2, µ2(1) = 1 and µ3(0) = 1, µ3(1) = 2.

Thus there must exist two solutions with x2 = 0 and one solution with x2 = 1.

Also, there must exist one solution with x3 = 0 and two solutions with x3 = 1.

This is all consistent with the solutions that we found.

We point out that if one is interested in the fraction of satisfying solutions we

can just normalize the messages,

νi(xi) =
µi(xi)

µi(+1) + µi(−1)
. (9.23)

Here we find ν1(0) = 0, ν1(1) = 1, ν2(0) = 2/3, ν2(1) = 1/3, ν3(0) = 2/3, ν3(1) =

1/3.

Of course for such a small formula we can directly obtain solutions and marginals

from the truth table (without ever using BP). The reader can verify that every-

thing is perfectly consistent.

BPGD for general formulas

We now adapt the decimation process in order to turn it into an algorithm

applicable for formulas with general factor graphs. However, note that the graphs

we have in mind should be sparse.

Over a tree, BP yields exact marginals and we can pick anyone of them in each

iteration of the decimation process. But in general graphs marginals computed

by BP - we call them νBP
i (xi) are not exact so it will matter which ones we

pick. In order to potentially minimise the effect of the uncertainty of marginal,

in each iteration we pick a node i such that the bias Bi ≡ |νBP
i (0) − νBP

i (1)|
is maximized. This way, we hope that this node has such a clear bias that its

marginals are quite exact despite the graph not being a tree.

9.3 Belief Propagation Guided Decimation 173

Table 9.1 Satisfiability of F , given by equation (??), for all possible combination of x1,
x2 and x3.

The BPGD algorithm is summarized below:

Algorithm 3: BPGD algorithm

1. Run BP and calculate all marginals.

2. Pick a node i such that the bias Bi = |νBP
i (0)− νBP

i (1)| is maximized. If all

biases vanish (or are ”too small”) pick a variable at random.

3. Set xi to the most likely value, i.e. xi = 0 if νi(0) > νi(1) and to 1 otherwise.

4. Eliminate all clauses satisfied by the value of xi set in the previous step.

Remove xi from the other clause.

5. Recurse until all variables are eliminated.

A few remarks are in order. Wen we run BP on general graphs we have to decide

in an ad-hoc way an initialisation of the messages and a schedule. A convenient

schedule is the flooding schedule. At each iteration step all variable nodes send

their messages towards clauses and all clauses send back their message to vari-

able nodes. For the initialization, since at the beginning we have no information

whatsoever about the true marginals, it is natural to initialise the (unnormalised)

messages uniformly, in other words νi→c(xi) = 1/2 for all i = 1, · · · , n. Once we

have decimated the formula and recurse a natural question that comes to mind

is whether it is best to take the marginals resulting from the previous step as

an initial condition for BP or to initialize again the messages uniformly. It turns

out that experimentally this doe not make a significant difference.

We now discuss a few experiments. Before illustrating the performance of the

BPGD algorithm itself, we say a few words on the convergence of BP itself. In

principle, convergence of the BP messages is a prerequisite for computing the

maximal bias and decimating the formula. We run BP over many instances and

compute the empirical probability that it converges. The resulting probability as

174 Random K-SAT: introduction to decimation algorithms

a function of α is shown on figure 9.2. For K = 3 we get a convergence threshold

α ≈ 3.86 and for K = 4 we get α ≈ 10.3.

The empirical probability of BPGD (computed from runs over many instances)

is also illustarted on figure 9.2. The probability of success remains strictly positive

until αBPGD ≈ 3.86 for K = 3 which is approximately the same as the one of

convergence of BP. For K = 4 it remains strictly poistive until αBPGD ≈ 9.3.

These values can be compared to the SAT-UNSAT threholds, αs(K = 3) ≈ 4.26

and αs(K = 4) ≈ 9.93, predicted by the cavity method.

Actual
threshold

3.86 4.26

Pr{Being Satisfiable}

1

3

Actual
threshold

~9.98

Pr{Being Satisfiable}

1

3-SAT 4-SAT

One
Instance

Many
Instances

One
Instance

Many
Instances

Figure 9.2 Probability of 3− SAT and 4− SAT being satisfied by BP guided
decimation.

We will see in Chapters 15 and 16 that the cavity method leads to a more

powerful algorithm called ”surveey propagation“ which empirically finds solu-

tions for higher values of α. We will also learn that the limitations of the BPGD

algorithm are fundamentally related to the geometry of the solution space in the

Hamming hypercube {0, 1}n.

Because of Friedgut’s theorem (Chapter 1) a strictly positive probability of

success of an algorithm implies that the formula is satisfiable with probability

one in the limit n→ +∞. Therefore if one could analyze the BPGD decimation

process, just as we did for UCP, the above thresholds would be provable lower

bounds for αs (the SAT-UNSAT threshold). Unfortunately such an analysis is

currently out of reach mainly because the uniform randomness property does

not holds as soon as teh bits are not decimated at random and for BPGD it is

difficult to track the evolution of the ensemble of random formulas.

9.4 A convenient parametrization of the BP equations

Since the alphabet is binary we can parametric the messages similarly to the

cases of coding and SK models. In K-SAT we have the extra feature that the

9.4 A convenient parametrization of the BP equations 175

edges carry a ”sign” and it turns out that a slightly different parametrisation is

convenient. This parametrisation will mostly be used in later Chapters but the

reader can already use it to implement BPGD in the exercises.

Recall from Chapter 3 that the sign Jia = +1 (resp. −1) is associated to

full (resp. dashed) edges for which xi appears un-negated (negated) in clause a.

Recall also that in the spin language si = (−1)xi . With these definitions si = Jia
means that the assignment si does not satisfy a, and si = −Jia means that it

satisfies a. We will need one more bit of notation. Consider a fixed edge ia with

some edge type Jia. Let Sia be the subset of variable nodes in ∂a that have the

same edge type Jia. Likewise, let Oia be the subset of variable nodes in ∂a with

opposite edge type −Jia.

Our parametrization uses the following half-loglikelihood variables

hi→a =
1

2
ln
µi→a(−Jia)

µi→a(Jia)
, ĥa→i =

1

2
ln
µ̂a→i(−Jia)

µ̂a→i(Jia)
. (9.24)

The sum-product equation for messages flowing from variable to constraint

nodes is given by

µi→a(±Jia) =
∏

b∈∂i\a

µ̂b→i(±Jia)

=
∏
b∈Sia

µ̂b→i(±Jib)
∏
b∈Uia

µ̂b→i(∓Jib) (9.25)

Taking the logarithm of the ratio of these two equations we find

hi→a =
∑
b∈Sia

ĥb→i −
∑
b∈Oia

ĥb→i (9.26)

This is the first BP equation for K-SAT.

Consider now the other sum-product equation for messages flowing from con-

straint to variable nodes. This involves the factor

fa(s∂a) = 1−
∏
j∈∂a

1

2
(1 + sjJja) (9.27)

evaluated at si = ±Jia. For si = −Jia this evaluates to 1 because the clause is

satisfied so,

µ̂a→i(Jia) =
∑

sj ,j∈∂a\i

∏
j∈∂a\i

µj→a(sj)

=
∏

j∈∂a\i

(µj→a(Jja) + µj→a(−Jja)). (9.28)

For si = Jia (9.27) is equal to

1−
∏

j∈∂a\i

1

2
(1 + sjJja). (9.29)

176 Random K-SAT: introduction to decimation algorithms

which implies

µ̂a→i(−Jia) =
∑

sj ,j∈∂a\i

[
1−

∏
j∈∂a\i

1

2
(1 + sjJja)

] ∏
j∈∂a\i

µj→a(sj). (9.30)

Combining (9.30) and (9.28) we get

µ̂a→i(−Jia) = µ̂a→i(Jia) +
∑

sj ,j∈∂a\i

[∏
j∈∂a\i

1

2
(1 + sjJja)

] ∏
j∈∂a\i

µj→a(sj)

= µ̂a→i(Jia)−
∏

j∈∂a\i

µj→a(Jja)

= µ̂a→i(Jia)

[
1−

∏
j∈∂a\i

µj→a(Jja)

µj→a(Jja) + µj→a(−Jja)

]
(9.31)

Finally, dividing both sides by µ̂a→i(Jia) and taking the logarithm yields

ĥa→i =
1

2
ln

{
1−

∏
j∈∂a\i

1

1 + e2hj→a

}
(9.32)

Summarizing, the message passing equations (9.26) and (9.32) for K-SAT can

be cast as hi→a =
∑
b∈Sia ĥb→i −

∑
b∈Oia ĥb→i

ĥa→i = 1
2 ln

{
1−

∏
j∈∂a\i

1
2 (1 + tanhhj→a)

}
(9.33)

where Sia (resp. Oia) is the set of clauses b 6= a such that the edges (ia) and (ib)

have the same (resp. opposite) signs.

Finally let us work out the expresion of the bias used in the BPGD algorithm.

An easy calculation shows that in terms of the ”local field“

hi =
1

2
ln
µi(+1)

µi(−1)
(9.34)

the bias is Bi = tanhhi. To compute hi from BP-messages we form the ratio of

sum-product equations,

µi(+1)

µi(−1)
=
∏
a∈∂i

µa→i(1)

µa→i(−1)

=
∏

a:(ai) full

µa→i(Jia)

µa→i(−Jia)

∏
a:(ai) dashed

µa→i(−Jia)

µa→i(Jia)

=
∏

a:(ai) full

e−2ĥa→i
∏

a:(ai) dashed

e2ĥa→i . (9.35)

The final expression for the bias is

Bi = tanh |
∑

a:(ai) full

ĥa→i −
∑

a:(ai) dashed

ĥa→i| (9.36)

9.5 Notes 177

9.5 Notes

Problems

9.1 (Peferential Attachment). The purpose of this homework is to use the

Wormald method to study a model for “preferential attachment.” Consider n

nodes. Initially all nodes have degree 0. Assume that we allow a maximum de-

gree of dmax. We proceed as follows. At every step pick two nodes from the set

of all nodes which have degree at most dmax − 1. Rather than picking them with

uniform probability pick them proportional to their current degree. More pre-

cisely, assume that at time t you have Di(t) nodes of degree i. Then pick a node

of degree i with probability
Di(t)∑dmax−1

j=0 dj(t)
, 0 ≤ i < dmax,

0, i = dmax.

Initially, we have D0(t = 0) = n and Di(t = 0) = 0 for i = 1, · · · , dmax. Note

that at time t = ndmax/2 all nodes will have maximum degree. Pick dmax = 4.

(i). Write down the set of differential equations for this problem. Are the condi-

tions fulfilled?

(ii). Plot the evolution of the degree distribution as a function of the normalized

time for τ = t/n ∈ [0, dmax/2]

HINT: In general one cannot expect to solve the system of differential equa-

tions analytically. But it is typically easy to solve them numerically. Here is how

you do it in Mathematica. The following lines set up the differential equation we

discussed in class and plots the solution.

(* initial conditions *)

cnds = {n[0] == 1};

(* set of diff equations *)

eqns = {n’[u] == - rho n[u]^2};

(* put the two together *)

eqnspluscnds = Flatten[Join[eqns, cnds]];

(* solve up to this point *)

umax=10;

(* solve the diff equation *)

sol=Flatten[NDSolve[eqnspluscnds, {n}, {u, 0, umax}]]

(* plot the solution *)

Plot[Evaluate[{n[u]} /. sol], {u, 0.0, umax}]

If you have more than one variable then it is convenient to call them

d[0][u], d[1][u], d[2][u], ...

In this case you might have something like

178 Random K-SAT: introduction to decimation algorithms

cnds = {d[0][0] == ..., d[1][0]==..., ...};

eqns = {d[0]’[u] == ..., d[1]’[u]==..., ...};

eqnspluscnds = Flatten[Join[eqns, cnds]];

umax=...;

sol =

Flatten[NDSolve[eqnspluscnds, {d[0], d[1], ...}, {u, 0, umax}]]

Plot[Evaluate[{d[0][u], d[1][u], ...} /. sol], {u, 0.0, umax}]

9.2 You will implement Belief Propagation (BP) for K-SAT (say K = 3 and

K = 4) The first one is to find a convenient parametrization of the BP messages.

This was done in class. The second is to investigate numerically the convergence

of BP as a function of α (the clause density). The third is to implement a

decimation algorithm that finds satisfying assignments for α not too large.

9.Belief Propagation Equations for K-SAT Go through the derivation, es-

pecially if this was not done in detail during class.

9.3 Implementation of BP] You will implement BP according to the flooding

(or parallel) schedule. initialize the messages uniformly randomly in [0, 1]. One

iteration means that you send messages from nodes to clauses and back from

clauses to variables. Define the following ”convergence criterion”: declare that

the messages have ”converged” if there is an iteration number (time) tconv(δ)

such that no messages changes by more than δ at tconv(δ) (take the smallest

such time).

Perform the following experiment. Take 100 K-SAT instances of length say

N = 5000 and 10000 variables and for each instance implement BP as explained

above with δ = 10−2. If the iterations do not converge stop them at a large

time say tmax ≈ 1000. When they converge, they should do so in a shorter time

tconv(δ) < tmax that does not change much with N .

Plot as a function of α the empirical probability that the iterations converge.

You should see that this probability is large for α < αBP and drops abruptly

around some threshold αBP. For K = 3, αBP ≈ 3.85 and K = 4, αBP ≈ 10.3.

9.4 BP guided decimation] Now you will implement the following algorithm

for finding SAT assignments. It uses the above BP procedure as a guide to take

decisions on how to fix values for the variables. Once a variable has been fixed

the K-SAT formula is suitably reduced - this step is called ”decimation” - and

BP is run again.

• Initialize with a K-SAT formula F of length N .

• For n= 1, ..., N do:

– Run BP on an instance, as in the previous exercise (with the same

convergence criterion).

– If BP does not converge, return ”assignment not found” and exit.

– If BP converges, for each variable j compute its bias (express it in terms

9.5 Notes 179

of ẑeta variables!)

πj = µj(1)− µj(0) =

∏
a∈∂j µa→j(1)−

∏
a∈∂j µa→j(0)∏

a∈∂j µa→j(1) +
∏
a∈∂j µa→j(0)

– Pick a variable j(n) that has the largest absolute bias |πj(n)|.
– If πj(n) ≥ 0 fix xj(n) = 1. Otherwise fix xj(n) = −1.

– Replace F by the K-SAT formula obtained by decimating variable j(n).

• End-For

• Return all fixed variables.

Give for several values of α, the empirical success probability of this algorithm

when tested over 100 instances. Compare this empirical success probability with

the empirical convergence probability of the previous exercise. You should ob-

serve that K = 3 and K = 4 do not behave on the same way. Try to find

an approximate threshold αt beyond which the algorithm does not find SAT

assignments.

10 Maxwell Construction

The Maxwell construction is a paradigm to guess the “true” (optimal/physical)

behavior of a system from a simple model. For us the “simple model” is the

description in terms of message-passing quantities and this setting is well-suited

for this construction. Once the Maxwell construction has given us a guess, this

guess can then often be converted into a rigorous statement. The important

point here is that typically the proof uses the guess as an essential input. I.e.,

the Maxwell construction is typically a crucial first step in the proof.

We will discuss several instances of this paradigm in this chapter. Note that

whenever this program works, then this means that the message-passing algo-

rithm is not just a convenient low-complexity algorithm but plays a fundamental

role in characterizing the problem.

10.1 The Original Maxwell Construction

The original Maxwell construction goes back to the 19th century struggle of

trying to understand the liquid-vapor phase transition for simple substances

(say H2O). Quite surprisingly, even though this problem seems to have little to

do with our three examples, there is a very straightforward analogy between the

Maxwell construction for this problem and the Maxwell construction in our case.

It is therefore worth to quickly review the problem.

Assume that we have a gas consisting of N molecules in a volume of V cubic

meters under a pressure of p pascals and a temperature of T Kelvins. How are

these quantities related? The ideal gas law states that

pV = NkT, (10.1)

where k is the Boltzmann constant. The left picture in Figure 10.1 shows this

relationship at different temperatures T . As one can see from this picture, as we

decrease the volume, the pressure increases. The derivation of this ideal gas law

is based on several simplifying assumptions. In reality the molecules1 interact via

1 The reader should not underestimate that the atomic and molecular constitution of matter

acquired the status of scientific truth, as opposed to philosophical assumption, only in the
19th century thanks to the work of numerous chemists.

10.1 The Original Maxwell Construction 181

V/N

p

↑ T

V/N

p

↑ T

Figure 10.1 Left: Isotherms of the ideal gas equation of state. Right: Isotherms of the
van der Waals equation of state. Note that below a critical temperature, the
isotherms are no longer monotone.

forces of quantum mechanical origin.2 These forces have a very short range and

strong repulsive part and a weak long range attractive part. Because of the short

range strong repulsion it is good model to assume that the molecules have an

“effective volume”. The ideal gas law simply neglects this effective volume as well

as the attractive part of the force (so it neglects all forces hence the name ideal).

The relation expressed in (10.1) is an equation of state, since it relates quantities

that define the thermodynamic “state” of the system (namely, (p, V, T,N)).

In 1873, Johannes Diderik van der Waals derived a more accurate equation of

state taking into account the non-zero effective size of the molecules as well as

the weak long range attracting forces. His derivation resulted in the equation

(p+ a
N2

V 2
)(V − bN) = NkT.

This equation is very similar in structure to the ideal gas law, but both the vol-

ume as well as the pressure terms are modified. The constant b takes into account

the effective finite size of each molecule. Due to this finite size the effective vol-

ume of the box which is available to the N molecules shrinks from V to V − bN .

The constant a takes into account attractive forces between molecules. It is as-

sumed that these attractive forces act only between molecule of the gas but not

between the wall and gas molecules. Therefore, close to a boundary, a molecule

has more neighbors away from the boundary then towards the boundary and this

creates an effective force “inwards,” reducing the pressure of the gas. Note that

the van der Waals equation is equivalent to p = NkT/(V −bN)−aN
2

V 2 so that the

pressure is reduced by aN
2

V 2 . The reduction is proportional to N2 because each

molecule close to the wall feels the effect of approximately N other molecules

and there are of the order of N molecules close to the wall. To obtain an in-

tensive quantity (pressure is intensive, i.e. independent of system size) we have

to divide by V 2 which is the only other extensive quantity besides N . Another

way to understand the form of this term is to assume that that the reduction in

2 So it is only much later, in 1920-1930, that the true origin and proper way to model these

forces was understood!

182 Maxwell Construction

V/N

p

V/N

p

Figure 10.2 The original Maxwell construction. Left: One isotherm of the van der
Waals equation of state. Right: The same isotherm, where a part of the curve is
replaced by a horizontal line which is placed so that the two enclosed areas are in
balance.

pressure is only a function of the density N/V close to the wall. For somewhat

low densities (at least in the gas phase) one can expand this function in powers

of N/V . The first order term must vanish because the attracting forces involve

pairs of particles, leaving us with the second order term. Higher order terms are

then neglected in the van der Waals theory.3

Let us write the above equation as (p+ aN
2

V 2)(V/N − b) = kT . Note that now

all involved quantities, namely p, V/N , as well as T are intensive quantities, i.e.,

they are independent of the system size.

The right-hand side picture in Figure 10.1 shows the van der Waals isotherms

for some choice of constants a and b and for various choices of T . Comparisons

with measurements show that the predictions of the van der Waals equation are

for the most part more accurate compared to the predictions of the ideal gas

equation. But a closer look at Figure 10.1 shows a somewhat curious and non-

physical behavior. Below a “critical” temperature, the isotherms are no longer

relating the pressure p and the density V/N in a monotone fashion, i.e., below

this critical temperate, there is a section where a decrease in density leads to a

decrease in pressure. Clearly, the physical process is not described accurately in

this range.

It was Maxwell who in 1875 suggested a modification of the van der Waals

isotherms to account for this unphysical behavior. Consider Figure 10.2. The

picture on the left shows one isotherm which shows a non-physical oscillating

behavior. The idea of Maxwell was to modify this curve by replacing part of the

curve by a horizontal line. This line is placed in such a way that the two areas

(painted in red and blue in the picture) are in balance. Note that these two areas

represent work since the pressure is measured in Newtons per square meters and

the volume in meters cubed. So the product is Newton times meter, the units

3 Note that such “virial expansions” in powers of density are computed in the framework of
statistical mechanics once a precise model for the repulsive and attractive forces is fixed.
These expansions relate coefficients like a and b to the expressions of the forces; and by

experimentally measuring the equation state one extracts information about the forces.

10.2 Curie-Weiss Model 183

of work. Roughly speaking, the basic thermodynamic argument to support the

equality of the two areas is that the work done by compressing the gas (starting

at large volumes) along the curved path and the work gained by relaxing the

volume along the straight line back to its original value should be equal because

the system has returned to its initial state, and no net work should have been

gained or done (otherwise we would have a perpetuum mobile). The horizontal

line segment corresponds to a phase in the system where the gas co-exists in two

phases, namely as liquid as well as vapor. Along the line the percentage of each

component changes from all vapor to all liquid. Note that as soon as all the gas

is in liquid form, any further decrease in volume leads to a very large increase in

pressure.

It is important to realize that for this physical system neither the ideal gas

equation, nor the van der Waals equation, and not even the modified van der

Waals equation with the Maxwell construction describe the system exactly. They

are all increasingly accurate descriptions, taking into account more and more

physical effects, and they agree reasonably well with experimental measurements.

For our applications we are in a somewhat easier situation. Our aim is not to

find a correct theoretical description for a real physical system. Rather, we start

with a model and this model is by definition exact. Therefore, in such a situation

we can hope that also the Maxwell construction gives us an exact result.

10.2 Curie-Weiss Model

For the Curie-Weiss model we have in fact already “seen” the Maxwell construc-

tion, we just never mentioned it.

In Chapter 4 we computed the exact relationship between the magnetization

m and the external magnetic field h for a particular interaction strength K. We

saw in (??) that for a fixed h and K, m takes on a value which minimizes (the

free energy function)

−(
K

2
m2 + hm)− h2(

1 +m

2
). (10.2)

If we take the derivative of the above expression, we see that m is a solution of

the fixed-point equation

m = tanh
{
h+Km

}
. (10.3)

For K < 1, this fixed-point equation has only a single solution for each h, but for

K > 1 it has up to three, depending on h. Note that even though there might be

many solutions of m for each h, there is always exactly one solution of h for each

m. The left picture in Figure 10.3 shows this relationship (which is a smooth

curve) between m and h for K = 2. The dashed part of the curve are points

(h,m) which are solutions to the fixed-point equation but where m is not the

minimizer of (10.2).

