
Statistical Physics for
Communications, Signal
Processing, and Computer
Science

EPFL

Nicolas Macris and Rüdiger Urbanke

Contents

Foreword page 1

Part I Models and their Statistical Physics Formulations 5

1 Models and Questions: Coding, Compressive Sensing, and Satisfiability 7

1.1 Coding 7

1.2 Compressive sensing 13

1.3 Satisfiability 18

1.4 Overview of coming attractions 22

1.5 Notes 23

2 Basic Notions of Statistical Mechanics 25

2.1 Lattice gas and Ising models 26

2.2 Gibbs distribution from maximum entropy 29

2.3 Free energy and variational principle 31

2.4 Marginals, correlation functions and magnetization 33

2.5 Thermodynamic limit and notion of phase transition 35

2.6 Spin glass models 37

2.7 Gibbs distribution from Boltzmann’s principle 39

2.8 Notes 43

3 Formulation of Problems as Spin Glass Models 46

3.1 Coding as a spin glass model 47

3.2 Channel symmetry and gauge transformations 51

3.3 Conditional entropy and free energy in coding 52

3.4 Compressive Sensing as a spin glass model 54

3.5 Free energy and conditional entropy in compressive sensing 57

3.6 K-SAT as a spin glass model 58

3.7 Notes 60

4 Curie-Weiss Model 62

4.1 Curie-Weiss model 63

4.2 Variational expression of the free energy 64

4.3 Average magnetization 65

iv Contents

4.4 Phase diagram and phase transitions 67

4.5 Analysis of the fixed point equation 70

4.6 Ising model on a tree 73

4.7 Phase transitions in the Ising model on Zd 73

4.8 Notes 74

Part II Analysis of Message Passing Algorithms 77

5 Marginalization and Belief Propagation 79

5.1 Factor graph representation of Gibbs distributions 80

5.2 Marginalization on trees 81

5.3 Marginalization via Message Passing 85

5.4 Decoding via Message Passing 89

5.5 Message Passing in Compressed Sensing 91

5.6 Message passing in K-SAT 94

Foreword

Statistical physics, over more than a century, has developed powerful techniques

to analyze systems consisting of many interacting “particles.” In the last fif-

teen years, it has become increasingly clear that the very same techniques can

be applied successfully to problems in engineering such communications, signal

processing, or computer science.

Unfortunately there are several hurdles which one encounters when one tries

to make use of these methods.

First, there is the language. Statistical mechanics has developed over the last

150 years with the aim of providing models and deriving predictions for various

physical phenomenon, such as magnetism or the behavior of gases. This long

history, together with the specific areas of their original application, has resulted

in a rich language whose origins and meaning are not always clear to someone

just starting in the field. It therefore takes a considerable effort to learn this

language.

Second, except for extremely simple models, the “calculations” which are nec-

essary are often long and daunting and frequently use little tricks and conventions

somewhat outside the realm what one usually picks up in a calculus class. A good

way of overcoming this difficulty is to start with a familiar example, casting it

in terms of statistical physics notation, and by then going through some basic

calculations.

Third, and connected to the second point, not all methods and tricks used in

the calculations are mathematically rigorous. Some of the most powerful tech-

niques, such as the cavity method, currently do not have a rigorous mathematical

justification. In the “right hands” they can do miracles and give predictions which

are currently not possible to derive with any classical method. But a newcomer

to the field might quickly despair in trying to figure out what parts are mathe-

matical rigorous and what parts are “most likely correct” but cannot currently

be justified. Both worlds are valuable. The cavity or replica method give predic-

tions which would be very difficult to guess. These predictions can then