184 Maxwell Construction

h

m

h

m

Figure 10.3 Phase transition in Curie-Weiss model when K > 1 as a function of h.
The phase transition is at h = 0.

In Chapter ?? we attacked the CW (and SK) model via a message-passing ap-

proach. We first wrote down the message-passing equations. We then simplified

the message-passing equations and derived the TAP equations. Note that the

simplification itself was expected to be “loss-less” since it was based on the real-

ization that only the leading terms in the message-passing equations contribute

in the thermodynamic limit, the remaining terms tend to 0 with increasing sys-

tem size.

But the graph corresponding to the CW model is not a tree. In fact it is as

far away from a tree as one can get since it is a complete graph. It is therefore

far from clear how well a message-passing analysis can capture the behavior. We

saw, to our surprise, that the resulting message-passing equation, written as a

fixed point equation is in fact equal to (10.3). But in the message-passing world

we do not know that we “should” minimize (10.2). From the message passing

perspective we start with a particular value of m and then we iterate.

Note that if we consider h as a function of m we again have in some range an

unphysical behavior, namely in the branch where h decreases but m increases.

It is therefore very natural to “correct” this unphysical part by a Maxwell con-

struction, where we replace this unphysical part with a straight line which cuts

the BP curve. Note that by symmetry we again have a balance of the two areas

and that this Maxwell construction results in the correct phase diagram.

Let us see where we are. We have seen the Maxwell construction now for two

examples, but so far it is perhaps not very convincing. For the gas model the

Maxwell construction might appear like a kludge – a rough fix for an obvious

problem. For the CW model, on the other hand, it might appear like a very lucky

coincidence, but it did not tell us anything new.

It would be much more compelling if we could start with the BP equations

and then from these equations could prove that the actual equation of state

and phase transition threshold have to be of the form predicted by the Maxwell

construction. In particular, this will be compelling if the actual equation of state

and phase transition threshold is difficult to compute directly.

In the next section we discuss exactly such a case – namely the case of coding.

Here the Maxwell construction does indeed give the correct prediction for the

10.3 Coding: The Maxwell Construction for the BEC 185

MAP threshold and it is the starting point for a rigorous derivation of this

quantity. More importantly, this is currently the only way of computing and

proving the MAP threshold.

10.3 Coding: The Maxwell Construction for the BEC

Let us now consider coding, using elements of the (l, r)-regular LDPC ensemble,

transmission over the BEC, and BP decoding. For this case we will see how we

can determine the MAP threshold exactly. The Maxwell construction plays a

crucial role in this determination.

As we saw in Chapter 6, the threshold for this case is determined by means of

the fixed points (FP) of the equation

x = εf(ε, x),

where f(ε, x) = ε(1− (1−x)r−1)l−1. This leads us to consider the curve (ε(x), x)

for 0 ≤ x ≤ 1. Recall how from this curve we can determine the threshold – the

threshold is the smallest value of ε which we see along this curve,

εBP = min
0≤x≤1

ε(x) = min
0≤x≤1

x

(1− (1− x)r−1)l−1
.

Instead of plotting the curve (ε(x), x) let us plot the curve (ε(x), (1 − (1 −
x)r−1)l). Note that (1 − (1 − x)r−1)l) is the erasure probability of the best

estimate of a randomly chosen variable nodes we can make if we only use the

“internal” messages but ignore the directly received observation of this bit (since

we ignore the direct observation the factor ε is missing; on the other hand we

have a power of l in the expression and not just (l−1) as for the density evolution

equations since we take all internal inputs into account). This is the “correct”

curve to which to apply the Maxwell construction as we will see now. This curve

is known as the EXIT curve in the literature.

lemma 10.1 (Graphical Characterization of Thresholds) The left-hand side of

Figure 10.4 shows the so-called BP EXIT curve associated to the (3, 6)-regular

ensemble. This is the curve given by {ε(x), (1− (1− x)dc−1)dv}, 0 ≤ x ≤ 1. For

all regular ensembles with dv ≥ 3 this curve has a characteristic “C” shape. It

starts at the point (1, 1) for x = 1 and then moves downwards until it “leaves”

the unit box at the point (1, xu(1)) and extends to infinity.

The right-hand side of Figure 10.4 shows the Maxwell construction for this

case. The MAP threshold is constructed from the curve by inserting a vertical

line. The line is inserted at that unique spot so that area of the BP EXIT curve

to the left of the vertical line is equal to the area of this curve to the right.

The Maxwell conjecture only gives us a guess of the MAP threshold. To prove

this conjecture needs considerably more work. We will first show that the con-

jectured threshold is always an upper bound on the MAP threshold. To prove

186 Maxwell Construction

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.0 ε

h
E

P
B

(1
,x

u
(1

))

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.0 ε

h
B

P
(ε

)

εB
P

εM
A

P

∫
hBP = 1

2

Figure 10.4 Left: The BP EXIT curve hBP of the (dv = 3, dc = 6)-regular ensemble.
The curve goes “outside the box” at the point (1, xu(1)) and tends to infinity. Right:
The BP EXIT function hBP(ε). Both the BP as well as the MAP threshold are
determined by hBP(ε).

0.20.40.60.8

0.2

0.4

0.6

0.8
1.0

0.0 ε

εM
A

P

0.20.40.60.8

0.2

0.4

0.6

0.8
1.0

0.0 ε 0.20.40.60.8

0.2

0.4

0.6

0.8
1.0

0.0 ε

Figure 10.5 Maxwell construction.

that it is also a lower bound, and hence exact, needs different techniques, and

we will discuss this later on.

Let C be a fixed code from the (l, r)-regular LDPC ensemble of length n. Let X

denote the codeword, chosen uniformly at random from the set of all codewords

and let Y be the received word, i.e., Y is the result of transmitting X over a

BEC with parameter ε. We claim that

dH(X|Y (ε))

ndε
=

1

n

n∑
i=1

P{x̂MAP
i (y∼i) =?} (10.4)

To see this, assume that each bit i is transmitted over a BEC with parameter εi.

10.3 Coding: The Maxwell Construction for the BEC 187

So we have

1

n

dH(X|Y (ε1, · · · , εn))

dε
=

n∑
i=1

∂H(X|Y (ε1, · · · , εn))

∂εi

∣∣∣∣
εi=ε

(a)
=

1

n

n∑
i=1

∂H(Xi|Y (ε1, · · · , εn))

∂εi

∣∣∣∣
εi=ε

(b)
=

1

n

n∑
i=1

P{x̂MAP
i (Y∼i) =?}

(c)

≤ 1

n

n∑
i=1

P{x̂BP
i (y∼i) = ?}.

To see (a) note that

H(X | Y) = H(Xi | Y) +H(X∼i|Xi, Y) = H(Xi | Y) +H(X∼i|Xi, Y∼i),

where in the last step we can drop the Yi in H(X∼i|Xi, Y) since the channel is

memoryless. Now note H(X∼i|Xi, Y∼i) does not depend on εi so that this term

drops when we take the derivative. For step (b),

H(Xi | Y) = P{Yi =?}P{x̂MAP
i (Y∼i) =?}︸ ︷︷ ︸

not a function of εi

= εiP{x̂MAP
i (Y∼i) =?}. (10.5)

Finally, step (c) follows since the MAP decoder is optimal and hence has the

lowest error probability of all decoders.

Let us now look closer at the last expression. Define

hBP(ε) = lim
`→∞

lim
n→∞

ELDPC

[
1

n

n∑
i=1

P{x̂BP,`(y∼i) = ?}

]
. (10.6)

This limit exists and is given by density evolution. In fact, hBP(ε) is essentially the

EXIT function which we just discussed above. This derivation makes it clearer

why the EXIT function is the “right” quantity on which to apply the Maxwell

construction.

Let us discuss this all in some more detail. As we discussed above, define

hBP

0
ε

10.4294
Figure 10.6 The function hBP(ε) for the (3, 6)-regular ensemble.

ε(x) =
x

(1− (1− x)r−1)l−1
, hBP(x) = (1− (1− x)r−1)l,

188 Maxwell Construction

and let us plot (ε(x), hBP(x))1
x=0, see Figure 10.6: Then the “envelope” of this

hBP

0
ε

1

(ε(x), hBP(x))�������)

Figure 10.7 The curve (ε(x), hBP(x)) and its “envelope.”

curve is equal to hBP(ε) as a function of ε. It will be convenient to have a notation

for the integral under this curve. To this end define the so called trial entropy:

P (x) =

∫ x

0

(1− (1− x)r−1)lε′(x)dx. (10.7)

= x+
1

r
(1− x)r−1(l + l(r − 1)x− rx)− l

r
. (10.8)

Note that P (x) is the areas under the EXIT curve from the point x = 0 (this

corresponds to a point at +∞) until the point which is parameterized by x as

indicated in Figure 10.8. Note that P (0) = 0. The function P (x) is decreasing

xBP

Figure 10.8 The trial entropy P (x).

until x = xBP, where xBP is that unique parameter so that εBP = ε(xBP). For

xBP ≤ x ≤ 1, P (x) is increasing and P (1) = 1− l
r , as a direct check shows.

It follows that there is a unique value of x in the region [xBP, 1], call it xA, so

that P (xA) = 0. We call ε(xA) the area threshold, and write εA = ε(xA).

10.3 Coding: The Maxwell Construction for the BEC 189

We now have the following sequence of inequalities:

1− l

r
− lim inf

n→∞
ELDPC[

1

n
H(x | y(ε = ε̃))]

(a)
= lim

n→∞
ELDPC[

1

n
H(x | y(ε = 1))]− lim inf

n→∞
ELDPC[

1

n
H(x | y(ε = ε̃))]

(a)
= lim sup

n→∞
ELDPC[

1

n
{H(x | y(ε = 1))−H(x | y(ε = ε̃))}]

(b)
= lim sup

n→∞
E

[∫ 1

ε̃

1

n

n∑
i=1

P{x̂MAP

i (y′∼i) = ?}

]
dε

(c)
= lim sup

n→∞

∫ 1

ε̃

E

[
1

n

n∑
i=1

P{x̂MAP

i (y′∼i) = ?}

]
dε

≤
∫ 1

ε̃

lim sup
n→∞

E

[
1

n

n∑
i=1

P{x̂MAP

i (y′∼i) = ?}

]
dε

(d)

≤
∫ 1

ε̃

lim
`→∞

lim
n→∞

E
[

1

n
P{x̂BP,`

i (y′∼i) = ?}
]
dε

(e)
=P (1)− P (ε̃)

=1− l

r
− P (ε̃).

In step (a) note that 1
nH(x | y(ε = 1)) is equal to the logarithm of the size of

the code normalized by the length. It is intuitive that the limit of this quantity

when n → ∞, and averaged over the ensemble, is equal to the “design rate” of

the code which is 1 − dv
dc

. Even though this is intuitive, this needs some proof.

Since the proof is purely combinatorial we skip the steps. But this transition is

valid for all (l, r)-regular ensembles with 2 ≤ l ≤ r.
In step (b) we write the conditional entropy as an integral of its derivative and

replace the derivative with the sum as we previously discussed. Since the integral

is non-negative, we can exchange the order of the two integrals by Tonelli. This is

step (c). In step (d) we apply the Fatou-Lebesgue theorem by observing that the

integrand is bounded. Step (d) follows by the optimality of the MAP decoder,

and in the final two steps we have used the definition of the trial entropy.

Equivalently,

lim inf
n→∞

ELDPC

[
1

n
H(x | y(ε(x))

]
≥ P (x). (10.9)

definition 10.2 (MAP Threshold) 4 The MAP threshold of the (dv, dc)-

regular ensemble for the BEC is denoted by εMAP(dv, dc) and is defined by

inf{ε ∈ [0, 1] : lim inf
n→∞

E[H(Xn
1 | Y n1 (ε))/n]>0}.

4 Define Pe,i = Pr{Xi 6= X̂i(Y
n
1)}, where X̂i(Y

n
1) is the MAP estimate of bit i based on the

observation Y n
1 . Note that by the Fano inequality we have H(Xi | Y n

1) ≤ h2(Pe,i). Assume

190 Maxwell Construction

We conclude that εMAP ≥ εA = ε(xA), the area threshold.

nBP(ε)

εMAP ≤ εA

1− l
r�

��
�

��

��
��

��
��

��
��

�
��
�

�
��
�

��
��

��
��

��
��

�
��
�

��
��

��
��

��
��

��
��

�
��
�

��
��

��
��

�
��
�

��

��
�
����

Figure 10.9 aa

So far we have seen that the threshold given by the Maxwell construction is

an upper bound on the MAP threshold. There are several ways of proving the

reverse inequality. For the specific case at hand, namely transmission over the

BEC, one can give a purely combinatorial proof. The idea is to prove that with

high probability the matrix which we get if we start with the parity-check matrix

and remove all columns which correspond to non-erased bits has rank equal to

the number of erased bits. This shows that with high probability the codeword

can be reconstructed by solving the corresponding linear system of equations,

i.e., with high probability the MAP decoder succeeds. Since this proof is very

specific to the erasure channel we skip it. There is a second more conceptual

that we are transmitting above εMAP(dv , dc) so that E[H(Xn
1 | Y n

1)/n] ≥ δ > 0.5 Then

h2(E[
1

n

n∑
i=1

Pe,i])≥E[
1

n

n∑
i=1

h2(Pe,i)] ≥ E[

n∑
i=1

H(Xi | Y n
1)/n]

≥ E[H(Xn
1 | Y n

1)/n] ≥ δ > 0.

In words, if we are transmitting above the MAP threshold, then the ensemble average

bit-error probability is lower bounded by h−1
2 (δ), a strictly positive constant. This

ensemble is therefore not suitable for reliable transmission above this threshold.
In general we cannot conclude from E[H(Xn

1 | Y n
1)/n] ≤ δ that the average error

probability is small. This is possible if we have the slightly stronger condition
E[
∑n

i=1H(Xi | Y n
1)/n] ≤ δ. In this case δ ≥ 1

n
E[
∑n

i=1H(Xi | Y n
1)] =

1
n
E[
∑n

i=1 EY n1
[h2(minx p(x | Y n

1))]] ≥ 1
n
E[
∑n

i=1 EY n1
[2 minx p(x | Y n

1)]] = 1
n
E[
∑n

i=1 2Pe,i],

so that 1
n
E[
∑n

i=1 Pe,i] ≤ 1
2
δ. The last step in the previous chain of inequalities follows

since under MAP decoding the error probability conditioned that we observed yn1 is equal
to minx p(x | yn1). An alternative way to prove this is to realize that H(Xi | Y n

1) represents
a BMS channel with a particular entropy and to use extremes of information combining to
find the worst error probability such a channel can have. The extremal channel in this case

is the BEC. But for the codes we consider we will see that below εMAP we can indeed

decode correctly with high probability, which justifies the choice of our definition.
The reader might wonder why we did not start with an operational interpretation of the

MAP threshold as the channel parameter below which a MAP decoder can decode with
high probability. As pointed out above, for the codes we consider the given definition is in
fact equivalent to the operational one. But in addition it has the advantage that the

conditional entropy connects directly to the quantities which appear in our analysis, in

particular to the generalized EXIT curve.

10.4 Compressive Sensing 191

approach using spatial coupling and the interpolation technique which applies

to all such problems. We will get back to this point in the next chapter.

10.4 Compressive Sensing

Also for compressive sensing there is a Maxwell construction. As a starting point

however one has to consider the compressive sensing problem for a fixed and

known source distribution, rather than looking for a universal algorithm.

10.5 Random K-SAT

As always, for K-SAT the situation is the most complicated. Again it is possible

to write down a Maxwell construction. However, the starting point is not the BP-

guided decimation algorithm but a more sophisticated algorithm, called survey

propagation.

10.6 Discussion

Besides the original example, we have given two explicit examples of the Maxwell

construction. For the CW model, the Maxwell construction appears somewhat

like a coincidence. We first computed the exact relationship between average

magnetization and the external field and then we computed the same relationship

from a message-passing perspective. Comparing the two expressions we see that

they are related by a Maxwell construction, just like in the original construction

for an ideal gas.

Even more interesting is the situation if we cannot in fact compute the exact

free energy expression but, starting with the message-passing formulation, can

construct it using a Maxwell construction. This was the case for our second

example, namely coding. There is currently no classical way of computing the

MAP threshold. We have seen that the Maxwell construction gives us a guess of

where this phase transition appears and we have also seen how we can prove that

this guess is an upper bound on the MAP threshold. In the third part of these

notes we will see how we can further show that this guess is also a lower bound

on the MAP threshold using the concepts of spatial coupling and the so-called

interpolation method. So in this case, the Maxwell construction, together with

further techniques, allows us to solve, what from a classical perspective seems to

be a hard problem.

This is a general theme. But, there is no trivial recipe for how to apply the

Maxwell construction and how to prove that it is indeed correct. Each case re-

quires some slightly different tricks and techniques. In fact, it is easy to construct

examples (like K-SAT with BP guided decimation) where the predictions given

192 Maxwell Construction

by the Maxwell construction are not even correct. But with a little bit of expe-

rience the Maxwell construction is a powerful paradigm.

Problems

10.1 Magnetization of the Ising model on a d-regular graph with large girth.

In this problem we consider the ferromagnetic Ising model on a d-regular graph

with large girth. Using the probabilistic method Erdős and Sachs proved that

there exist a graphs Gn,d on n vertices, with all vertex degrees equal to d and

with a girth gn,d ≥ (1− o(1)) logd−1 n (here o(1) stands for a function that goes

to zero as n → +∞). We recall that the girth is the length of the shortest loop

in the graph.

Consider the Gibbs distribution of the Ising model on Gn,d

µn,d(s) =
1

Zn,d
exp

(
βJ

d

∑
{i,j}∈edges

sisj + βh

n∑
i=1

si

)
The Hamiltonian is given by the contribution of all ferromagnetic interactions

associated to edges {i, j}, and a contribution from a constant magnetic field. The

strength of the interaction is scaled by d for later convenience. Note that J > 0

but h can take both signs.

Recall that the magnetization at a vertex o is defined as 〈so〉n,d where 〈−〉n,d
is the usual Gibbs average. This quantity is non trivial to compute. On the other

hand we can run BP and compute the BP estimates of the magnetization.

(i) The second Griffith-Kelly-Sherman correlation inequality states that for Ising

models with all interaction coefficients and all magnetic fields positive the

magnetization can only decrease when one coefficient decreases. In the

present case this inequality implies that the magnetization decreases when

an edge is removed from Gn,d. Now consider the neighborhood of a vertex

o, namely N = {i ∈ Gn,d|dist(o, i) ≤ gn,d − 1}. Define 〈−〉N the Gibbs

average for the Ising model restricted to N . Show that for h ≥ 0

〈so〉n,d ≥ 〈so〉N

and that for h ≤ 0

〈so〉n,d ≤ 〈so〉N

Hint: for the second inequality use symmetry properties under the operation

h→ −h.

(ii)The average 〈so〉N can be computed exactly from the BP recursion. Why?

Show that this recursion is:

m(t) = tanh(βh+ d tanh−1(tanhβ
J

d
tanhu(t)))

u(t) = βh+ (d− 1) tanh−1(tanh
βJ

d
tanhu(t−1)), u(0) = h

and that 〈so〉N = m(gn,d−1).

10.6 Discussion 193

Remark: go back to homework 4 and observe this is the same recursion that

you had derived by “other means”.

(iii)Take now a fixed sequence of graphs Gn,d with respect to n. Observe from

above that for h > 0 and all t,

lim inf
n→+∞

〈so〉n,d ≥ m(t),

and for h ≥ 0

lim sup
n→+∞

〈so〉n,d ≤ m(t).

We want to look at the limit d→ +∞. Show that

lim
d→+∞

lim inf
n→+∞

〈so〉n,d ≥ lim
t→+∞

m
(t)
CW,

and for h ≤ 0 and all t

lim
d→+∞

lim sup
n→+∞

〈so〉n,d ≤ lim
t→+∞

m
(t)
CW,

where m
(t)
CW is the BP-magnetization of the CW model and satisfies the

recursion

m
(t)
CW = tanh(β(h+ Jm

(t−1)
CW))

with the initial condition m
(o)
CW = tanhβh.

Remark: These inequalities suggest the conjecture

lim
d→+∞

lim inf
n→+∞

〈so〉n,d = lim
d→+∞

lim sup
n→+∞

〈so〉n,d = 〈so〉CW

where 〈so〉CW is the true CW magnetization.

Part III

Advanced Topics: from
Algorithms to Optimality

11 Variational Formulation and the
Bethe Free Energy

In our previous lectures we have discussed how we can analyze the performance of

various low-complexity algorithms, in particular algorithms of message-passing

type. We have seen that in the limit of infinite system size, such algorithms have

threshols and we were able to characterize these thresholds quantitatively. Such

thresholds are often called dynamical thresholds since they are associated to the

dynamics of a process (for us this is the algorithm).

But there is typically also a static phase transition. This corresponds to a

phase transition which describes a change of the system behavior itself, inde-

pendent of any algorithmic question. E.g., in coding we can ask how much noise

we can add so that with high probability there is a unique codeword which is

“compatible” with the received information. In communicatons jargon, this cor-

responds to the MAP threshold. For compressive sensing we can ask how the

number of measurements has to scale with the number of unknowns so that

with high probability there is a unique sparse vector which is compatible with

the measurements. Finally, in K-SAT we can ask how many constraints we can

have per Boolean variable so that with high probability a random formula is

satisfiable. This is usally refered to as the SAT-UNSAT threshold.

Why are we interested in these quantities? Some systems are given to us and

we cannot change them (e.g., K-SAT). In this case it is important to know

how well a computationally unbounded system could do in order to gauge how

well our algorithm is performing. But often we are actually in control of the

system itself. E.g., think of the coding problem or also compressive sensing. It is

typically us who designs the code or the measurement matrix. So in these cases

it is important to know that the system itself is designed in such a way that at

least in principle (if we had unbounded computational resources at our disposal)

it has a good performance (comparable to the optimal one). E.g., in coding we

can then compare the MAP threshold to the ultimate limit, namely the Shannon

threshold and hopefully these two thresholds are close.

As we will see, there are two basic themes which appear. First, static thresholds

are in general much harder to compute than the dynamical ones. This is why we

have postponed this discusson towards the end. In a few cases we will be able

to derive rigorous quantitative statements. In some other ones, we will have to

be content with computations which are believed to yield the correct value but

fall short of a mathematical proof. The second, perhaps more surprising theme

198 Variational Formulation and the Bethe Free Energy

is that the analysis of the static threshold can often be done by looking at the

behavior of the message-passing algorithm! Why message-passing, a sub-optimal

algorithm, should have any bearing on the behavior of the optimal algorithm is

at first glance puzzling.

As we will see, the key object which connects these two themese is the so-called

Bethe free energy. It is an “approximation” to the true free energy which itself

depends on the fixed points of the message-passing algorithm. In some instances

the static thresholds predicted by the Bethe free energy can be shown to be

indeed correct.

Let us discuss this in more detail. Computing the true free energy for general

graphical models (or statistical mechanics models) is an impossible task. An

important approximation philosophy is the so-called ”mean-field theory.” In this

theory, when looking at the interactions of a “spin” with the rest of the system,

we only take into account very close neighbors exactly, but model influences of

the remaining system simply by a “mean field,” i.e., a field which models the

average influence of this part of the system. For models defined on sparse graphs

that are locally tree-like, a very good form of mean filed theory was developed by

Bethe and Peierls. This leads to the so-called Bethe free energy approximation.

We note that this is already a “sophisticated” version of the most basic mean

field theory.

As we will see the Bethe-Peierls theory involves fixed point equations that are

the same as those occurring in Belief-Propagation. Their use and to some extent

interpretation are however different. Note that there is a clash of initials (BP)

that is solely due to an historical accident. We hope that this will not cause

major confusions.

In this chapter we treat in detail the case of graphical models with a discrete

alphabet X . As a direct application we will look more closely at the cases of

coding and K-SAT. For models with a continuous alphabet such as those occur-

ing in the context of compressive sensing the ideas are conceptually the same,

but the calculations have to be slightly adapted. We consider a general Gibbs

measure of the form

µ (s) =
1

Z

∏
a

fa (x∂a) , (11.1)

where the variables xi ∈ X , i = 1, . . . , n and fa, a = 1, . . . ,m are kernel functions

associated to check nodes which depend on x∂a = {xi, i ∈ ∂a}. In Chapter 5

we discussed the sum-product algorithm that computes BP-marginals for such

measures. Recall that these are the exact marginals when the graph is a tree.

Similarly we will see that on a tree the free energy

f = − 1

βn
lnZ, (11.2)

can be expressed exactly in terms of the marginals of the measure. This is the

starting point of the formalism developped in this chapter.

11.1 The Gibbs measure on trees 199

Figure 11.1 Induction procedure: G is the original tree to which we add check c
connected to i such that the new graph is a tree

11.1 The Gibbs measure on trees

Consider the (exact) marginals

νi (xi) =
∑
∼xi

µ (x1, ..., xN) , νa (x∂a) =
∑
∼x∂a

µ (x1, ..., xN) .

As explained in Chapter 5 on a tree these can be computed exactly by the

sum-product algorithm. More is true.

Lemma 11.1.1 The Gibbs measure on a tree can be expressed in terms of its

marginals as follows,

µ (x) =
∏
a

νa (x∂a)
∏
i

(νi (xi))
1−di (11.3)

where di is the degree of node i.

Proof We prove (11.3) by induction over number the number m of check nodes.

For m = 1 the unique clause is connected to variable nodes with di = 1. Thus

(11.3) is trial in this case. Now, we assume (11.3) is true for a tree graph G with

m check nodes and prove that it also holds for the new Gibbs measure

µnew

(
x∂c\i, x1, ..., xn

)
=

1

Znew

fc (x∂c)
∏
a

fa (x∂a) (11.4)

obtained when one adds one check node c connected to a variable node i in such

a way that the new graph1 is a tree. The original tree G and the new tree are

depicted on figure11.1

Consider the conditional probability Pr
(
x∂c\i | x1, ..., xn

)
of an assignement

x∂c\i given x1, . . . , xn. We observe that

Pr
(
x∂c\i | x1, ..., xn

)
= Pr

(
x∂c\i | xi

)
=
νnew,c (x∂c)

νnew,i (xi)
.

1 We do not discuss the somewhat trivial case where the new check is disconnected.

200 Variational Formulation and the Bethe Free Energy

Figure 11.2 Factor graph for the marginal distribution (11.6). We select an arbitrary
check b ∈ ∂i \ c.

Therefore, denoting by νnew (x1, ..., xn) the marginalisation of (11.4) over the

variables x∂c\i,

µnew

(
x∂c\i, x1, ..., xn

)
= Pr

(
x∂c\i | x1, ..., xN

)
νnew (x1, ..., xn)

= νnew,c (x∂c) (νnew,i (xi))
−1νnew (x1, ..., xn) . (11.5)

Now, by definition of ν (x1, ..., xn) we have

νnew (x1, ..., xN) =
1

Znew

∑
x∂c\i

fc (x∂c)
∏
a

fa (x∂a)

=
1

Znew

f̃c (xi)
∏
a

fa (x∂a) . (11.6)

where we have set
∑
x∂c\i

fc (x∂c) = f̃c (xi). This distribution has the factor

graph depicted on figure 11.2 This tree still has m + 1 check nodes. However c

can be absorbed in any arbitrarily selected check b ∈ ∂i \ c:

νnew (x1, ..., xn) =
1

Znew

f̃c (xi)
∏
a

fa (x∂a)

=
1

Znew

f̃c (xi) fb (x∂b)
∏
a 6=b

fa (x∂a)

=
1

Znew

f̃b (x∂b)
∏
a 6=b

fa (x∂a)

where we have set f̃c (xi) fb (x∂b) = f̃b (x∂b). We recognize this expression as a

Gibbs measure defined on a tree with m check nodes, so that we can apply the

induction hypothesis

νnew(x1, . . . , xn) =
∏
a

ν̃new,a (x∂a)
∏
i

(νnew,i (xi))
1−di .

Here νnew,a and νnew,i are the marginals of νnew. But clearly, they are also the

marginals of νnew in (11.4). Combining this last formula with (11.5) yields the

desired result.

11.2 The free energy on trees 201

11.2 The free energy on trees

We begin with a general and important expression for the free energy which is

universally valid, and in particular is not restricted to trees. This formula is best

understood when the Gibbs measure (11.1) is expressed in its traditional physics

form

µ (x) =
1

Z
exp (−βH (x)) . (11.7)

The formal relation between the Hamiltonian and the kernel functions is

βH (x) = −
∑
a

ln fa(x∂a) (11.8)

Replacing (11.7) in the definition of the freee energy (11.2) one easily finds for

the un-normalized free energy F ≡ nf ,

F = 〈H〉 − β−1S [µ] (11.9)

where

〈H〉 =
∑

x1,...,xN

H (x1, ..., xN)µ (x1, ..., xN)

S [µ] = −
∑

x1,...,xN

µ (x1,..., xN) lnµ (x1, ..., xN) .

Here 〈H〉 is the average value of the Hamiltonian. Physically this represents the

total average internal energy that the system possesses, and is commonly called

the internal energy. S[µ] is called the Gibbs entropy. This is nothing else than

a special form of Shannon’s entropy written down for the Gibbs measure. In

thermodynamics one shows that the free energy is the amount of work that a

system can perform. Equ. (11.9) says that this is equal to the the total internal

energy minus an unsuable part equal given by the temperature times the entropy.

We now apply formula (11.9) to the Gibbs measure on a tree graph. This leads

to

proposition 11.1 On a tree graphical model the (un-normalized) free energy

F = nf can be expressed in terms of its marginals as

F =
∑
a

∑
x∂a

νa (x∂a) ln
νa (x∂a)

fa (x∂a)
+
∑
i

(1− di)
∑
xi

νi (si) ln νi (xi) (11.10)

Proof Using (11.8) the internal energy contribution yields

〈H〉µ = −
∑
a

∑
x1,...,xN

µ (x1, ..., xN) ln fa(x∂a)

= −
∑
a

∑
x∂a

ν (x∂a) ln fa (x∂a) .

Note that this formula is completely general and does not depend on having a

tree graph.

202 Variational Formulation and the Bethe Free Energy

To compute the contribution of the enetropy we use (11.3) in lemma 11.1.1.

This gives

S [µ] = −
∑
a

∑
x1,...,xN

µ (x1, ..., xN) (ln νa (x∂a))

+
∑
i

(1− di)
∑

x1,...,xN

µ (x1, ..., xN) ln (νi (xi))

= −
∑
a

∑
x∂a

νa (x∂a) ln νa (x∂a) +
∑
i

(1− di)
∑
xi

νi (xi) ln νi (xi)

Combining the the energetic and entropic contributions gives (11.10)

In chapter 5 we learned how to compute the marginals in terms an exact

message passing equations on the tree. Recall that we have two types of messages:

those flowing from variable to check nodes µi→a(xi) and those flowing from check

to variables node µa→i(xi). The exact marginals are given by

νi (xi) =

∏
a∈∂i µ̂a→i (xi)∑

xi

∏
a∈∂i µ̂a→i (xi)

νa (x∂a) =
fa (x∂a)

∏
i∈∂a µi→a (xi)∑

x∂a
fa (x∂a)

∏
i∈∂a µi→a (xi)

.

and the messages by the sum-product equations by

µi→a (xi) =
∏

b∈∂ira
µ̂b→i (xi)

µ̂a→i (xi) =
∑
∼xi

fa (x∂a)
∏

j∈∂ari
µj→a (xj)

Moreover the messages are uniquely defined by their “initial” values at the leaf

nodes. Recall, when the leaf node is a check the outgoing message equals fa(x∂a)

when the leaf node is a check, and equals 1 when the leaf node is a variable.

Using these expressions in (11.10), a straightforward calculation leads to the

alternative expression for the free energy

proposition 11.2 On a tree graphical model the (un-normalized) free en-

ergy F = nf can be expressed in terms of the BP messages as a sum of three

contributions associated to variable nodes, check nodes and edges

F =
∑
i

Fi +
∑
a

Fa −
∑
(i,a)

Fia,

11.3 Bethe free energy for general graphical models 203

where the three contributions are

Fi = ln

{∑
xi

∏
b∈∂i

µ̂b→i (xi)

}
Fa = ln

{∑
x∂a

fa (x∂a)
∏
i∈∂a

µi→a (xi)

}
Fia = ln

{∑
xi

µi→a (xi) µ̂a→i (xi)

}
We stress that in this formula the messages do not have to be normalized.

Indeed they were not normalized in the first place in the sum-product equations.

The anxious reader can check that F is invariant under the renormalizations

µ̂a→i → ẑa→iµ̂a→i and µi→b → ẑi→aµi→a for any arbitrary numbers ẑa→i and

zi→a.

11.3 Bethe free energy for general graphical models

We now turn our attention to general graphical models of the type (11.1) with a

factor graph that is not necessarily a tree, and introduce a definition. We assign

to each edge two ditributions µi→a(si) and µa→i(si). The set of all distributions

forms two vectors denoted by µ and µ̂. The notation is the same than for the

BP messages for reasons that will become clear, however the reader should bear

in mind that conceptually these are general distributions, not necessarily equal

to the BP messages (for one thing the BP equations do not necessarily have a

unique solution). The Bethe free energy is by definition the functional

FBethe

[
µ, µ̂

]
=
∑
i

Fi [{µi→b, b ∈ ∂i}] +
∑
a

Fa [{µi→a, i ∈ ∂a}]

−
∑
ai

Fai [{µi→a,µ̂a→i}] . (11.11)

with the three contributions associated to variable and check nodes, and edges.

Fi = ln

{∑
sj

∏
b∈∂i

µ̂b→i (si)

}
(11.12)

Fa = ln

{∑
s∂a

fa (s∂a)
∏
i∈∂a

µi→a (si)

}
(11.13)

Fai = ln

{∑
si

µj→a (si) µ̂a→j (si)

}
. (11.14)

what is the idea behind this definition? The Bethe free energy exactly gives

the true free energy for factor graphs that are trees. For a loopy factor graph

it may seem a reasonable idea to propose the Bethe free energy as an ansatz

(an educated guess) that hopefully approximates the true one. However there

204 Variational Formulation and the Bethe Free Energy

are various problems that immediately arise. The most urgent is: how does one

choose the messages? The BP equations do not necessarily have a unique solution

for loopy graphs. The rule of thumb is to take the messages that minimize the

Bethe functional. Were does this rule of thumb come from? In the standard

physics variationnal approaches the true free energy is always lower than the

ansatz. Then minimizing the ansatz over a set of open parameters is the best

possible choice. This is not true for the Bethe free energy, so the usual rule of

thumb has be considered with a grain of salt. We stress that there is no general

inequality that states that the true free energy is always smaller than the Bethe

functional. In general, quantifying the difference between the true and minimal

bethe free energy is a hard problem about which we do not know much.

The discussion above suggests that a first important step is to look at station-

nary points of the Bethe functional. One then discovers the follwing important

result.

proposition 11.3 The stationary points of the Bethe free energy satisfy the

sum-product message passing equations and conversely the solutions of the sum-

product equations are stationary points of the Bethe free energy.

Proof For a finite system with a discrete alphabet the Bethe free energy func-

tional is really a function of many variables, namely µi→a(xi), µa→i(xi) for

xi ∈ X . Thus the stationnarity conditions are simply

∂FBethe

∂µi→a (xi)
= 0,

∂FBethe

∂µ̂a→i (xi)
= 0

For the first derivative there is a contribution from Fa and Fia,

∂FBethe

∂µi→a (xi)
=

ν̂a→i (xi)∑
xi
µi→a (xi) µ̂a→i (xi)

−
∑
∼xi fa (x∂a)

∏
j∈∂ari µj→a (xj)∑

x∂a
fa (x∂a)

∏
j∈∂a µj→a (xj)

,

and for the second one the contribution comes from Fi and Fia,

∂FBethe

∂µ̂a→i (xi)
=

νi→a (xi)∑
xi
µi→a (xi) µ̂a→i (xi)

−
∏
b∈∂ira µ̂b→i (xi)∑
xi

∏
b∈∂i µ̂b→i (xi)

.

If we set the two derivatives to zero we find

µ̂a→i (xi) ∝
∑
∼xi

fa (x∂a)
∏

j∈∂ari
µj→a (xj)

µi→a (xi) ∝
∏

b∈∂ira
µ̂b→i (xi) .

which are equivalent to the sum-product equations. Conversely it is easy to

revert these calculations and show that the sum-product equations imply the

stationnarity condition.

11.4 Application to coding 205

11.4 Application to coding

We explained in Chapter 5 that the posterior measure used for MAP decoding

is

1

Z(h)

∏
a

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi .

where si ∈ X = {−1,+1}. There are two types of kernel functions

fi(si) = ehisi , and fa({si, i ∈ ∂a}) =
1

2
(1 +

∏
i∈∂a

si), (11.15)

associated to leaf checks and usual parity checks. An example with the corre-

sponding factor graph is shown in figure 5.6.

The messages flowing on edges connecting variable nodes and parity checks

can be parametrized as

µi→a (si) ∝ ehi→asi , µ̂a→i (si) ∝ eĥa→isi ∝ 1 + si tanh ĥa→i.

The messages flowing on edges connecting leaf checks and variable nodes are

ehisi ,
∏
a∈∂i

eĥa→isi ∝
∏
a∈∂i

(1 + si tanh ĥa→i).

As pointed out above the normalization factors of teh messages cancel out in The

Bethe free energy. This is why our parametrization only involves proportionality

relations.

Replacing these messages in expressions (11.12)-(11.14) it is possible to per-

form exactly all sums over the spins, and express the Bethe free energy as func-

tion of (h, ĥ) = {hi→a, ĥa→i}. We give the main steps of this calculation. From

(11.12) the contribution of variable nodes is

Fi = ln

{ ∑
si=±1

ehisi
∏
a∈∂i

(1 + si tanh ĥa→i)e
hisi

}
= ln

{
ehi

∏
a∈∂i

(1 + tanh ĥa→i) + e−hi
∏
a∈∂i

(1− tanh ĥa→i)

}
. (11.16)

From (11.13), for parity checks we have

Fa = ln

{∑
s∂a

1

2
(1 +

∏
i∈∂a

si)
∏
i∈∂a

(1 + si tanhhi→a)

}
.

Observe that∑
s∂a

∏
i∈∂a

(1 + si tanhhi→a) =
∏
i∈∂a

∑
si=±1

(1 + si tanhhi→a)

= 2|∂a|

206 Variational Formulation and the Bethe Free Energy

and ∑
s∂a

∏
i∈∂a

si
∏
i∈∂a

(1 + si tanhhi→a) =
∏
i∈∂a

∑
si=±1

(si + tanhhi→a)

= 2|∂a|
∏
i∈∂a

tanhhi→a.

Now we compute the contribution of checks. The contribution of parity checks

is

Fa = ln

{
1

2
(1 +

∏
i∈∂a

tanhhi→a)

}
+ |∂a| ln 2. (11.17)

There is also a contribution from leaf check nodes that happens to be given by

(11.16), and also happens to cancel with the contribution of edges connecting

variable and leaf check nodes. There remains the contribution of edges connecting

variable and parity check nodes

Fai = ln

{ ∑
si=±1

(1 + si tanhhi→a)(1 + si tanh ĥa→i)

}
= ln

{
1 + tanhhi→a tanh ĥa→i

}
+ ln 2. (11.18)

The Bethe free energy is given by the sum of the three types of contributions

(11.16), (11.17) and (11.18)

FBethe(h, ĥ) =
∑
i

ln

{
ehi

∏
a∈∂i

(1 + tanh ĥa→i) + e−hi
∏
a∈∂i

(1− tanh ĥa→i)

}
+
∑
a

ln

{
1

2
(1 +

∏
j∈∂a

tanh hj→a)

}

+
∑
ai

ln

{
1 + tanhhi→a tanh ĥa→i)

}
(11.19)

As an exercise the reader can check that the stationary points of the Bethe

functional satisfy the BP equations, in other wordshi→a = hi +
∑
b∈∂i\a ĥb→i

ĥa→i = tanh−1

{∏
j∈∂a\i tanh hj→a

}
We will see that the average over the channel outputs and the graph ensemble

of the Bethe free energy allows to derive the so-called replica-symmetric (RS)

formula for the average free energy2. It is known that for a large class of LDPC

codes and BMS channels the RS free energy is equal to the exact free energy.

2 The adjective “replica-symmetric” is due to historical reasons. indeed these formulas were
first derived thanks to the so-called replica method which we do not cover in this course.
The approach of the replica method is algebraic in nature but mathematically more

mysterious.

11.5 Application to compressive sensing 207

In particular it allows to correctly predict the MAP noise threshold. In the next

chapters we will derive the RS formula with the specific application of the BEC

in mind, and partly prove that the RS formula is exact.

11.5 Application to compressive sensing

To do.

11.6 Application to K-SAT

Recall from Chapter 3 the partition function of K-SAT (at finite temperature)

which counts the number of solutions.

Z =
∑

s1,...,sn∈{−1,+1}n

M∏
a=1

(
1− (1− e−β)

∏
i∈a

(1 + siJia
2

))
. (11.20)

The Bethe free energy here serves as a first ansatz for −(βn)−1 lnZ. Recall that

for β = +∞, Z counts the number of solutions. Thus as long as there exist at

least one solution and lnZ is well defined for β = +∞ one can also use the Bethe

formula to write down an ansatz for the entropy of the uniform measure over

solutions (the Boltzman entropy!).

To compute the Bethe free energy we replace the kernel function

fa({xi, i ∈ ∂a}) = 1− (1− e−β)
∏
i∈a

(1 + siJia
2

)
.

in (11.12)-(11.14) and use the parametrization (9.24) introduced in Chapter 9.3.

Let ∂Jiai the the set of checks connected to i by an edge such that Jia = −1

(dashed) or Jia = 1 (full). The resulting expressions are easily found to be

FBethe(h, ĥ) =
∑
i

Fi({hj→a, j ∈ ∂a}) +
∑
a

Fa({ĥb→i, i ∈ ∂b}) (11.21)

−
∑
ia

Fia(hi→a, ĥa→i) (11.22)

208 Variational Formulation and the Bethe Free Energy

with

Fi = ln

{ ∏
a∈∂−i

(1− tanh ĥa→i)
∏
a∈∂+i

(1 + tanh ĥa→i)

+
∏
a∈∂−i

(1 + tanh ĥa→i)
∏
a∈∂+i

(1− tanh ĥa→i)

}
(11.23)

Fa = ln

{
1− (1− e−β)

∏
i∈∂a

1− tanhhi→a
2

}
(11.24)

Fai = ln

{
1 + tanhi→a tanh ĥa→i

}
(11.25)

Again, the reader can easily check that the stationnary points of FBethe(h, ĥ)

satisfy the BP equations presented in Chapter 9.3 ((9.26)-(9.32) are written

down for β = +∞).

In the next chapter we discuss an important application of these formulas.

When −βFBethe[ξ, ξ̂]/n is averaged over the graph ensemble one get a specific

prediction for the entropy of the K-SAT ensemble. This prediction is not consis-

tent with rigorous upper bounds on the SAT-UNSAT threshold. This means that

the Bethe formulas and the corresponding BP equations are not good enough to

inform us on the SAT-UNSAT transition. But this is not the end of the story.

We will see that it is necessary to further develop the approach taken in this

chapter and wander into the cavity method.

12 Replica Symmetric Free Energy
Functionals

The main idea behind density or state evolution analysis of message passing al-

gorithms is to track their average behaviour. This allows to analyze their perfor-

mance and derive their algorithmic (or dynamic) phase transition thresholds. But

we also saw that one can guess the (static) phase transition threshold through a

Maxwell construction. For example for coding, at least for the BEC, we defined

an EXIT curve computable from DE, on which a Maxwell construction gives the

MAP threshold. However we did not provide any clear general principle for de-

ciding what are the correct variables1for which the Maxwell construction works.

For the CW model the guess was quite trivial, for the BEC and compressive

sensing it was less so. For K-SAT we have to postpone the discussion after the

cavity method is introduced.

We will see in this chapter that by carrying the variational approach one step

further we will be able to provide some clues for these questions. In particular

we will be able to provide certain guiding lines determining the static phase

transition threshold, and the variables on which the Maxwell construction works.

In fact the variational approach allows to reformulate the Maxwell construction

in a less ambiguous and useful way.

We have seen that the sum-product or BP equations are the stationarity con-

ditions for the Bethe free energy. We will see in this chapter that the density and

state evolution equations are the stationarity conditions of an averaged form

of an averaged form of the Bethe free energy. This averaged form is called

the replica symmetric free energy functional. The adjective ”replica symmet-

ric” mostly comes from historical reasons but, it has a meaning which we will

explain once we have gone through the cavity method. We will explain how this

functional allows to predict the algorithmic as well as static phase transition

thresholds. Until recently this prediction was rigorously proved only in some-

what special cases or was supported by bounds. Recent proof techniques such

as the interpolation method and spatial coupling have allowed to provide rela-

tively simple and intuitive proofs in the cases of coding and compressive sensing.

Such proof techniques are the subject of chapter 13. For K-SAT we will see that

the predictions of the replica symmetric free energy functional are wrong. In-

1 In physics parlance determining the ”correct variables” for the description of a phase

transition is part of a more general and deep problem, called the determination of the
order parameter (see notes).

210 Replica Symmetric Free Energy Functionals

stead of being a curse this makes the subject even more fascinating. We will see

in Chapter 15 that the correct thresholds and Maxwell constructions are given

by pushing the notions of Bethe and replica free energy functionals ”one level

up”. That these predictions are correct for K-SAT and other similar constraint

satisfaction problems is still an open and alive problem.

We refrain from giving a completely general definition of the replica symmetric

free energy functional because this immediately leads to cumbersome notations.

Rather we directly treat our three paradigms in the next paragraphs. In fact

each one has its own features and going through each of them allows to cover

most essential cases.

12.1 Coding

We first discuss the general definition of the replica symmetric free energy func-

tional for the regular Gallager (l, r) ensemble over a BMS channel pY |X , and then

specialize to the case of the BEC where the functional simply becomes a function

of a real variable. Recall the notation c(.) for the distribution of half-loglikehod

ratios h(y) = 1
2 ln pY |X(y|1)/pY |X(y| − 1).

Replica symmetric functionals for BMS channels

The main idea is to pretend that in expression (11.19) the messages hi→a, are

iid random variables distributed according to a trial distribution x(.), and that

ĥa→i are dependent random variables defined through the BP equation

ĥa→i = tanh−1

{ ∏
j∈∂a\i

tanh hj→a

}

Then one averages (11.19) which yields a functional of x(.).

Let us give the formal definition. Here x(.) is a fixed trial probability distri-

bution over R. Pick r iid copies of H ∼ x(.), and call them Hk, k = 1, . . . r.

Let

Ĥ = tanh−1
{ r∏
k=1

tanh Hj

}
(12.1)

Pick l iid copies Ĥk, k = 1, . . . l. Let

f(h,H, Ĥ) = ln

{
eh

l∏
k=1

(1 + tanh Ĥk) + e−h
k∏
a=1

(1− tanh Ĥk)

}

+
l

r
ln

1

2

{
1 +

r∏
k=1

tanhHk

}
− l ln

{
1 + tanhH tanh Ĥ

}

12.1 Coding 211

The RS free energy functional is defined as:

fRS[x(.)] = E[f(h,H, Ĥ]

where the expectation is with respect to h ∼ c(.) and H ∼ x(.) (and Ĥ ∼ x̂(.)

the induced distribution that depends on x(.)). For an irregular LDPC ensemble

(l, r) are random and one has an extra average over their distribution. The RS

entropy functional is defined as

hRS[x(.)] = −fRS[x(.)] + E[h] (12.2)

The motivation for introducing the functional hRS[x(.)] will become clear in the

next paragraph (see equ. (12.4)).

How to determine the MAP threshold

Recall that the (true) average free energy is given by the thermodynamic limit

− limn→+∞ E[lnZ]/n where Z is the partition function for coding (3.10). The

replica symmetric formula states that

− lim
n→+∞

1

n
E[lnZ] = inf

x∈S
fRS[x(.)] (12.3)

In this formula S is the space of (Nishimori) symmetric distributions (see Chapter

3). That the infimum can be restricted to this space of distributions is a special

feature coming from channel symmetry. Such formulas relating a free energy

to a replica functional have been long standing conjectures since the mid 70’s

in the field of spin glass models (on sparse and complete graph models) but

much progress have been made in the last fifteen years towards their proofs. The

present one is a case where we have a partial proof that combines interpolation

methods with spatial coupling. This will be sketched in the subsequent chapter.

In the next sub-section we take a closer look at (12.3) for the BEC, and show

that it is equivalent to the Maxwell construction.

The MAP threshold is defined as the smallest ε such that lim infn→∞ E[H(X |
Y (ε))/n]>0 (see definition 10.2). Recall also the relationship (3.43)

1

n
E[H(X | Y (ε))] = − 1

n
E[lnZ] + E[h] (12.4)

Equation (12.3) has two consequences. One can replace lim inf by lim in the

definition of the MAP threshold, but more importantly,

lim
n→+∞

1

n
E[H(X | Y (ε))] = sup

x∈S
hRS[x(.)] (12.5)

and

εMAP = inf{ε ∈ [0, 1] : sup
x∈S

hRS[x(.)]>0}

In order to concretly calculate the MAP threshold one has to solve the varia-

tional problem consisting in minimizing (or maximizing) the replica symmetric

212 Replica Symmetric Free Energy Functionals

free energy (or entropy). It is easy to write down the stationary point conditions

(homework) and one finds the density evolution fixed point equations (see Equ.

(6.35)-(6.36))

x = c⊗ x̂⊗(l−1), x̂ = x⊕(r−1) (12.6)

Remark that x̂(.) is the distribution of Ĥ in Equ. (12.1). This is not surprising:

the stationary points of the Bethe free energy are given by the BP equations and

the stationary points of the replica functional are given by the density evolution

equations. Once stationary points, i.e. fixed points of (12.1) have been found

one selects the one that yields the largest hRS[x(.)] (or smallest fRS[x(.)]) and

determines εMAP. Since in practice fixed points are found by iterative methods,

it is fortunate that we only need to find stable fixed points. Indeed the maximum

of hRS[x(.)] (or minimum of fRS[x(.)]) is necessarily a stable fixed point.

But that is not all. We already know that allow to determine the BP threshold.

The BP threshold is the smallest noise for which a non-trivial fixed point is

reached under iterations initialized with x(.) = c(.). Therefore this information

is also contained in the RS functional. The BP threshold is the smallest noise

such that the RS functional has a non trivial stationary point.

To summarize, the RS functional contains all the information we want. In

particular it allows to deduce the DE equations. To determine the BP threshold

it suffices to solve the DE equation. But, to evaluate the MAP threshold we have

to solve the DE equations and to evaluate corresponding largest RS entropy or

smallest RS free energy.

In the next paragraph we specialize this discussion to the case of the BEC.

This will also allow us to derive the Maxwell construction in a more principled

way.

12.2 Explicit Case of the BEC

A bit transmitted through the BEC is either perfectly transmitted with proba-

bility ε or earsured with probability 1− ε. This implies that c(h) = εδ(h) + (1−
ε)δ∞(h), and that we can restrict the RS functionals to distributions parametrized

as

x(H) = xδ(H) + (1− x) δ∞(H)

where x is the erasure probabaility emanting from variables. This also implies

that x̂(Ĥ) = x̂δ(Ĥ)+(1−x̂)δ∞(Ĥ) with x̂ = 1−(1−x)r−1 the erasure probability

emanating from checks. With this parametrization one can compute each term

in the RS expression for the free energy. One easily finds the contributions of

“check nodes”

E[ln
1

2
(1 +

r∏
k=1

tanHk)] = (1− x)r ln 2− ln 2

12.2 Explicit Case of the BEC 213

and “edges“

E[ln(1 + tanH tan Ĥ)] = (1− x)(1− x̂) ln 2

For the BEC, one should include the term E[h] in (12.2) directly in the contribu-

tion of ”variable nodes“ in order to avoid working with infinite quantities. One

finds

E[ln(

l∏
k=1

(1 + tanh Ĥk) + e−2h
l∏

k=1

(1− tanh Ĥk))]

= (1− ε)
l∑

e=0

(
l

e

)
x̂e(1− x̂)l−e ln 2l−e + ε

l−1∑
e=0

(
l

e

)
x̂e(1− x̂)l−e ln 2l−e

+ ε

(
l

l

)
x̂l(1− x̂)l−l ln 2

=

l∑
e=0

(
l

e

)
x̂e(1− x̂)l−e(l − e) ln 2 + εx̂l ln 2

= (1− x̂)

l∑
e=0

x̂e
d

dy
yl−e |y=1−x̂ ln 2 + εx̂l ln 2

= (1− x̂)
d

dy
(x̂+ y)l |y=1−x̂ ln 2 + εx̂l ln 2

= l(1− x̂) ln 2 + εx̂l ln 2

Putting these results together one finds the replica symmetric entropy function

for the BEC

hRS(x; ε)

ln 2
= (

l

r
− l)(1− x)r + l(1− x)r−1 + ε(1− (1− x)r−1)l − l

r

According to (12.3) the conditionnal entropy is given by

lim
n→+∞

1

n
E[H(X | Y (ε))] = max

0≤x≤1
hRS(x; ε) (12.7)

and the MAP threshold can be calculated from εMAP = inf{ε : max0≤x≤1 hRS(x; ε) >

0}. It is immediate to check that the stationnary points are given by the usual

density evolution fixed point equation x = ε(1− (1− x)r−1)l−1.

As pointed out before, the function −hRS contains all the information about

the BP and MAP thresholds, so it is very useful to have an idea of the shape of

the RS function. Figure ?? shows −hRS as a function of x, for various values of

ε.2 We prefer to plot minus the RS entropy function3 because this quantity is the

free energy (up to an irrelevant term) and is better suited to make the physical

analogies more transparent. For all ε there is a trivial minimum at x = 0, which

2 This plot is generic only for regular ensembles with l ≥ 3. Irregular ensembles can have a
richer behavior and the corresponding discussion is more complicated. The case l = 2 is

somewhat special because εBP = εMAP.
3 To avoid any confusion let us stress that there is no reason why hRS(x) should be

non-negative. It is only max0≤x≤1 hRS(x) that has to be non-negative.

214 Replica Symmetric Free Energy Functionals

is also the trivial stable fixed point of DE. For ε < εBP this minimum is unique

(hence global). At ε = εBP the function develops a flat inflexion point and a second

(local) minimum as well as a (local) maximum branch of. The local minimum

is the stable non-trivial fixed point of density evolution, xst(ε), and the local

maximum is the unstable fixed point xun(ε). As one increases ε further the local

minimum at xst(ε) decreases until it touches the horizontal axis for εMAP. At this

threshold value there are two global minima, hRS(0; εMAP) = hRS(xst(εMAP; εMAP).

Finally, ε > εMAP it is xst(ε) that becomes the unique global minimum.

To summarize, one should retain from this discussion that the RS function con-

tains all the information we want. The BP threshold is found by searching values

of ε where the function develops flat inflexion points, and the MAP threshold is

found by looking at values of ε where the two minima are at the same height.

The reader should go back to the exact solution of the CW model in Chapter 4

and notice the intimate structural analogies with the present situation. The CW

free energy is given by a variational problem min−1≤m≤1 f(m) whose solutions

determine both the phase transition (”MAP”) threshold h = 0 and the spinodal

(”BP”) points ±hsp.

We conclude this paragraph by casting (12.7) in an equivalent form. For ε >

εMAP the derivative of the right hand side of max0≤x≤1 hRS(x; ε) equals

d

dε
hRS(xst; ε) =

∂

∂ε
hRS(xst; ε) +

∂

∂x
hRS(xst; ε)

dxst

dε

=
∂

∂ε
hRS(xst; ε)

The second equality is valid because xst is a stationnary point of hRS and dxst

dε

is finite for ε ∈]εMAP, 1]. This last point can be checked rather explicitly for the

BEC but for other channels this is much more difficult. We obtain

d

dε
lim

n→+∞

1

n
E[H(X | Y (ε))] =

{
0, ε < εMAP

∂
∂εhRS(xst(ε); ε) = (1− (1− xst(ε))

r−1)l, ε > εMAP

Note that for ε > εMAP the derivative of the conditional entropy coincides with

the EXIT curve introduced somewhat arbitrarily in Chapter 10.

12.3 Back to the Maxwell Construction

The Maxwell construction identifies the MAP threshold εMAP with the area

threshold εA on the EXIT curve. We are now in a position to show that this iden-

tity is equivalent to the equality of the two minima of −hRS(x; ε) when ε = εMAP.

Apart from the conceptual importance of this result, this shows that for coding

a proof of the Maxwell construction boils down to the one of the RS formula.

Consider ε > εBP. The non-trivial minimum and maximum of −hRS(x; ε),

namely xst(ε) and xun(ε), form a curve in the (ε, x)-plane. This curve is pre-

cisely (ε(x), x) where ε(x) = x/(1 − (1 − x)r−1)l−1 (since the stationary points

12.4 Compressive Sensing 215

of −hRS(x; ε) are given by DE). Now consider the path starting from (εMAP, 0) to

(+∞, 0) on the horizontal axis and then along the curve till (ε(x), x) for some x.

Look at the total change in RS entropy along this path. We have

hRS(x; ε(x))− hRS(0; εMAP) =

∫
path

dhRS =

∫ x

0

dx
d

dx
hRS(x; ε(x))

=

∫ x

0

dx(
∂

∂x
hRS(x; ε(x)) + ε′(x)

∂

∂ε
hRS(x; ε(x)))

=

∫ x

0

dxε′(x)
∂

∂ε
hRS(x; ε(x))

=

∫ x

0

dxε′(x)(1− (1− x)r−1)l

The last integral is recognized as the trial entropy P (x), the area under the EXIT

curve (ε(x), (1− (1− x)r−1)l) (see (10.7)).

Let us highlight the main points of this discussion. The natural definition of

the EXIT curve in parametric form is,

(ε(x),
∂

∂ε
hRS(x; ε(x))).

and satisfies

hRS(x; ε(x))− hRS(0; εMAP) =

∫ x

0

dxε′(x)
∂

∂ε
hRS(x; ε(x)).

The right hand side is the area under the EXIT curve and the left hand side

is the corresponding change in entropy. On one hand the area threshold is by

definition εA = ε(xA) such that the area under the EXIT curve vanishes, and on

the other hand the MAP threshold is εMAP = ε(xMAP) such that the minima of

−hRS are at the same height hRS(xMAP; ε(xMAP)) − hRS(0; εMAP) = 0. Therefore

these two thresholds are identical.

12.4 Compressive Sensing

Write RS free energy (can be derived by integrating out state evolution). Illus-

trate thresholds it predicts. Discuss that RS is exact. Do it for Lasso or for know

prior case ?

12.5 K-SAT

Recall that in Chapter 11 we gave the Bethe expression for the free energy of

K-SAT. From this expression one also gets a Bethe formula for the entropy

density. There is natural RS functional associated to this formula, which leads

to a natural conjecture for the entropy density. We will see that, contrary to

216 Replica Symmetric Free Energy Functionals

coding and compressive sensing, the conjecture cannot be fully correct.4 This is

one of the main motivations for developping a better theory, namely the cavity

method.

The construction of the natural RS functional for K-SAT proceeds like in the

coding case: one takes as a starting point the Bethe expression (11.21) and treats

the messages hi→a as independent random variables distributed according to a

trial distribution Q(.). The message passing equation (9.32),

ĥa→i = −1

2
ln

{
1−

∏
j∈∂a\i

1− tanhhj→a
2

}
(12.8)

induces the distribution Q̂(.). In the coding case we discussd the case of regular

Gallager (l, r) ensembles. One difference here is that while the check nodes have

degree K, the variable node degrees are (asymtotically) Poisson distributed with

average degree αK.

Here is the formal definition of the RS functional for the entropy. Fix a trial

distribution Q(.) on R. Pick K iid copies of the random variable H ∼ Q(.). Call

them H1, . . . ,HK . Define the random variable

Ĥ = −1

2
ln

{
1−

K−1∏
k=1

1− tanhHk

2

}
. (12.9)

Pick two Poisson distributed integers p and q with average αK, and pick p + q

iid copies of Ĥk, k = 1, . . . , p+ q. Let

s(H, Ĥ, p, q) = ln

{ p∏
k=1

(1− tanh Ĥk)

p+q∏
k=p+1

(1 + tanh Ĥk)

+

p∏
k=1

(1 + tanh Ĥk)

p+q∏
k=p+1

(1− tanh Ĥk)

}

+ ln

{
1−

K∏
k=1

1− tanhHk

2

}
− ln

{
1 + tanhH tanh Ĥ

}
The RS entropy functional is defined as

sRS(Q(.)) = E[s(H, Ĥ, p, q)] (12.10)

where the expectation is over all random variables p, q,H, Ĥ.

The replica symmetric prescription for computing the entropy density is to

4 While in coding and compressive sensing it is quite hard to prove the RS formulas are

exact, in K-SAT it is relatively easier to prove that they cannot be correct or at least fully
correct.

12.6 Notes 217

take

sRS(α) ≡ sup
Q(.)

sRS(Q(.))

The stationnary points of (12.10) yields an integral equation for Q(.). Similarly

to coding, this can be split in two integral equations linking Q(.) and Q̂(.) where

Q̂(.) is the distribution of Ĥ. These two equations can equivalently be written

as (homework)

H
d
=

p∑
k=1

Ĥk −
p+q∑

k=p+1

Ĥk, Ĥ
d
= −1

2
ln

{
1−

K−1∏
k=1

1− tanhHk

2

}
.

where
d
= means equality in distribution. The second relation is of course the same

as (12.9), and you will derive the first one in the homeworks. These equations can

be solved numerically (e.g. by the population dynamics method of homework).

This allows to find the maximizer of the RS functional and compute sRS(α).5

Figure ?? shows that sRS(α) for K = 3. the function decreases as the clause

density increases, and vanishes at α ≈ 4.677. Thus the present replica symmetric

analysis predicts that there exist exponentially many solutions at least until this

value of α, and that in particular the SAT-UNSAT threshold should be larger.

However it is known that this is wrong. For example in problem ?? we guide

you through the proof of αsat-unsat ≤ 4.666 for K = 3. In fact, as we will see

in Chapter 15 the cavity method proposes that the RS formula is exact till a

threshold value αc < αsat-unsat, called the “condensation threshold”, and that

another one called RSB formula6 holds in the range αc < α < αsat-unsat. At the

condensation threshold there is a genuine phase transition: limn−1E lnZ is not

analytic, in other words the same (analytic) formula cannot hold both above

and below αc. For K = 3 we have αc ≈ 3.86 and αsat-unsat ≈ 4.26. None of these

claims have been proven so far.

12.6 Notes

A few words about the concept of order paramter. Like for many physical con-

cepts there is no rigid definition, and finding the correct order parameter is an

art validated by experiment. Depending on the problem at hand this can seem

more or less obvious like in fluids (the volume per particle) or in magnetism

(the magnetization), but can be much more subtle like in superconductivity (the

”wave function” of Cooper pairs). The Higgs field is the order parameter associ-

ated to the electroweak phase transition that occurred at an early epoch of the

universe. The recently discovered Higgs bosons are elementary excitations of this

5 Note the global maximum necessarrily corresponds to a stable fixed point and therefore
iterative methods to solve the density evolution equations can find it. Similarly global

minima of the free energy necessarily correspond to stable fixed point of density evolution.
6 As we will see “B” stands for broken.

218 Replica Symmetric Free Energy Functionals

field, much like spin flips are elementary excitations associated to magnetization.

As we will see K-SAT is one of these problems for which the guess of the order

parameter requires a stretch of imagination: probability distributions of random

probability distributions.

Problems

12.1 RS analysis for K-SAT Derive the density evolution equations for K-SAT.

Use population dynamics (as seen in homeworks of Chapter ??) to compute the

RS prediction for αsat-unsat.

12.2 Upper bounds on the SAT-UNSAT threshold. Upper bounds for the SAT-

UNSAT threshold, we call it αs, are usually derived by counting arguments.

The first exercise develops the simplest such argument. In the second exercise

you will study a more subtle counting argument which leads to an important

improvement7. This method can be further refined and has led to better bounds.

An assignment is a tuple x = (x1, . . . , xn) where xi = 0, 1 of n variables. The

total number of possible clauses with k variables is equal to 2k
(
n
k

)
. A random

formula F is constructed by picking, with replacement, uniformly at random, m

clauses. Thus there are (2k
(
n
k

)
)m possible formulas.

We set m = αn and think of n and m as tending to ∞ with α fixed. This is

the regime displaying a SAT-UNSAT threshold.

It is useful to keep in mind that P[A] = E[1(A)] where 1(A) is the indicator

function of event A. In what follows probabilities and expectations are with

respect to the random formulas F .

12.3 Crude upper bound by counting all satisfying assignments Let

S(F) be the set of all assignments satisfying F and let |S(F)| be its cardinality.

Since F is a random formula, |S(F)| is an integer valued random variable.

a) Show the Markov inequality P[F satisfiable] ≤ E[|S(F)|].

b) Fix an assignement x. Show that P[x satisfiesF] = (1− 2−k)m. Then deduce

that

E[|S(F)|] = 2n(1− 2−k)m.

c) Deduce the upper bound

αs <
ln 2

| ln(1− 2−k)|
.

For k = 3 this yields αs < 5.191.

12.4 Bound by counting a restricted set of assignments] We define the

set Sm(F) of maximal satisfying assignments as follows. An assignment x ∈
Sm(F) iff:

• x satisfies F ,

7 by Kirousis, Kranakis, Krizanc and Stamatiou, Approximating the Unsatisfiability
Threshold of Random Formulas, in Random Struct and Algorithms (1998).

12.6 Notes 219

• for all i such that xi = 0 (in x), the single flip xi → 1 yields an assignment -

call it xi - that violates F .

a) Show that if F is satisfiable then Sm(F) is not empty. Hint: proceed by

contradiction.

b) Show as in the first exercise the Markov inequality P[F satisfiable] ≤ E[|Sm(F)|]

c) Show that

E[|Sm(F)|] = (1− 2−k)m
∑
x

P[∩i:xi=0 (xi violatesF) | x satisfiesF].

d) Fix x. The events Ei ≡ (xi violatesF) are negatively correlated, i.e

P[∩i:xi=0Ei | x satisfiesF] ≤
∏
i:xi=0

P[Ei | x satisfiesF]

For the full proof which uses a correlation inequality (of FKG type) we refer to

the reference given above. Here is a rough intuition for the inequality. First note

that if xi = 0 and xi violates F , there must be some set Si of clauses (in F) that

are satisfied only by this variable xi = 0 (this set might contain only one clause).

This restricts the possible formulas contributing to the event Ei. Second note

that sets Si, Sj corresponding to different such variables xi = 0, xj = 0 must be

disjoint. This ”repulsion” between the sets Si and Sj puts even more restrictions

on the possible formulas, compared to a hypothetical situation where the events

(and thus the sets Si and Sj) would have been independent.

e) Now show that

P[Ei | x satisfiesF] = 1−
(

1−
(
n−1
k−1

)
(2k − 1)

(
n
k

))m.
Hint: note that in the event Ei there must be at least one clause containing

xi = 0 and containing other variables that do not satisfy it.

f) Deduce from the above results that limn→0 P[F satisfiable] = 0 as long as α

satisfies

(1− 2−k)α(2− e−
αk

2k−1) < 1.

The improvement compared with the first exercise resides in the factor e
− αk

2k−1 .

A numerical evaluation for k = 3 yields the bound αs < 4.667.

13 Interpolation Method

13.1 Guerra bounds for Poissonian degree distributions

13.2 RS bound for coding

13.3 RS and RSB bounds for K sat

13.4 Application to spatially coupled models: invariance of free
energy, entropy ect...

14 Spatial Coupling and Nucleation
Phenomenon

So far we have seen that a variety of problems can be phrased in a natural way in

terms of marginalizing a highly-factorized function. Message-passing algorithms

are then the logical choice to accomplish this marginalization and we have seen

how such algorithms perform in the thermodynamic limit.

Perhaps more surprisingly, we saw that the same quantities which were im-

portant for the analysis of the suboptimal message-passing algorithm reappeared

when we looked at the seemingly more fundamental question of determining

static thresholds, like the MAP threshold or the SAT/UNSAT threshold. The

Maxwell construction is a graphical representation of this phenomenon.

We will now tie these two threads together. We will discuss a generic construc-

tion, called spatial coupling, which can be applied to a wide range of graphical

models. The idea is to take many copies of a graphical model, to place them

next to each other on a line and then to start connecting these models by “ex-

changing edges” in such a way that the local structure of the graphical model

remains unchanged but that globally we create a larger graphical model which

forms a one-dimensional chain. If in addition we impose suitable conditions at

the boundaries of the model, this larger graphical model behaves very well un-

der message-passing. Roughly speaking, the performance of the large spatially-

coupled model under message-passing (in terms of the resulting threshold) is as

good as if we had done optimal processing on the original graphical model.

For the most part we will only discuss the phenomenon but we will not give

proofs. We will see how this phenomenon has again a nice physical interpretation.

In fact – it is what is called the nucleation phenomenon in physics. Nucleation

explains amongst other things how crystals grow, starting with a seed or nucleus.

We will discuss two important consequences of the nucleation phenomenon.

First, whenever we are in control of the graphical structure and the size of

the graph is not very crucial, it is natural to construct the graph according

to the above recipe. This results in graphs which are well suited for message-

passing processing and give very good performance. E.g., for the coding problem

this construction makes it possible to design codes which, under BP decoding,

are not only provably capacity-achieving for a particular channel, but are in

fact universally so, i.e., they are capacity-achieving for the whole class of BMS

channels. A similar construction is possible for the compressive sensing problem.

There is a second, equally important application of the idea, namely to use

222 Spatial Coupling and Nucleation Phenomenon

spatial coupling as a proof technique. Consider e.g. the case of the K-SAT prob-

lem. Also in this case we can use spatial coupling. This means we can construct

spatially-coupled K-SAT formulas, and it is easier to find satisfiable solutions

for such formulas than for the uncoupled ones. But what is the use of this? In

coding, we were in charge of picking the code, and so we can pick coupled ones.

The same thing applies for compressive sensing. We do not have the same degree

of freedom for the constraint satisfaction problem where the formula is given

to us. The idea is the following. If we are able to analyze the performance of a

message-passing algorithm on coupled formulas then we can use the so-called in-

terpolation method to show that this algorithmic threshold is also a lower bound

on the SAT/UNSAT threshold of the uncoupled ensemble. So in this case we use

spatial coupling only as a thought experiment. Indeed, the same method can be

used in the context of coding to prove that the MAP threshold of the uncoupled

formula is at least as large as the area threshold. Together with the upper bound

on the MAP threshold which we derived in Chapter 10 this shows that the MAP

threshold of the uncoupled ensemble is equal to the area threshold.

In the remainder of the chapter we go over our three running examples. In

each case we describe the construction, the performance of the coupled system,

as well as the consequences for our problem at hand.

14.1 Coding

There are many possible ways of constructing coupled graphical models from

uncoupled ones. The “saturation phenomenon” is fairly robust with respect to

the exact way of how we construct coupled models. So the difference lies mostly

in how convenient the construction is either from a practical perspective or for

the purpose of proofs. We present below two generic ways to achieve the spatial

coupling. We start with the “protograph” construction. It has a very good per-

formance and the additional structure is well suited for implementations. Our

second construction is a “random” model. This model is well suited for proofs.

Indeed, in the sequel we exclusively use the random model when it comes to

showing plots and to formulating theorems.

Protograph Construction

To start, consider a protograph of a standard (3, 6)-regular ensemble (see [?, ?] for

the definition of protographs). It is shown in Figure 14.1. There are two variable

nodes and there is one check node. Let M denote the number of variable nodes

at each position. For our example, M = 100 means that we have 50 copies of the

protograph so that we have 100 variable nodes at each position. For all future

discussions we will consider the regime where M tends to infinity.

Next, consider a collection of (2L+1) such protographs as shown in Figure 14.2.

These protographs are non-interacting and so each component behaves just like

14.1 Coding 223

Figure 14.1 Protograph of a standard (3, 6)-regular ensemble.

-L 0 L

Figure 14.2 A chain of (2L+ 1) protographs of the standard (3, 6)-regular ensembles
for L = 9. These protographs do not interact.

a standard (3, 6)-regular component. In particular, the belief-propagation (BP)

threshold of each protograph is just the standard threshold, call it εBP(dv =

3, dc = 6). Slightly more generally: start with an (dv, dc = kdv)-regular ensemble

where dv is odd so that bl/2c = (dv − 1)/2 ∈ N.

We will now “coupled” these copies. To achieve this coupling, connect each

protograph to bl/2c protographs “to the left” and to bl/2c protographs “to the

right.” This is shown in Figure 14.3 for the two cases (dv = 3, dc = 6) and

(dv = 7, dc = 14).

Note that bl/2c extra check nodes are added on each side to connect the

“overhanging” edges at the boundary. This reduces the rate of this ensemble

from 1− dv
dc

= k−1
k to

R(dv, dc = kdv, L) =
(2L+ 1)− (2(L+ bl/2c) + 1)/k

2L+ 1

=
k − 1

k
− 2bl/2c
k(2L+ 1)

,

Note that this rate loss decreases with the length of the chain. Therefore, in

practice we want to pick the length not too small. Of course, this increases the

blocklength and so there is a natural trade-off between the block length and the

rateloss due to the boundary.

In the above construction we had to assume that dv was odd and also the

“width” of the connection was linked directly to the degree dv. In this case

the construction leads to the very symmetric ensemble. It is not very hard to

224 Spatial Coupling and Nucleation Phenomenon

-L · · · -4 -3 -2 -1 0 1 2 3 4 · · · L

-L · · · -4 -3 -2 -1 0 1 2 3 4 · · · L

Figure 14.3 Two coupled chains of protographs with L = 9 and (dv = 3, dc = 6) (top)
and L = 7 and (dv = 7, dc = 14) (bottom), respectively.

extend this construction to cases where dv is even and so that “width” of the

connection is no longer directly linked to dv. But instead of following this path,

let us directly go to another extreme and introduce an ensemble which includes

much more randomness.

Random Construction

For the purpose of analysis, the following random ensemble is much betters

suited. Let us assume that dc ≥ dv, so that the ensemble has a non-trivial design

rate.

We assume that the variable nodes are at positions [−L,L], L ∈ N. At each

position there are M variable nodes, M ∈ N. Conceptually we think of the check

nodes to be located at all integer positions from [−∞,∞]. Only some of these

positions actually interact with the variable nodes. At each position there are
dv
dc
M check nodes. It remains to describe how the connections are chosen.

Rather than assuming that a variable at position i has exactly one connection

to a check node at position [i− bl/2c, . . . , i+ bl/2c], we assume that each of the

dv connections of a variable node at position i is uniformly and independently

chosen from the range [i, . . . , i + w − 1], where w is a “smoothing” parameter.

In the same way, we assume that each of the dc connections of a check node at

position i is independently chosen from the range [i−w+ 1, . . . , i]. We no longer

require that dv is odd.

More precisely, the ensemble is defined as follows. Consider a variable node at

position i. The variable node has dv outgoing edges. A type t is a w-tuple of non-

14.1 Coding 225

negative integers, t = (t0, t1, . . . , tw−1), so that
∑w−1
j=0 tj = dv. The operational

meaning of t is that the variable node has tj edges which connect to a check node

at position i + j. There are
(
dv+w−1
w−1

)
types. Assume that for each variable we

order its edges in an arbitrary but fixed order. A constellation c is an dv-tuple,

c = (c1, . . . , cdv) with elements in [0, w− 1]. Its operational significance is that if

a variable node at position i has constellation c then its k-th edge is connected

to a check node at position i + ck. Let τ(c) denote the type of a constellation.

Since we want the position of each edge to be chosen independently we impose a

uniform distribution on the set of all constellations. This imposes the following

distribution on the set of all types. We assign the probability

p(t) =
|{c : τ(c) = t}|

wdv
.

Pick M so that Mp(t) is a natural number for all types t. For each position i pick

Mp(t) variables which have their edges assigned according to type t. Further,

use a random permutation for each variable, uniformly chosen from the set of all

permutations on dv letters, to map a type to a constellation.

Under this assignment, and ignoring boundary effects, for each check position

i, the number of edges that come from variables at position i− j, j ∈ [0, w− 1],

is M dv
w . In other words, it is exactly a fraction 1

w of the total number Mdv of

sockets at position i. At the check nodes, distribute these edges according to a

permutation chosen uniformly at random from the set of all permutations on

Mdv letters, to the M dv
dc

check nodes at this position. It is then not very difficult

to see that, under this distribution, for each check node each edge is roughly

independently chosen to be connected to one of its nearest w “left” neighbors.

Here, “roughly independent” means that the corresponding probability deviates

at most by a term of order 1/M from the desired distribution. As discussed

beforehand, we will always consider the limit in which M first tends to infinity

and then the number of iterations tends to infinity. Therefore, for any fixed

number of rounds of DE the probability model is exactly the independent model

described above.

lemma 14.1 (Design Rate) The design rate of the ensemble (dv, dc, L, w), with

w ≤ 2L, is given by

R(dv, dc, L, w) = (1− dv
dc

)− dv
dc

w + 1− 2
∑w
i=0

(
i
w

)dc
2L+ 1

.

Proof Let V be the number of variable nodes and C be the number of check

nodes that are connected to at least one of these variable nodes. Recall that we

define the design rate as 1− C/V .

There are V = M(2L+ 1) variables in the graph. The check nodes that have

potential connections to variable nodes in the range [−L,L] are indexed from −L
to L+w−1. Consider the M dv

dc
check nodes at position −L. Each of the dc edges

of each such check node is chosen independently from the range [−L−w+1,−L].

The probability that such a check node has at least one connection in the range

226 Spatial Coupling and Nucleation Phenomenon

[−L,L] is equal to 1−
(
w−1
w

)dc
. Therefore, the expected number of check nodes

at position −L that are connected to the code is equal to M dv
dc

(1−
(
w−1
w

)dc
). In

a similar manner, the expected number of check nodes at position −L + i, i =

0, . . . , w−1, that are connected to the code is equal to M dv
dc

(1−
(
w−i−1
w

)dc
). All

check nodes at positions −L+w, . . . , L−1 are connected. Further, by symmetry,

check nodes in the range L, . . . , L+w−1 have an identical contribution as check

nodes in the range −L, . . . ,−L+w− 1. Summing up all these contributions, we

see that the number of check nodes which are connected is equal to

C = M
dv
dc

[2L− w + 2

w∑
i=0

(1−
(i
w

)dc
)].

Discussion: In the above lemma we have defined the design rate as the normal-

ized difference of the number of variable nodes and the number of check nodes

that are involved in the ensemble. This leads to a relatively simple expression

which is suitable for our purposes. But in this ensemble there is a non-zero prob-

ability that there are two or more degree-one check nodes attached to the same

variable node. In this case, some of these degree-one check nodes are redundant

and do not impose constraints. This effect only happens for variable nodes close

to the boundary. Since we consider the case where L tends to infinity, this slight

difference between the “design rate” and the “true rate” does not play a role.

We therefore opt for this simple definition. The design rate is a lower bound on

the true rate.

Density Evolution

The protograph construction has a slightly better performance if we look at

codes of finite length and also, due to the extra structure, it might be easier to

implement. On the other hand, the random ensemble is easier to deal with when

it comes to proofs. Since asymptotically they behave essentially the same, we

concentrate in the sequel on the random case.

The (dv, dc, L, w) ensemble is just an LDPC ensemble with some additional

structure. It’s asymptotic performance can hence again be assessed via den-

sity evolution. Therefore, as a first step let us write down the density evolution

equations. The only difference compared to the DE equations of the uncoupled

ensemble is that now we have a potentially different erasure probability for every

position. The state is therefore no longer a scalar quantity but a vector of the

length of the chain.

definition 14.2 (Density Evolution of (dv, dc, L, w) Ensemble) Let xi, i ∈ Z,

denote the average erasure probability which is emitted by variable nodes at

position i. For i 6∈ [−L,L] we set xi = 0. For i ∈ [−L,L] the FP condition

14.1 Coding 227

implied by DE is

xi = ε
(

1− 1

w

w−1∑
j=0

(
1− 1

w

w−1∑
k=0

xi+j−k
)dc−1

)dv−1

. (14.1)

If we define

yi =
(

1− 1

w

w−1∑
k=0

xi−k

)dc−1

, (14.2)

then (14.1) can be rewritten as

xi = ε
(

1− 1

w

w−1∑
j=0

yi+j

)dv−1

.

EXIT Curves

As for uncoupled ensembles we can draw EXIT curves for the coupled case. Recall

that in the uncoupled case, the EXIT curve is a plot of the channel parameter

ε as a function of the EXIT value (1− (1− x)r−1)l, see e.g., Figure 10.4. In the

uncoupled case we had a simple analytical formula for this curve. For the coupled

case, no such formula exists, but one can compute the curves numerically.

Figure 14.4 shows the EXIT curves for the (dv = 3, dc = 6, L) for L =

1, 2, 4, 8, 16, 32, 64, and 128. Note that these EXIT curves show a dramatically

h
E

P
B

ε

εB
P
(3

,
6
)
≈

0
.4

2
9
4

εM
A

P
(3

,
6
)
≈

0
.4

8
8
1

L=1

L=2

Figure 14.4 EBP EXIT curves of the ensemble (dv = 3, dc = 6, L) for
L = 1, 2, 4, 8, 16, 32, 64, and 128. The BP/MAP thresholds are
εBP/MAP(3, 6, 1) = 0.714309/0.820987, εBP/MAP(3, 6, 2) = 0.587842/0.668951,
εBP/MAP(3, 6, 4) = 0.512034/0.574158, εBP/MAP(3, 6, 8) = 0.488757/0.527014,
εBP/MAP(3, 6, 16) = 0.488151/0.505833, εBP/MAP(3, 6, 32) = 0.488151/0.496366,
εBP/MAP(3, 6, 64) = 0.488151/0.492001, εBP/MAP(3, 6, 128) = 0.488151/0.489924. The
light/dark gray areas mark the interior of the BP/MAP EXIT function of the
underlying (3, 6)-regular ensemble, respectively.

different behavior compared to the EBP EXIT curve of the underlying ensemble.

These curves appear to be “to the right” of the threshold εMAP(3, 6) ≈ 0.48815.

228 Spatial Coupling and Nucleation Phenomenon

For small values of L one might be led to believe that this is true since the de-

sign rate of such an ensemble is considerably smaller than 1 − dv/dc. But even

for large values of L, where the rate of the ensemble is close to 1 − dv/dc, this

dramatic increase in the threshold is still true. Empirically we see that, for L

increasing, the EBP EXIT curve approaches the MAP EXIT curve of the under-

lying (dv = 3, dc = 6)-regular ensemble. In particular, for ε ≈ εMAP(dv, dc) the

EBP EXIT curve drops essentially vertically until it hits zero.

Decoding Wave

“The” key to understanding why spatially coupled ensembles perform so well is

to study their FPs under density evolution. Recall that for uncoupled ensembles

the FPs are scalars. For the coupled case the state of the system is no longer a

scalar but a vector, where the length of the vector is equal to the length of the

chain. Due to this fact, there are some very interesting FPs which appear.

Assume we are operating much above the threshold. Let us assume that we

decode until we are stuck and let us plot the final erasure probability at each

section along the chain. Then it is reasonably to expect that this erasure proba-

bility is equal to the erasure probability which we would observe for an uncoupled

ensemble. The only exception are positions very close to the boundary where the

behavior is a little bit better due to the extra information we have there. The

top picture in Figure 14.6 shows this situation together with the position of the

FP on the EXIT curve. Since the FP is symmetric with respect to the middle of

the chain, only one half is shown. Imagine that we now slowly lower the erasure

probability of the channel. Due to the improved conditions at the boundary, the

“effective” erasure probability at the boundary will at some point be below the

BP threshold of the uncoupled ensemble and the BP decoder will be able to

decode the bits at the boundary. But once these bits are decoded this will lower

the “effective” erasure probability for bits a little bit further into the chain. This

effect propagates like a wave and the whole chain will get decoded. The middle

and the bottom picture in Figure 14.6 show the wave in various stages.

The perhaps the most surprising aspect is that the BP threshold for the cou-

pled chain is exactly the area threshold of the uncoupled one.

¡¡¡¡¡¡¡ .mine Figure 14.6 shows the FP for various parameters of the channel to-

gether with the position of the FP on the EXIT curve. Since the FP is symmetric

with respect to the middle of the chain, only one half is shown.

Main Statement

theorem 14.3 (BP Threshold of the (dv, dc, L, w) Ensemble) Consider trans-

mission over the BEC(ε) using random elements from the ensemble (dv, dc, L, w).

Let εBP(dv, dc, L, w) denote the BP threshold and let R(dv, dc, L, w) denote the

design rate of this ensemble.

14.1 Coding 229

Figure 14.5 FPs for various parameters of the channel together with the position of
the FP on the EXIT curve.

Figure 14.6 FPs for various parameters of the channel together with the position of
the FP on the EXIT curve.

Then, in the limit as M tends to infinity, and for w sufficiently large

εBP(dv, dc, L, w) ≤ εMAP(dv, dc, L, w) ≤ εMAP(dv, dc)+
w − 1

2L(1−(1−xMAP(dv, dc))dc−1)dv
,

(14.3)

εBP(dv, dc, L, w) ≥
(
εMAP(dv, dc)−w−

1
8

8dvdc +
4dcd

2
v

(1−4w−
1
8)dc

(1−2−
1
dc)2

)
×
(
1− 4w−1/8

)dcdv
.

(14.4)

230 Spatial Coupling and Nucleation Phenomenon

In the limit as M , L and w (in that order) tend to infinity,

lim
w→∞

lim
L→∞

R(dv, dc, L, w) = 1− dv
dc
, (14.5)

lim
w→∞

lim
L→∞

εBP(dv, dc, L, w) = lim
w→∞

lim
L→∞

εMAP(dv, dc, L, w)

= εMAP(dv, dc). (14.6)

Roughly speaking, the above theorems states that the BP threshold of the

coupled chain is equal to its MAP threshold and also to the MAP threshold of the

uncoupled chain. The statements in the theorem are considerably weaker than

what can be observed empirically. In particular, the convergence with respect to

the coupling width is conjectured to be exponential in w.

A very similar statement can be shown to hold for transmission over general

channels. In particular, one can show that these ensembles are good universally

for the whole class of BMS channels.

14.2 Compressive Sensing

The idea of spatial coupling can also be used in compressive sensing to attain

optimal performance by message passing. In a nutshell, the idea is to construct

appropriate sensing matrices that correspond to a “spatially coupled” factor

graph and then to apply an AMP type algorithm. The performance of the al-

gorithm is then analyzed through a state evolution recursion tailored to the

spatially coupled graph. This turns out to be a one-dimensional recursion which

displays similar phenomena than those described for the BEC.

In Chapter 8 our starting point was the Lasso estimator which is a reason-

able starting point to develop a universal algorithm that doe not assume a prior

knowledge of the signal distribution in the class Fε. Recall that the state evolu-

tion equation in Chapter ?? has at most one fixed point. Therefore, intuitively,

one does not expect that any improvement in performance can be obtained by

spatial coupling. This has indeed been corroborated by numerical simulations.

We will therefore turn our attention to a setting where the prior distribution of

the signal is known.

AMP when the prior is known

We assume that the signal distribution is from the class Fε and that it is known.

In other words p0(x) = (1 − ε)δ0(x) + εφ0(x) for a known φ0(x) (for example a

Gaussian distribution). As explained in Chapter 3, in this setting the optimal

estimator is the MMSE estimator (3.33). In Chapter 5 we went through the be-

lief propagation equations in Example 16. This approach can be systematically

developed in order to recursively compute the BP-estimate. Furthermore, fol-

lowing the same route as in Chapter 8, these message-passing equations can be

14.2 Compressive Sensing 231

simplified in order to arrive at an AMP algorithm that is very similar to (8.37).

By skimming through the previous chapters one can almost guess the form of

the new algorithm.

In (8.37) the update of the AMP-estimate uses the soft thresholding function

η(y, λ) found by solving the scalar Lasso problem. The reader should not be too

surprised that now the AMP updates involve a thresholding function given by the

MMSE estimator of the scalar case. Consider a scalar measurement y = x+ νz

of “signal” x affected by Gaussian noise with variance ν2 (so Z ∼ N(0, 1)) the

thresholding function is

η0(y, ν) = E[X|X + νZ = y] =

∫
dxx p0(x)e−

(y−x)2

2ν2∫
dx p0(x)e−

(y−x)2

2ν2

.

We stress that η0(y, ν) is not universal and depends on the prior. Here ν plays

the role of a threshold level analogous to λ in the Lasso case. It will be adjusted

at each AMP iteration. The mean square error for this optimal estimator (of the

scalar problem) is the MMSE function1

mmse(ν−2) = E
[
(X − E[X|X + νZ])2

]
=

∫
dx p0(x)

∫
dz

e−
z2

2

√
2π

(x− η0(x+ νz, ν))2.

The AMP updates are the same than in Chapter 8 except η is replaced by η0,

x̂
(t+1)
i = η0

(
x

(t)
i +

m∑
a=1

Aair
(t)
a , ν(t)

)
, (14.7)

r(t)
a = ya −

n∑
j=1

Aaj x̂
(t−1)
j + b(t)rt−1

a . (14.8)

If you go back to the derivation of the Onsager term in Chapter 8 you will see

that it can be traced back to a derivative of the soft thresholding function. You

can guess that now

b(t) =
1

δn

n∑
i=1

η′0
(
x

(t−1)
i +

m∑
a=1

Aair
(t−1)
a , ν(t)

)
. (14.9)

Similarly recall that in Chapter ?? we expressed the threshold level ν(t) thanks

to the MSE through (8.48). Here one arrives at the same conclusion, namely

(ν(t))2 = σ2 +
1

δ
(τ (t))2, (14.10)

where τ (t)2 is the average (normalized) MSE of the AMP algorithm (τ (t))2 =

limn→+∞
1
nE‖x̂

(t) − x0‖2. We can track its evolution thanks to the recursion

(same as (??) with correct η0-function)

(τ (t+1))2 = mmse((ν(t))−2). (14.11)

1 By convention the argument of the MMSE function is a signal-to-noise-ratio, here ν−2.

232 Spatial Coupling and Nucleation Phenomenon

In hindsight one can develop an interpretation for this equation: at time t + 1

the total quadratic error (τ (t+1))2 for the AMP estimate is given by the MMSE

of a scalar signal with effective noise variance σ2 + 1
δ (τ (t))2 at time t.

Let us summarize. Equations (14.11) and (14.10) give the evolution of the

MSE and the threshold level. These quantities can be precomputed. Equations

(14.8) and (14.9) define the AMP algorithm, and allow to compute the estimates

for the signal.

Construction of the measurement matrix

Let us first explain the general idea. In the standard case considered so far, the

measurement matrices have iid entries Aai ∼ N (0, 1√
m

) so that ”their factor

graph” is a complete bipartite graph with m checks and n variables. The ratio

δ = m/n is the sampling rate. Inspired by the construction of spatially coupled

codes one may try to use matrices associated to a spatial chain of L complete

bipartite graphs coupled across a window of size w. This turns out to be a

successful idea! The sampling rate is still equal to δ in the bulk of the chain.

At the boundary one has to add extra check nodes or equivalently one has to

oversample. Indeed, in order to create a seed that gets the nucleation process

started one needs a good estimate of the first few components of the signal. The

increase in sampling rate is negligible in the thermodynamic limit.

In practice, because the AMP algorithm updates purely local quantities (the

BP messages flowing along edges have been eliminated), one can forget about the

factor graph and specify directly the sensing matrix. You can convince yourself

that the sensing matrix described here has a factor graph that is a chain of

coupled complete bipartite graphs. There are many possible constructions and

ways to optimize the finite length performance. But these issues will not concern

us here, and we discus a similar construction which is similar to the one presented

in the coding case.

The signal has n components in total and we make m measurements. The

measurement matrix has n columns and m rows. Think of n given and m to

be determined later. Partition the columns in L groups2 c ∈ {1, . . . , L} with N

columns each, so N = n/L. Consider L + w − 1 groups of rows r ∈ {−(w −
2), . . . , 0, 1, . . . , L}, each with M = δN rows. The total number of measurements

is m = (w−1)M+ML = δn(1+(w−1)/L). The contribution of the oversampling

rate to the total rate m/n = δ(1 + (w − 1)/L) vanishes for large L.

Now consider an (L+ w − 1)× L matrix of variances Jrc. A simple choice is

Jr,c =

{
1

2w−1 if c ∈ {r − w + 1, . . . , r + w − 1}
0 otherwise

Here we use a simple square-like and symmetric shape function for Jr,c. One can

generalize this to Jr,c = ρJ (ρ|r − c|) with ρ = (2w − 1)−1 and a shape function

2 One can visualize the groups as positions along the chain.

14.2 Compressive Sensing 233

J (z) that is positive, supported on [−1,+1] and
∫ +1

−1
dz J (z) = 1. Let us also

note that taking larger variances for the seeding part of the matrix may lead to

better performance. In the sequel all equations are valid for general choices of

Jr,c.

To specify the matrix elements of Aai, we introduce the notation R(a) and

C(i) for the groups (r and c) to which row a and column i belong. A simple

choice is to take iid entries

Aai ∼ (0,
1

M
JR(a),C(i))

We notice that by construction we have the normalization
∑
iA

2
ai ≈ 1, as in

the standard (uncoupled) case. This matrix has a band structure with a band of

height and width wM ×wN . However the correct regime in which the spatially

coupled model is used is N >> L so effectively the matrix is ”full”.

Spatially coupled AMP

The starting point - the BP equations - are exactly the same except they are

applied to a bigger factor graph. The derivation of the coupled AMP algorithm

then proceeds in the usual way by retaining only important terms in the regime

N → +∞ and L fixed.

It turns out that the resulting equations have a few extra complications.

Namely, due to coupling, the sensing matrix elements get ”renormalized” and the

threshold level as well as the Onsager term get ”averaged”. The AMP equations

now read

x̂
(t+1)
i = η0

(
x

(t)
i +

m∑
a=1

Q
(t)
R(a),C(i)Aair

(t)
a , ν

(t)
C(i)

)
(14.12)

r(t)
a = ya −

n∑
j=1

Aaj x̂
(t−1)
j + b

(t)
R(a)r

t−1
a (14.13)

where

b
(t)
R(a) =

1

δ

L∑
c=1

JR(a),cQ
t−1
R(a),c

{
1

N

∑
i s.tC(i)=c

η′0
(
x

(t)
i +

m∑
b=1

Q
(t)
R(b),C(i)Abir

(t)
b , ν

(t)
C(i)

)}

The threshold levels ν
(t)
C(i) and the weights QR(a),C(i) depend only on the local

MSE (τ
(t)
c)2 = limN→+∞

1
N

∑
i s.tC(i)=c E‖x̂

(t)
i − x0,i‖22. These quantities can

all be pre-computed from state evolution. The threshold level is given by (a

generalization of (14.10))

(ν(t)
c)−2 =

∑
r

Jr,c
(
σ2 +

1

δ

∑
c

Jr,c(τ
(t)
c)2

)−1
, (14.14)

This equation says that the threshold for estimates of the signal components in

group c is given by an average of the signal to noise ratios for measurements in

234 Spatial Coupling and Nucleation Phenomenon

the groups r ∈ {c−w+ 1, . . . , c+w− 1}, and the later are themselves given by

an average of the local MSE in the groups c ∈ {r − w + 1, . . . , r + w − 1}. The

sensing matrix gets renormalized by weights

Qr,c =

(
σ2 + 1

δ

∑
c Jr,c(τ

(t)
c)2

)−1∑
r Jr,c

(
σ2 + 1

δ

∑
c Jr,c(τ

(t)
c)2

)−1 .

Finally, the local MSE evolves as

(τ (t+1)
c)2 = mmse((ν(t)

c)−2), c = 1, . . . , L (14.15)

Equations (14.14)-(14.15) are the one dimensional state evolution recursion and

can be used to derived the performance of AMP on the spatially coupled model.

The reader should ponder on this recursion and realize that its structure is

perfectly analogous to the DE recursion in coding for the BEC.

Analysis of Performance and Phase Diagram

The discussion in this paragraph is valid for a fairly wide class of functions φ0(x),

but a good exercise for the reader is to verify the claims for a Gaussian φ0(x).

This can be done analytically for the uncoupled case and numerically in the

coupled case. Notice that in this case η0(y, s) can be explicitly be computed.

Consider the recursion (14.11) and look at the corresponding fixed point equa-

tion. Let

δ̃(p0) ≡ sup
ν
{ν−2mmse(ν−2)} > ε

Here the equality is definition. The inequality is a fact, which follows by remark-

ing limν→0 ν
−2mmse(ν−2) = ε. For a sampling rate δ > δ̃(p0) there exists only

one fixed point solution (τgood)2 = O(σ2). This corresponds to correct recon-

struction in the small noise limit σ → 0. Now, decrease the sampling rate in the

range ε < δ < δ̃(p0). One finds two or more stable fixed points (as well as unsta-

ble ones) for all σ2 > 0. Besides the ”good” fixed point satisfies (τgood)2 = O(σ2)

there is a ”bad” one, i.e. (τbad)2 = Θ(1) as σ → 0. Under the (natural) initial

condition (τ0)2 = +∞ one always tends to (τbad)2. This means that the noise

sensitivity limσ→0MSE/σ2 diverges, and exact reconstruction is not possible

even for very small noise. In this context δ̃(p0) is the algorithmic threshold of

AMP. The analogous quantity in our coding model is εBP and it the CW model

it is the spinodal point.

This threshold is lower than the Lasso (or l1) threshold derived in Chapter ??.

This is not too surprising since the later concerns the worst case distribution for

p0 ∈ Fε. It is instructive to compute the phase diagram and plot the optimal,

Lasso and AMP phase transition lines in the (ε, δ) plane.

Let us now turn our attention to the coupled model. The performance is an-

alyzed through the one dimensional recursion (14.14)-(14.15) which gives the

evolution of the MSE profile τ
(t)
c , as a function of time t and position along the

14.3 K-SAT 235

chain c = 1, . . . , L. For δ > δ̃(p0) the local MSE tends to (τc,good)2 = O(σ2)

uniformly along the chain. The advantage brought by spatial coupling appears

for a sampling rate in the range ε < δ < δ̃(p0). For L → +∞ and fixed w ≥ 2

there is a δ̃(p0, w) < δ̃(p0) such that for δ > δ̃(p0, w) the local MSE per position

is bounded by O(σ2), and in particular the noise sensitivity remains finite. Be-

cause of the oversampling of the first few signal components, the MSE falls down

to a level O(σ2) for these components, and then an estimation wave propagates

along the chain. Eventually the local MSE converges to the good fixed point for

all positions τgood,c = O(σ2). Furthermore one observes that δ̃(p0, w) → ε as

w → +∞. In other words in the regime N >> L >> w >> 1 the dynamical

AMP threshold saturates towards the optimal phase transition threshold. Figure

?? illustrates the phase diagram and the phase transition lines in teh (ε, δ) plane

for various values of L and w.

14.3 K-SAT

For the random K-SAT problem we discussed several algorithms. The best one

is BP-guided decimation. We described this algorithm and its empirical perfor-

mance in Chapter 9.3. If we apply spatial coupling to this algorithm we see no

boost in performance. This does not mean that spatial coupling does not help for

this problem. It just means that BP-guided decimation is not the right setting for

the nucleation phenomenon. The “right” setting is in fact a more sophisticated

algorithm called survey propagation.

Rather than pursuing this avenue, let us go to a simpler algorithm, namely the

UCP algorithm which we discussed in Chapter 9. We will see that spatially cou-

pled formulas have a significantly higher threshold under UCP than uncoupled

ones. Combined with the interpolation method this gives good lower bounds on

the SAT/UNSAT threshold of uncoupled systems.

Construction

As for the case of coding, there are various ways of constructing coupled K-SAT

formulas. E.g., Figure 14.7 shows the equivalent of a protograph ensemble for

the case K = 3 where each clause at position i has exactly one connection to a

variable at position i, i+ 1, and i+ 2.

For the purpose of analysis it is again more convenient to consider a random

ensemble. As before, let w be a window size. Then, for each clause at position i

and for each of its K connections we independently and uniformly pick a variable

at a position in the range [i, i + w − 1] and connect it to this variable with a

uniformly chosen sign. This is the ensemble which we consider in the sequel.

236 Spatial Coupling and Nucleation Phenomenon

0 L− w

0 L− w L− 1

Figure 14.7 A “protograph”-like coupled K-SAT ensembles or K = 3.

Performance under the UCP Algorithm

Let us now focus on the UC algorithm for the coupled formulas. As for the un-

coupled case, the UC algorithm consists of two main steps: free and forced. The

operation of the algorithm at a forced step is clear: remove all the unit-clauses

until no further unit-clause exists. However, at a free step, depending on how

we might want to use the chain structure of the formula, we can have different

schedules for choosing a free variable. For a coupled formula, the schedule within

which we are choosing a variable in a free step is important

Consider for instance the following naive schedule – at a free step, pick a

variable uniformly at random from all the remaining variables and fix it by

flipping a coin. Computer experiments indicate that this naive schedule has no

threshold gain compared to the un-coupled ensemble. This is not surprising since

this schedule does not exploit the spatial (chain) structure of the formula. Hence,

in order for the UC algorithm to have a threshold improvement over the coupled

ensemble, we need to come up with schedules that exploit the additional spatial

structure of the formula. We proceed by illustrating one such successful schedule.

In the very beginning of the algorithm, all the check nodes have degree K and

there are no unit clauses. Hence, we are free to fix the variables in the first few

steps of the algorithm. Let us fix the variables from the left-most position (i.e.,

the boundary). If we do this then we are creating in effect a seed at the boundary

of the chain. Continuing this action at the free steps, we will eventually create

unit clauses and at these forced steps a natural choice is just to clear all the

unit clauses. However, when we are confronted with a free step, we will again

try to help this seed to grow inside the chain, i.e., we always fix variables from

the left-most possible position. Consequently, the schedule that we apply is as

follows.

• At a free step, pick a variable randomly from the left-most position at which

variables exists and fix it permanently by flipping a fair coin.

• At a forced step, remove unit clauses as long as they exist.

Computer experiments show that this schedule indeed exhibits a threshold

improvement over the un-coupled ensemble. E.g., for the coupled 3-SAT problem,

experiments suggest that the threshold of the UC algorithm is around 3.67. This

14.3 K-SAT 237

is a significant improvement compared to the threshold of UC for the un-coupled

ensemble which is 8
3 .

To prove that indeed this schedule leads to this threshold we use again the

Wormald method. This means, we write down a set of differential equations which

describe the expected progress of the algorithm. Not surprisingly, the number of

differential equations we need scales linearly in the chain length.

Phases, Types, and Rounds

For the coupled ensemble, the analysis of the evolution of UC is much more in-

volved than the un-coupled ensemble. This is because of the fact that the schedule

we have used prefers the left-most variable position in a free step. Hence, the

number of variables in different positions will evolve differently. As an example,

one can easily see that during the algorithm, the first position that all its vari-

ables are set is the left-most position (i.e., position 0). After the evacuation of

position 0, position 1 becomes the left-most position of the graph and hence, the

second position that becomes empty of variables is position 1. Continuing in this

manner, the last position that is evacuated is position L + w − 2. With these

considerations, we consider L+w−1 phases for this algorithm (see Figure 14.8).

At phase p ∈ {0, 1, · · · , L+w − 2}, all the variables at positions prior to p have

been set permanently and as a result, at a free step we will pick a variable from

position p.

This statistical asymmetry in the number of variables at each position also

affects the the behavior of the number of check nodes in each position. As a

result, we consider types for the check nodes. For instance, consider a degree two

check node. It is easy to see that the probability that this degree two check node

is hit (removed or shortened) is greatly dependent on the position of variables

that it is connected to. This means that, dependent on the variable positions

to which they are connected, we have different types of degree two check nodes.

Clearly, the same statement holds for clauses of degree three, four, etc.

Let us now formally define the ingredients needed for the analysis. The no-

tation we use here is slightly hard to swallow immediately. Thus, for the sake

of maximum clarity, we try to uncover the details as smoothly as possible. We

consider rounds for this algorithm. Each round consists of one free step followed

by the forced steps that follow it. More precisely, at the beginning of each round

we perform a free step and then we clear out all the unit-clauses as long as they

exist (forced steps). We let time t be the number of rounds passed so far. This

time variable will be called round time. The relation between t and the natural

time (the total number of permanent fixes) is not linear. We also let Li(t) be the

number of literals left in variable position i ∈ {0, 1, · · · , L+ w − 2}.
We now define the check types. Consider a coupled K-SAT formula to begin

with. For such a formula there are L sets of check nodes placed at positions

{0, 1, · · · , L}. Let us consider a specific position i ∈ {0, 1, · · · , L} and look at the

check nodes at position i. Each of these check nodes can potentially be connected

238 Spatial Coupling and Nucleation Phenomenon

Figure 14.8 A schematic representation of how the literals at each of the positions
vary in time. The horizontal axis corresponds to time t which is the number of free
steps. Here we have L = 11 and w = 3. This plot corresponds to an implementation of
the UC algorithm on a random coupled instance. The blue numbers below the plot
are the phases of the algorithm. In the beginning of the algorithm, we are in phase 0.
This phase lasts until all the literals in the first position are peeled off and as a result
`0(t) reaches 0. We then go immediately to phase 1 and this phase lasts till `1(t)
reaches 0 and so on. We have in total L+ w − 1 = 13 phases.

to any set of K variables resting in variable positions {i, i + 1, · · · , i + w − 1}.
Some thought shows that there are various types of check nodes depending on

the variable positions that they are connected to. For example, there is a type of

check nodes for which all of the K edges go only into a single variable position

j ∈ {i, i + 1, · · · , i + w − 1} or there is a type for with some of its edges go

to position i and the rest go to position i + 1 and so on. Also, as we proceed

through the UC algorithm, some of these checks are shortened to create new

types of checks with degrees less than K. We now explain a natural way to

encode these various types.

By C(t, i, τ) we mean the number of check nodes at check position i ∈ {0, 1, · · · , L}
that have type τ at round tme t. The type τ = (τ0, · · · , τw−1) is a w-tuple and

indicates that relative to position i, how many edges the check has in (variable)

positions i, i+1, · · · , i+w−1. The best way to explain τ is through an example.

Let us assume w = 4 and consider the set of check nodes at check position 20

that are only connected to variable positions 20, 22, 23 in the following way. For

each of these check nodes there are exactly two edges going to position 20, and

1 edge going to position 22 and 1 edge going to position 23 (thus each of these

checks have degree 4). Figure 14.9 illustrates a generic check node of this set.

We denote the number of these checks at time t by C(t, 20, (1, 0, 2, 1)). In

14.3 K-SAT 239

Figure 14.9 A schematic representation of checks which contribute to
C(t, 20, (1, 0, 2, 1)). All the check nodes that contribute to C(t, i, τ), were initially (at
time 0) degree K check nodes resting at check position i. However, the algorithm has
evolved in a way that these check nodes have been deformed (possibly shortened or
remained unchanged) to have a specific type τ .

other words, the type is computed as follows: the check position number that

the check rests in is 20. This check is connected to a variable at position 20, and

2 variables at position 22, and a variable at position 23. So, relative to the check

position 20, we see the edge-tuple (1, 0, 2, 1). Let us now repeat and generalize:

By C(t, i, τ) we mean the number of check nodes, at time t, which rest in position

i, and τ is a w-tuple that indicates relative to variable position i, the number

of edges that go to positions i, i+ 1, · · · , i+ w − 1, respectively. One can easily

see that by summing up elements of the w-tuple τ = (τ0, · · · , τw−1), we find the

degree of the corresponding check type. We denote the degree of a type τ by

deg(τ). It is also easy to see that there are
(
d+w−2
d−1

)
different types of degree d

for d ∈ {2, 3, · · · ,K}. We are now ready to write the differential equations. Our

approach is as follows. Assume the phase of the algorithm is p and we are in a

round t. At a free step, we fix a variable at position p (free step). This will create

a number of forced steps in each of the positions p, p+ 1, · · · , L+w− 1. We first

compute the average of these forced fixes in each variable position as a function

of the number of degree two check nodes. Using these averages, we then update

the average number of check and variable nodes at each position. We proceed by

explaining a key property for the analysis.

The Differential Equations

Now, having the vector β we can find how the number of variables and checks

evolve. For all i ≥ 0,

∆Li(t) = Li(t+ 1)− Li(t) = −2βi(t). (14.16)

To see how the check types evolve, we note that for a given check type there are

two kinds of flows to be considered. A negative flow going out and a positive

flow coming in from the checks of higher degrees. In this regard, for a type

τ = (τ0, · · · , τw−1) with deg(τ) < K let ∂τ be the set of types of degree deg(τ)+1

240 Spatial Coupling and Nucleation Phenomenon

such that by removing one edge from them we reach to the type τ . The set ∂τ

consists of w types which we denote by τd, d ∈ {0, 1, · · · , w − 1}, such that

τd = τ + (0, · · · ,
d
1, · · · , 0), (14.17)

where + denotes vector addition in the field of reals. Thus, if deg(τ) < K, we

obtain

∆C(t, i, τ) = −2

w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

Li+d(t)
+

w−1∑
d=0

(1 + τd)βi+d(t)
C(t, i, τd)

Li+d(t)
. (14.18)

The right-hand side of (14.18) has two parts. The first part corresponds to the

flow that is going out of C(t, i, τ) and has negative sign. The right part is the

incoming flow from the check nodes of higher degrees. In the case where deg(τ) =

K, we only have an outgoing flow since no check node with higher degrees exist.

Hence, for the case deg(τ) = K we can write

∆C(t, i, τ) = −2

w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

Li+d(t)
. (14.19)

We now write the initial conditions for the variables and check types. Firstly,

note that Li(0) = 2N . In the beginning of the algorithm, all checks are of degree

K, thus for types τ such that deg(τ) < K, we have C(0, i, τ) = 0. For deg(τ) = K

we have

C(0, i, τ) = αN

(
K

τ0,τ1,··· ,τw−1

)
wK

. (14.20)

In order to write the differential equations, we re-scale the (round) time by N ,

i.e.

t← t

N
, (14.21)

and also normalize all our other numbers by N , i.e.,

c(t, ·, ·) =
C(Nt, ·, ·)

N
and `i(t) =

Li(Nt)

N
. (14.22)

We then obtain for i ∈ {0, 1, · · · , L+ w − 2},

d`i(t)

dt
= −2βi(t). (14.23)

For i ∈ {0, 1, · · · , L− 1} and deg(τ) < K we have

dc(t, i, τ)

dt
= −2

w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

`i+d(t)
+

w−1∑
d=0

(1 + τd)βi+d(t)
c(t, i, τd)

`i+d(t)
, (14.24)

and otherwise if deg(τ) = K we have

dc(t, i, τ)

dt
= −2

w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

`i+d(t)
. (14.25)

14.3 K-SAT 241

K 3 4 5

αUC(K) 2.66 4.50 7.58

αUC,L=50,w=3(K) 3.67 7.81 15.76

Table 14.1 First line: The thresholds for UCP on the uncoupled ensemble. Second line:
UCP threshold for a coupled chain with w = 3, L = 50.

The vector β̄ is also found as follows. For p being the current phase, we have

β(t) = (β0(t), · · · , βL+w−2(t))T = (I −A)−1ep, (14.26)

where A = [Ai,j](L+w−1)(L+w−1) has the form

Ai,j =
1

`j(t)

∑i
k=i−w+1 2c(t, k, πi−k,i−k) i = j,∑i
k=j−w+1 c(t, k, πi−k,j−k) 0 <| i− j |< w,

0 otherwise

(14.27)

Finally, the initial conditions are given by:

`i(0) = 2, for 0 ≤ i ≤ L+ w − 2

c(0, i, τ) =

{
α

(K
τ0,τ1,··· ,τw−1

)
wK

if deg(τ)= K and 0 ≤ i ≤ L− 1,

0 otherwise
(14.28)

Numerical Implementation

We have implemented the above set of differential equations in C. We define

the threshold αUC,L,w(K) as the highest density for which the spectral norm

(largest eigenvalue) of the matrix A is strictly less than one throughout the whole

algorithm. A practical point to notice here is that, for the sake of implementation,

we assume a phase p finishes when its corresponding variable `p(t) goes below

a (very) small threshold ε > 0. In our implementations, we have typically taken

ε = 10−5. However, it can be made arbitrarily small as long as the computational

resources allow.

Table 14.1 shows the value of αUC,L,w(K) with L = 50 and w = 3 for different

choices of K. As we observe from Table 14.1, for the UC algorithm with the

specific schedule mentioned above, there is a significant threshold improvement

over the un-coupled ensemble.

For L = 50, w = 3,K = 3 and several values of α, we have plotted in Fig-

ure 14.10 the evolution of largest eigenvalue of A as a function of round time t.

In order to characterize analytically the ultimate threshold for the UC algo-

rithm when L and w grow large, we proceed by further analyzing the set of

differential equations.

242 Spatial Coupling and Nucleation Phenomenon

0 1
4

1

α = 3.2 α = 3.4

0 1
4

1

α = 3.5

0 1
4

1

α = 3.66

0 1
4

1

Figure 14.10 The largest eigenvalue of the matrix A, plotted versus the round time t
(the number of rounds divided by the total number of variables NL). The plots
correspond to an actual implementation of the UC algorithm for the 3-SAT coupled
ensemble with L = 50 and w = 3. As we observe, for α < 3.67, there is a gap between
the largest eigenvalue of A and the value 1 throughout the UC algorithm. By
increasing α this gap shrinks to 0. For α = 3.66 (the right-most plot) this gap is
around 0.006.

15 Cavity Method: Basic Concepts

Message passing and spatial coupling techniques have been very successful in

providing efficient algorithms in the realm of coding and compressive sensing.

Furthermore the variational method has allowed us to derive the phase diagram

for these models, and the Maxwell construction ties the two approaches together.

On the other hand these methods are not as successful for constraint satisfaction

problems such as K-SAT. For example, plain BP does not allow to find solutions

and had to be supplemented by a decimation process. BP guided decimation finds

solutions up to some density, but it is not clear if this limitation corresponds to

some sort of fundamental dynamic threshold, similar to the BP threshold say.

Also (for the moment) we are not able to find the SAT-UNSAT threshold by a

sort of Maxwell construction or spatial coupling technique. At the same time the

RS entropy functional does not count correctly the number of solutions.

The success of message passing marginalization is related to the absence of

long range correlations between dynamical variables. In constraint satisfaction

problems such as K-SAT long range correlations are present and it is not pos-

sible to only take into account a tree like neighborhood of a node when its

marginal is computed. The boundary conditions at the leaf nodes of the tree

like neighborhood somehow matter. Often, in statistical mechanics, when long

range correlations are present, the key to the analysis comes from the concept of

extremal measure and convex decomposition of the Gibbs measure into extremal

measures. While these notions are relatively well understood and mathemati-

cally precise for low dimensional deterministic Ising models on regular grids, the

mathematical theory in the context of spin glass type models is still very much

of an open challenge. As we will see the cavity method boldly pushes the idea

of convex decomposition of the Gibbs distribution to its limit in the sense that

we will have to deal with a convex superposition with an exponentially large

number of extremal measures. Once this is accepted, the theory, although tech-

nically challenging, flows. Indeed it turns out this convex superposition defines

a new factor graph model which can again be analyzed by the message passing,

variational free energy and spatial coupling techniques. That we can again apply

these techniques ”one level up” is one of the fascinating aspects of the subject.

244 Cavity Method: Basic Concepts

15.1 Notion of Pure State

The concept of extremal measure or pure state has not been introduced nor

used explicitely yet, but this is the time to do so. We start by a very brief

discussion in the context of the Ising model because this is the simplest best

understood non-trivial paradigmatic situation. We then turn our attention to

the CW model, for which this notion is somewhat special due to the absence of

geometry, but allows to introduce a very useful heuristic point of view that lends

itself to generalizations.

A diggression on the Ising model

The construction of infinite volume Gibbs measures is a non-trivial problem

whose mathematical theory is developped mainly for Ising type models on regu-

lar grids, say Zd. Here we summarize very briefly and informally the main picture

for the classical two dimensional Ising model with nearest neighbord ferromag-

netic interactions. for which the theory is fully controlled, and the interested

reader will find pointers to the litterature in the notes. The phase diagram of

this model is qualitatively the same as the one of CW. The mathematical theory

of the Gibbs states for infinite volume starts with the Gibbs distribution on a

finite square grid Λ ⊂ Zd with specified boundary conditions. The boundary

conditions amount to fix the spin assignments on vertices of ∂Λ. One computes

the infinite volume limit of all marginals, given the boundary conditions, and

the set of these marginals defines the infinite volume Gibbs state. For any point

of the (T, h) plane the set of all possible infinite volume Gibbs states is convex.

Away from the coexistence line this set is trivially a point i.e, the infinite volume

limits of the marginals is independent of boundary conditions. On the coexis-

tence line the set of infinite volume limits is non-trivial. It has two extremal

measures obtained by the all +1 and all −1 boundary conditions, and in partic-

ular 〈si〉± = ±m 6= 0. All other states on the coexistence line are of the form

〈−〉w = w〈−〉+ + (1 − w)〈−〉−. Extremal states have correlations that satisfy

the exponential decay property; this holds when the state is unique and for the

+ and − states. For example, |〈sisj〉± − 〈si〉±〈sj〉±| ≤ const e−|i−j|/ξ(T) where

ξ(T) is a finite correlation length.1 On the other hand mixed states with w 6= 0, 1

have long range order which means lim|i−j|→+∞(〈sisj〉w − 〈si〉w〈sj〉w) 6= 0. As

a good exercise one can check that the clustering property of pure states implies

this limit is equal to 4w(1− w)m2.

The CW model revisited

On the complete graph there is no boundary so we simply start with the model

on a finite graph with a fixed constant magnetic field. We saw in Chapter 4 that

1 This length diverges when T approaches the critical temperature.

15.1 Notion of Pure State 245

in the (T, h) plane there is a the coexistence line on which the magnetization

can take two different values in the sense that limh→0± limn→+∞〈si〉 = ±m 6= 1.

The magnetization is uniquely defined away from this line in the sense that

it is an analytic function of h and T . It is not difficult to show that this fea-

ture is shared by any average 〈si1 . . . sik〉, for any finite set of spins. In this

sense the infinite Gibbs state is unique and ”pure” away from the coexistence

line, and is not unique on this line. There, one can define two ”pure states”

〈si1 . . . sik〉± = limh→0± limn→+∞〈si1 . . . sik〉, and also any convex superposition

〈−〉w = w〈−〉++(1−w)〈−〉− for 0 < w < 1. For the CW model the ”pure” states

satisfy an extreme form of clustering where variables decouple in thermodynamic

limit. For example for k = 2 〈sisj〉± − 〈si〉±〈sj〉± = 0.2 Genuine superpositions

(mixed states) have correlations that do not vanish in the thermodynamic limit.

For example, the decoupling property implies 〈sisj〉w−〈si〉w〈sj〉w = 4w(1−w)m2

on the coexistence line for any i 6= j. Remark for the Ising model the same rela-

tion is obtained for |i− j| → +∞.

For the CW model there is a one to one correspondence between ”pure states”

and minima of the free energy function f(m) appearing in the variational ex-

pression for −n−1 lnZ. This is an extremely simple instance of the landscape

picture discussed in the next paragraph.

The landscape picture

For spin glass models the situation is not ”as simple”. It is not known how to

define a mathematically sound notion of extremal state. For models on complete

or sparse locally tree like graphs one heuristic and intuitive approach identifies

the extremal states with global or quasi-global minima of the TAP or Bethe

type free energy functionals3. Let (µ
(p)
i→a, µ̂

(p)
a→i) = (µ(p), µ̂(p)) be the correspond-

ing solutions of the sum-product equations where p indexes the minima. From

these mesages one can reconstruct marginals ν(p)(.) which define the “extremal

measure“. To distinguish this measure from the usual notion of extremal state

and to avoid confusions we will call this an extremal or pure Bethe measure.

One has to think of it as a ”proxy“ for an ideal notion of pure state. When

message passing iterations converge one expects that there are a small number

of fixed points with well defined bassins of attraction and the number of pure

Bethe states is small. However when these iterations do not converge this may

be due to the presence of a very large number of fixed points, and thus to a

very large number of minima in the Bethe free energy. In such situations one

expects a large number of pure Bethe states. This happens in the TAP approach

to the SK model for the region of the phase diagram below the AT line. This

2 The CW model is a bit special in this respect because the complete graph wipes out any

trace of geometry. For finite n and any h one has 〈sisj〉 − 〈si〉〈sj〉 = O(n−1). Since there is

a unit distance between any two variables, one may interpret this as a exponential decay of
correlations on a length scale O(1/ lnn).

3 It is debated wether such an approach is valid for low dimensional spin glasses e.g the
Edwards-Anderson model

246 Cavity Method: Basic Concepts

also happens in K-SAT for clause densities slightly above the ones found by BP

guided decimation. The reason for the failure of BP guided decimation is the

proliferation of minima in the Bethe free energy. Free energy functions with a

proliferation of numerous minima are often called free energy landscapes. Figure

?? serves as a useful mental picture summarizing these ideas.

15.2 The Level-One Model

The convex decomposition ansatz

We formalize the heuristic landscape picture. The cavity method assumes that:

(i) The Gibbs distribution is a convex sum of ”pure states“; (ii) Pure states are

identified with the Bethe measures corresponding to minima of the free energy;

(iii) The weights of the convex superposition are determined by the Bethe free

energy minima. We write

µ (x) =

N∑
p=1

e−xF
(p)

Z(x)
µ(p)(x), Z(x) =

N∑
p=1

e−xF
(p)

(15.1)

The sum runs over p which indexes the minima {µ(p)
a→i, µ̂

(p)
a→i} = (µ(p), µ̂(p)) of

the Bethe free energy functional. The weights are determined by the free energy

of these minima F (p) = FBethe (µ(p), µ̂(p)). The ”pure“ Bethe measures µ(p)(x)

are defined through the collection of all their marginals, which themselves are

determined from (µ(p), µ̂(p)). The role of x, called the ”Parisi parameter“, turns

out to be quite subtle.4 For the moment one can think of it as a multiplicative

”renormalization” of the temperature. In a large portion of the phase diagram

the naive choice x = 1 is correct. However we will see that there are regions of

the phase diagram where values 0 < x < 1 are forced upon us.

Level-one auxiliary model

In order to make technical progress with the convex decomposition ansatz we

make one more assumption. One expects that at low temperatures when there

are an exponential number of minima, these are exponentially more numerous

than maxima and saddle points. Therefore we assume: (iv) the sum over p runs

over all stationnary points of the Bethe free energy i.e, fixed points solutions of

the sum-product equations.

The partition function (15.1) can be thought of as the one of a statistical

mechanics system with dynamical variables (µ(p), µ̂(p)) and effective Hamiltonian

4 The notation x is traditional and should not be confused with the one for configurations x.
This parameter was first introduced by parisi in the context of the replica approach. There

its role is even more mysterious an appears as an integer that is anlytically continued to

values in]0, 1[.

15.3 Message passing, Bethe free energy and complexity one level up 247

given by the Bethe free energy. Using assumption (iv) we are led to study the

Gibbs probability distribution of an auxiliary model, called the ”level-one model“

µ1(µ, µ̂) =
1

Z1(x)
e−xFBethe (µ,µ̂)

1sp(µ, µ̂) (15.2)

and

Z1(x) =
∑
µ,µ̂

e−xFBethe (µ,µ̂)
1sp(µ, µ̂) (15.3)

The indicator function 1sp(µ, µ̂) selects solutions of the sum product fixed point

equations. Recall that in the sum-product equations and the Bethe free energy

the normalization of the messages is arbitrary. In order for the sum in (15.3) to

be well defined we have to fix a normalization. We will take the most natural

one, namely
∑
xi
µi→a(xi) =

∑
xi
µ̂a→i(xi) = 1. With this normalization the

sum product equations used in subsequent calculations read

µi→a(xi) =

∏
b∈∂i\a µ̂b→i(xi)∑

xi

∏
b∈∂i\a µ̂b→i(xi)

(15.4)

µ̂a→i(xi) =

∑
∼xi fa(x∂a)

∏
j∈∂a\i µj→a(xi)∑

x∂a
fa(x∂a)

∏
j∈∂a\i µj→a(xi)

(15.5)

Let us immediately give a few definitions that will be useful to us later on.

Averages with respect to (15.2) are denoted by the usual bracket notation 〈−〉1.

The level-one free energy is defined as usual f1(x) = − 1
nx lnZ1(x). As in Chapter

2, the free energy allows to compute numerous other quantities by differentiations

with respect to the inverse temperature, here with respect to x. The level-one

internal energy is u1(x) = 〈FBethe 〉1/n = ∂
∂xf1(x). The Shannon-Gibbs entropy

associated to (15.2) is equal to Σ(x) = x2 ∂
∂xf1(x) = u1(x)− x−1Σ(x).

Choice of the Parisi parameter

Small paragraph to be written. Explain briefly. Interpret Σ(x).

15.3 Message passing, Bethe free energy and complexity one level
up

Message passing

We now show how the level-one model is solved in practice. The main idea is

to first recognize that the model is defined on a sparse factor graph and apply

again the sum-product and Bethe formulas. If Γ = (V,C,E) is the original factor

graph, then the level-one model has the factor graph Γ1 = (V1, C1, E1) described

on Fig. 15.1. We use the shorthand notation 1i and 1̂a for the indicator functions

248 Cavity Method: Basic Concepts

Figure 15.1 On the left, an exemple of an original graph Γ. On the right its
corresponding graph Γ1 for the level-one model.

Figure 15.2 Messages are labbeled with m if they outgoing from a Parisi variable node
are and with m̂ if they are outgoing from a Parisi function node.

forcing equations (15.4)-(15.5). Thus 1(µ, µ̂) =
∏
i 1i

∏
a 1̂a. A variable node

i ∈ V , becomes a function node i ∈ C1, with the function

ψi = e−xFi
∏
a∈∂i

1i. (15.6)

A function node a ∈ C remains a function node a ∈ C1 with factor

ψa = e−xFa
∏
i∈∂a

1̂a. (15.7)

An edge (a, i) ∈ E, becomes a variable node (a, i) ∈ V1. There is also an extra

function node attached to each variable node of the new graph, or equivalently

attached to each edge of the old graph. The corresponding function is

ψai = e+xFai . (15.8)

With these definitions (15.2) can be written as

µ1(µ, µ̂) =
1

Z1(x)

∏
i∈V

ψi
∏
a∈C

ψa
∏
ai∈E

ψai. (15.9)

The sum product equations for (15.9) involve four kind of messages shown on

figure 15.2. Messages flowing from a new function node to a new variable node

satisfy (the symbol ' means equal up to a normalization factor)

m̂a→ai '
∑

∼(µi→a,µ̂a→i)

ψa
∏

aj∈∂a\ai

maj→a

= exFai
∑

∼(µi→a,µ̂a→i)

1̂a(µ̂a→i)e
−x(Fa−Fai)

∏
aj∈∂a\ai

maj→a

15.3 Message passing, Bethe free energy and complexity one level up 249

and

m̂i→ai '
∑

∼(µi→a,µ̂a→i)

ψi
∏

bi∈∂i\ai

m̂bi→i

= exFai
∑

∼(µi→a,µ̂a→i)

1i(µi→a)e−x(Fi−Fai)
∏

bi∈∂i\ai

m̂bi→i

Messages from a new function node to a new variable node satisfy

mai→i ' exFaim̂a→ai, mai→a ' exFaim̂i→ai.

Notice that mai→i and mai→a are independent of µ̂a→i and µi→a respectively;

this allows us to simplify the message passing equations. To achieve the simpli-

fication define two distributions

Qi→a(µi→a) = mai→a, Q̂a→i(µ̂a→i) = mai→i

These flow on the edges of the original factor graph Γ = (V,C,E) and are called

cavity messages. It is easy to see that they satisfy

Q̂a→i(µ̂a→i) '
∑
µ

1̂a(µ̂a→i)e
−x(Fa−Fai)

∏
j∈∂a\i

Qj→a(µj→a) (15.10)

Qi→a(µi→a) '
∑
µ̂

1i(µi→a)e−x(Fi−Fai)
∏

b∈∂i\a

Q̂b→i(µ̂b→i). (15.11)

These are the cavity equations, an instance of sum-product equations for the

level-one model. Note that the cavity equations do not make any reference to

the graph Γ1 and we can now revert to the original one. As usual, if the graph

was a tree, these equations give the exact marginals of (15.2).

The x dependent exponentials are sometimes called reweighting factors. Their

explicit expression will be useful later on,

e−(Fi−Fai) =
∑
xi

∏
b∈∂i\a

µ̂b→i(xi), e−(Fa−Fai) =
∑
x∂a

fa(x∂a)
∏

∂j∈a\i

µj→a(xi)

(15.12)

Note that these are in fact the normalization factors in (15.4)-(15.5).

Bethe free energy and complexity

The Bethe free energy functional of the level-one model is a functional of the

cavity messages Qi→a, Q̂a→i. We could derive it as in Chapter ?? by first deriving

the exact free energy f1(x) on a tree, and then take this expression as a defition

for general graph instances. But we can also guess the fomula. It is basically

given by the usual definition, but with the extra feature that it must contain

the reweighting factors. Moreover its stationary points must yield (??). This is

enough information to guess that

FBethe(Q, Q̂) =
∑
i∈V
Fi +

∑
a∈C
Fa −

∑
ai∈E

Fai (15.13)

250 Cavity Method: Basic Concepts

where

Fi({Q̂b→i}b∈∂i) = − 1

x
ln

{∑
µ̂

e−xFi
∏
b∈∂i

Q̂b→i

}
,

Fa({Qj→a}j∈∂a) = − 1

x
ln

{∑
µ

e−xFa
∏
j∈∂a

Qj→a

}
,

Fai(Qi→a, Q̂a→i) = − 1

x
ln

{∑
µ,µ̂

e−xFaiQi→aQ̂a→i

}
.

The complexity functional within the Bethe formalism is given by ΣBethe =

x2 ∂
∂xFBethe. Explicitly,

ΣBethe(Q, Q̂) =
∑
i∈V

Σi +
∑
a∈C

Σa −
∑
ai∈E

Σai (15.14)

where

x−1Σi({Q̂b→i}b∈∂i) = −Fi +

∑
µ̂ Fie

−xFi
∏
b∈∂i Q̂b→i∑

µ̂ e
−xFi

∏
b∈∂i Q̂b→i

,

x−1Σa({Qj→a}j∈∂a) = −Fa +

∑
µ Fae

−xFa
∏
j∈∂aQj→a∑

µ e
−xFa

∏
j∈∂aQj→a

,

x−1Σai(Qi→a, Q̂a→i) = −Fai +

∑
µ,µ̂ Faie

−xFaiQi→aQ̂a→i∑
µ,µ̂ e

−xFaiQi→aQ̂a→i
.

One can interpret the Bethe complexity as the difference of the Bethe free energy

of the level-one model and a Bethe expression for the internal energy of the level

one model,

x−1ΣBethe = FBethe − 〈FBethe〉cav. (15.15)

The bracket 〈−〉cav is a natural average that can be read off from the above

formulas.

Simplifications for x = 1

As alluded to before x = 1 plays a specially important role. So it is fortunate that

a large portion of the formalism above can be simplified by eliminating entirely

the need for reweighting factors. This makes the replica analysis much simpler

and allows to make much simpler and precise numerical computations (e.g. by

population dynamics) .

Let us first discuss the level-one Bethe free energy. Replacing (11.12), (11.13)

and (11.14) into (15.13) one finds

FBethe(Q, Q̂)|x=1 = FBethe(µ
av, µ̂av) (15.16)

15.3 Message passing, Bethe free energy and complexity one level up 251

which is the usual Bethe free energy expressed in terms of ”average messages”,

µav

i→a(xi) =
∑
µi→a

µi→a(xi)Qi→a(µi→a), µ̂av

a→i(xi) =
∑
µ̂a→i

µ̂a→i(xi)Q̂a→i(µ̂a→i).

Remarkably, the average messages satisfy the usual sum-product equations,

µav

i→a(xi) '
∑
xi

∏
b∈∂i\a

µ̂av

b→i(xi), µ̂av

i→a(xi) '
∑
x∂a

fa(x∂a)
∏

j∈∂a\i

µav

j→a(xj).

One way to prove this is to notice that5 δQi→aFBethe = (δµav
i→a

FBethe)µi→a(xi) and

δQ̂i→aFBethe = (δµ̂av
i→a

FBethe)µ̂i→a(xi). Therefore if (Q, Q̂) is a stationary point of

FBethe|x=1 then (µav, µ̂av) is a stationary point of FBethe. Thus the cavity equations

for (Q, Q̂) imply the sum-product equations for (µav, µ̂av). This conclusion can

also be reached by a direct calculation starting from the cavity equations for

x = 1 .

Conceptually µav
i→a(xi) and µ̂av

i→a(xi) are very natural messages to consider.

Suppose for the sake of the argument that Q(µi→a) and Q̂(µ̂i→a) are the true

marginals of the level-one model. Then the average messages are the Gibbs av-

erages of the dynamical variables of the level-one model (much like the magne-

tization is the Gibbs average of the spin variable). In other words if we sample

among the set of solutions of the sum-product equations according to the weight

e−FBethe/Z1(x = 1) these are the expected messages that we get. From these

expected messages one can reconstruct a Bethe measure which one can hope to

be a good proxy for the convex superposition. However this is not a pure Bethe

measure. As a consequence the marginals of this Bethe measure do not allow

us to correctly sample from pure states µ(p)(x). In particular for K-SAT they

do not allow us to find solutions, and this is why BP guided decimation does

not succeed above a certain density. When it does succeed this means that the

the convex decomposition is essentially dominated by a unique Bethe measure

(which is pure). The correct sampling procedure that suitably addresses these

points is Survey Propagation guided decimation discussed in Chapter ??.

We now turn to the Bethe complexity (15.15) for x = 1. For the free energy

contribution we already have the simplification (15.16), so we only have to show

how to eliminate the reweighting factors from the internal energy contribution.

5 Formally δRG is an infinitesimal variation of G with respect to R.

252 Cavity Method: Basic Concepts

Replacing (11.12) in 〈Fi〉cav we find

〈Fi〉cav =

∑
µ̂ ln

{∑
xi

∏
b∈∂i µ̂b→i(xi)

}∑
xi

∏
b∈∂i µ̂b→i(xi)Q̂b→i∑

µ̂

∑
xi

∏
b∈∂i µ̂b→i(xi)Q̂b→i

=

∑
µ̂ ln

{∑
xi

∏
b∈∂i µ̂b→i(xi)

}∑
xi

∏
b∈∂i µ̂b→i(xi)Q̂b→i∑

xi

∏
b∈∂i µ̂

av

b→i(xi)

=
∑
µ̂

ln

{∑
xi

∏
b∈∂i

µ̂b→i(xi)

}∑
xi

νav

i (xi)
∏
b∈∂i

R̂b→i(µ̂b→i|xi)

In the last equality we have defined the probability distributions

νav

i (xi) =

∏
b∈∂i µ̂

av

b→i(xi)∑
xi

∏
b∈∂i µ̂

av

b→i(xi)
, R̂b→i(µ̂b→i|xi) =

µ̂b→i(xi)Q̂b→i
µ̂av

b→i(xi)

Replacing (11.13) in 〈Fa〉cav we find

〈Fa〉cav =

∑
µ ln

{∑
x∂a

∏
i∈∂a µi→a(xi)

}∑
x∂a

fa(x∂a)
∏
i∈∂a µi→a(xi)Qi→a∑

µ

∑
x∂a

fa(x∂a)
∏
i∈∂a µi→a(xi)Q̂i→a

=

∑
µ ln

{∑
x∂a

fa(x∂a)
∏
i∈∂a µi→a(xi)

}∑
x∂a

fa(x∂a)
∏
i∈∂a µi→a(xi)Qi→a∑

x∂a
fa(x∂a)

∏
i∈∂a µ

av
i→a(xi)

=
∑
µ

ln

{∑
x∂a

fa(x∂a)
∏
i∈∂a

µi→a(xi)

}∑
x∂a

νav

a (x∂a)
∏
i∈∂a

Ri→a(µi→a|xi)

with the distributions

νav

a (x∂a) =
fa(x∂a)

∏
i∈∂a µ

av
i→a(xi)∑

x∂a
fa(x∂a)

∏
i∈∂a µ

av
i→a(xi)

, Ri→a(µi→a|xi) =
µi→a(xi)Qi→a
µav
i→a(xi)

Replacing (11.14) in 〈Fai〉cav we find

〈Fai〉cav =

∑
µ,µ̂ ln

{∑
xi
µ̂a→i(xi)µi→a(xi)

}∑
xi
µ̂a→i(xi)Q̂a→iµi→a(xi)Qi→a∑

µ,µ̂

∑
xi
µ̂a→i(xi)Q̂a→iµi→a(xi)Qi→a

=

∑
µ,µ̂ ln

{∑
xi
µ̂a→i(xi)µi→a(xi)

}∑
xi
µ̂a→i(xi)Q̂a→iµi→a(xi)Qi→a∑

xi
µ̂av
a→i(xi)µ

av
i→a(xi)

=
∑
µ,µ̂

ln

{∑
xi

µ̂a→i(xi)µi→a(xi)

}∑
xi

νai(xi)R̂a→i(µ̂a→i|xi)Ri→a(µi→a|xi)

where

νav

ai(xi) =
µ̂av
a→i(xi)µ

av
i→a(xi)∑

xi
µ̂av
a→i(xi)µ

av
i→a(xi)

15.4 Application to K-SAT 253

So far we have shown that the Bethe complexity can be expressed in terms of

the average messages µ̂av
a→i and µav

i→a and the conditional distributions R̂a→i(µ̂a→i|xi)
and Ri→a(µi→a|xi). We have already seen that the average messages satisfy the

usual sum-product equations. We will now show that the conditional distribu-

tions satisfy similar equations.

Multiplying the cavity equations (15.10)-(15.11) by µa→i(xi) and µ̂a→i(xi),

and using the expressions of the reweighting factor (15.12) we get for x = 1

µi→a(xi)Qi→a(µi→a) '
∑
µ̂

1i(µi→a)
∏

b∈∂i\a

µ̂b→i(xi)Q̂b→i(µ̂b→i)

µ̂a→i(xi)Q̂a→i(µ̂a→i) '
∑
∼xi

fa(x∂a)
∑
µ

1̂a(µ̂a→i)
∏

j∈∂a\i

µj→a(xj)Qj→a(µj→a)

If we normalize each member of these equalities the proportionality relations be-

come equalities. Here normalizing means dividing by the sums of the numerators

over µi→a and µ̂i→a. One finds a closed set of equations linking the conditional

distributions,

Ri→a(µi→a|xi) =
∑
µ̂

1i(µi→a)
∏

b∈∂i\a

R̂b→i(µ̂b→i|xi) (15.17)

R̂a→i(µ̂a→i|xi) =
∑
∼xi

πa,i(x∂a\i|xi)
∑
µ

1̂a(µ̂a→i)
∏

j∈∂a\i

Rj→a(µj→a|xj) (15.18)

where

πa,i(x∂a\i|xi) =
fa(x∂a)

∏
j∈∂a\i µ

av
j→a(xj)∑

∼xi fa(x∂a)
∏
j∈∂a\i µ

av
j→a(xj)

These equations are quite similar to standard sum-product equations and are

much easier to solve than the original cavity equations.

15.4 Application to K-SAT

We work at finite temperature for reasons that will become clear below. It is

straightforward to apply the general theory to K-SAT using the parametrization

of messages (9.24). With this parametrization the sum-product equations become

(9.26)-(9.32) (with the necessary modification for finite temperatures) so to write

the cavity equations (15.10)-(15.11) we make the replacements

1i → δ

(
hi→a −

∑
b∈Sia

ĥb→i +
∑
b∈Uia

ĥb→i)

and

1̂a → δ

(
ĥa→i +

1

2
ln

{
1− (1− e−β)

∏
j∈∂a\i

1− tanhj→a
2

})
.

254 Cavity Method: Basic Concepts

Furthermore all sums become integrals (dropping subscripts)
∑
µQ(µ) · · · →∫

dhQ(h) . . . and
∑
µ̂ Q̂(µ̂) · · · →

∫
dĥQ̂(ĥ)

To get the general expressions for the level-one Bethe free energy and complex-

ity (15.13), (15.14) one uses Fi, Fa and Fai given in (11.23)-(11.25) and replaces

sums by integrals as just indicated.

For the simplified formulas when x = 1 we introduce averaged messages

tanhhav

i→a =

∫
Q(hi→a) tanhhi→a, tanh ĥav

i→a =

∫
Q̂(hi→a) tanh ĥi→a

which satisfy the finite temperature version of message passing equations (9.26)-

(9.32). With these average messages the level-one Bethe free energy is the same

than (11.21), i.e. it is given by the RS expression. The other set of message pass-

ing equations (15.17), (15.18) are obtained by replacing indicator functions by

Dirac functions as above, xi → si, and (dropping subscripts)
∑
µR(µ|xi) · · · →∫

dhR(h|xi) . . . ,
∑
µ R̂(µ̂|xi) · · · →

∫
dĥR̂(ĥ|xi) With all these ingredients

one also writes down the Bethe complexity for x = 1. This is left as an exercise.

15.5 Replica Symmetry Broken Analysis for K-SAT

General analysis

The phase diagram of K-SAT is derived from the cavity equations and the Bethe

formulas through a ”density evolution type” analysis done at the level of the

cavity messages Qi→a(.), Q̂i→a(.). One can write down formal equations linking

probability distributions of the cavity messages Q(Q(.)) and Q̂(Q̂(.)) which are

often called replica symmetry broken (1-RSB) equations. The associated average

level-one free energy functional is the 1-RSB free energy.6 Let us illustrate the

1RSB replica formula for the free energy in more detail.

Fix a trial distribution Q(Q(.)). Take K − 1 iid copies of the random distri-

bution Q(.) and define the random variable Q̂(.) [compute reweighting factor in

here]

Q̂(ξ̂)
distr
=

∫ K−1∏
k=1

dξkQ(hk)

(
2−

K−1∏
k=1

1− tanhhk
2

)x
(15.19)

×
δ

(
ĥ+ 1

2 ln

{
1− (1− e−β)

∏K−1
k=1

1−tanhhk
2

})
∫ ∏K−1

k=1 dξkQ(hk)

(
2−

∏K−1
k=1

1−tanhhk
2

)x (15.20)

This random distribution is distributed according to Q̂(Q̂(.)). Pick two Poisson

integers p and q of mean αK/2 and p + q iid copies of the random distribution

6 Historically these equations were first derived in the context of the replica method and

involve breaking the symmetry between replicas of the original system, hence the name.

15.5 Replica Symmetry Broken Analysis for K-SAT 255

Q̂(.). Let

f(Q(.), Q̂(.), p, q)

= x−1 ln

{∫ p+q∏
k=1

dĥkQ̂k(ĥk)

(p∏
k=1

(1− tanh ĥk)

p+q∏
k=p+1

(1 + tanh ĥk)

+

p∏
k=1

(1 + tanh ĥk)

p+q∏
k=p+1

(1− tanh ĥk)

)x}

+ x−1 ln

{∫ K∏
k=1

dhkQk(hk)

(
1− (1− e−beta)

K∏
k=1

1− tanhhk
2

)x}
− x−1 ln

{∫
dhQ(h)dĥQ̂(ĥ)

(
1 + tanhh tanh ĥ

)x}
The 1-RSB free energy functional is defined as

f1RSB(Q(.);x) = E[f(Q(.), Q̂(.), p, q)]

where the expectation is with respect to Q, Q̂, p, q. The stationnary point equa-

tion of the 1RSB functional yield the 1RSB fixed point equations for the dis-

tributions Q(.), Q̂(.). These are the DE equations corresponding to the cavity

message passing equations: one of them is precisely (15.19). The derivation of

the second one is left as an exercise to the reader.

The interpolation method allows to prove the following theorem,

theorem 15.1 For any trial distribution Q(.) and any 0 < x < 1, the thermo-

dynamic limit of the free energy of SAT exists, and moreover is lower bounded

by the 1RSB formula

lim
n→+∞

1

n
E[lnZ] ≤ f1RSB(Q(.);x)

The 1RSB conjecture states that taking the supremum over Q(.) and x on the

right hand side yields an equality. We point out that this conjecture is surprizing

from the standpoint of deterministic mean field models because for such models

the variational expression for the free energy always involves a minimization (e.g.

in the CW model). Here the free energy of K-SAT is given by a variational prin-

ciple involving a maximization over trial parameters, rather than a minimization.

This feature is in fact generic for replica formulas was already encountered in the

early days of of the replica method. Note that it has nothing to do with the fact

that the solution is RS or RSB. Now, for coding the RS variational expression for

the free energy involves a minimization: this is surprizing from the standpoint

of replica formulas! A look at the derivation of the bounds in the interpolation

method (Chapter 13) shows that this can be traced to the channel or Nishimori

symmetry.

Accepting the 1RSB conjecture teaches us something about the correct choice

of the Parisi parameter x. Indeed recall that the complexity is the Gibbs-Shannon

256 Cavity Method: Basic Concepts

K αd αd,80,3 αc αc,80,3 αs αs,80,3

3 3.86 3.86 3.86 3.86 4.267 4.268

4 9.38 9.55 9.55 9.56 9.93 10.06

Table 15.1 Thresholds of individual and coupled K-SAT model for L = 80 and w = 3.
Note that for 3-SAT teh dynamical and condensation thresholds are the same. The
condensation and SAT-UNSAT thresholds correspond to non analyticities of the entropy
and ground state energy and remain unchanged (for L→ +∞). Already for w = 3 the
dynamical threshold saturates very close to αc and αs.

entropy of the level-one model Σ(x) = x2 ∂
∂x2 f1(x). In place of f1(x) we use the

1RSB free energy formula (for the optimal Q(.)), a function of x that can be

computed by population dynamics. As long as Σ(x) ≥ 0 for 0 < x < 1 the optimal

x is given by x = 1. We will see that this happens as long as α < αc, where αc is

called the condensation threshold. When α > αc we get Σ(x) ≥ 0, 0 < x < x∗(α),

and Σ(x) ≤ 0, x∗(α) < x < 1, so that the optimal value of the parisi parameter

is x = x∗(α). As we will see in the next chapter at the SAT-UNSAT density

we have x∗(αs) = 0; for this value of the Parisi parameter the 1RSB formulas

also simplify and yield the survey propagation formulas. This discussion shows

that the condensation threshold can be obtained from the 1RSB complexity

computed for x = 1. The same quantity will also give us the dynamical threshold

αd = inf{α|Σ(x = 1) > 0}. This is sufficient motivation for giving the simplified

1RSB formulas for x = 1.

Analysis for x = 1

explain that free energy is RS free energy. Give the complexity and the fixed

point equations without reweighting factor. Give population dynamic pseudo

code.

15.6 Dynamical and Condensation Thresholds

The most important feature of the convex decomposition ansatz is the number of

pure Bethe states involved. The RSB analysis of the level-one model predicts the

existence of two sharply defined thresholds αd and αc at which the nature of the

convex decomposition (15.1) changes drastically. The values of these thresholds

are given in Table 15.1 and compared to the SAT-UNSAT threshold for a few

values of K. Note that K = 3 is not generic because αd = αc. Figure 15.3 gives

a pictorial view of the transitions associated with the decomposition (15.1). The

goal of this paragraph is to explain this picture.

As already explained for α < αc we have Σ(x) ≥ 0 for all x ∈ [0, 1] and the

correct value of the Parisi paramter is x = 1. The entropy is given by the RS

15.6 Dynamical and Condensation Thresholds 257

αd αc α

Figure 15.3 Pictorial representation of the decomposition of the Gibbs distribution
into a convex superposition of extremal states. Balls represent extremal states (their
size represents their internal entropy). For α < αd there is one extremal state. For
αd < α < αc there are exponentially many extremal states (with the same internal
free enetropy) that dominate to the convex superposition. For α > αc there is a finite
number of extremal states that dominate the convex superposition.

formula. In particular this function is analytic for α < αc and therefore there is

no thermodynamic static phase transition in this range. Above the condensation

threshold the correct choice of the Parisi parameter x = x∗(α) forces the com-

plexity to vanish. The Gibbs measure is supported by a finite number of pure

Bethe states. Because of the change in x the entropy is not given by the same

analytic function below and above αc. therefore the condensation threshold is a

thermodynamic static phase transition.

The complexity Σ(x = 1) has a non trivial behavior below the condensation

threshold. It vanishes for α < αd, jumps to a positive value at αd and is con-

cave decreasing with increasing α till it becomes negative just above αc. What

is the interpretation of this result? Recall that the complexity is the growth rate

for the number of pure Bethe states in the convex decomposition of the Gibbs

measure, and the weights of this decomposition are given by the entropies of

the pure states. For densities below the dynamical threshold the Gibbs mea-

sure is supported by one pure Bethe state. It is not excluded that there exist

other ones of exponentially smaller weights. For densities between the dynam-

ical and condensation thresholds an exponential number of pure Bethe states

of identical entropy contribute to the convex sum. On the other hand beyond

teh condensation threshold the measure is supported by only a finite number of

pure Bethe states with equal entropy. All other states have exponentially smaller

weights (the cavity method also predicts that the statistics of these weights is a

Poisson-Dirichlet process). As already stressed the entropy is insensitive to the

dynamical threshold, and thsi is not a static phase transition threshold. Rather,

as its name indicates one expects that the proliferation of pure states affects the

dynamics of algorithms local algorithms. In this course we have seen indications

that this indeed occurs for BP guided decimation. In fact BP decimation fails

slightly below αd. This is not believed to be an inconsistency of the theory, but

rather a consequence of the fcat that during teh decimation process the graph

ensemble changes and therefore the threshold for BP guided decimation is set

258 Cavity Method: Basic Concepts

by a different graph ensemble. It is believd that for Markov Chain Monte Carlo

algorithms such as Glauber dynamics the equilibration time diverges exactly at

αd. This has been checked in simpler models.

It is interesting to consider the spatially coupled version of the K-SAT model.

The same cavity theory can be applied and the RSB equations solved with the ap-

propriate boundary conditions. this allows to determine the dynamical and con-

densation thresholds of the spatially coupled model (see table 15.1). The numeri-

cal observations suggest that the condensation threshold remains invariant in the

limit of an infinite chain. This is consistent with its interpretation as a singularity

of the entropy. In fact one can prove by the interpolation method that the en-

tropy of the infinite coupled chain and underlying uncoupled model are the same,

and therefore αc is the same for both models, namely limL→+∞ αc(w,L) = αc.

On the other hand it is observed that the dynamical threshold saturates towards

the condensation threshold in the limit of an infinite chain and a large coupling

range, namely limw→+∞ limL→+∞ αd(w,L) = αc. These results are conssistent

with the interpretation of the dynamical threshold as an algorithmic barrier and

the condensation threshold as a static phase transition threshold.

In section ?? we indicated that in Ising models there is an intimate connection

between the decay of correlations and the extremality of the Gibbs measure. This

is also true for constarint satisfaction models defined on random graph ensembles.

However the correct correlation functions have to be used. In the present context

two type of correlation functions have been discovered. Point-to-set correlations

defined as

C(i, B) =
∑
x∂B

ν(x∂B(ν(xi|x∂B)− ν(xi))
2

where B is the set {xj |{dist(xi, xj) ≥ d}. Within the cavity method one can

compute limd→+∞ limn→+∞ C(i, B and finds that the limit vanishes α < αd,

while it remains strictly positive for α > αd. Moreover for all α < αc and all

randomly chosen bounded set of variables

E[(ν(xi1 , . . . xik)− ν(xi1) . . . ν(xik))2] = O(
1

n
)

This is similar to the decoupling property we discussed for the CW model. At

αc this decoupling property breaks down.

16 Cavity Method: Survey Propagation

We have seen BP guided decimation does not find solutions beyond αd. This

chapter is an application of the cavity theory to find solutions of K-sat for

densities beyond dynamical threshold. With level one model we learned about

αd and αc. But have not yet computed αs. We will aplly level one model with

x = 0. RSB analysis with x = 0 leads to SP equations. Allows to compute αs.

Older point of view this was called “energetic cavity method”. With decimation

process we find solutions up densities close to αs.

16.1 Survey propagation equations

Simplifify equations of previous chapter for x = 0. Derive equations.

16.2 Connection with the energetic cavity method

Briefly explain min sum point of view. Different level one model. Notion of SP

complexity.

16.3 RSB analysis and sat-unsat threshold

Compute internal entropy and SP complexity. They both yield the sat-unsat

threshold.

16.4 Survey propagation guided decimation

Algorithm. Experiments.

Notes

References

[1] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms.

Cambridge Univ. Press, 2003.

[2] M. Mézard and A. Montanari, Information, Physics, and Computation. Oxford

University Press, 2009.

[3] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory,

vol. 8, pp. 21–28, Jan. 1962.

[4] ——, Low-Density Parity-Check Codes. Cambridge, MA, USA: MIT Press, 1963.

[5] B. Bollabás, Modern Graph Theory. New York, NY, USA: Springer Verlag, 1998.

[6] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. A. Spielman, and V. Stemann,

“Practical loss-resilient codes,” in Proc. of the 29th annual ACM Symposium on

Theory of Computing, 1997, pp. 150–159.

References 263

authorsAuthor index subjectSubject index

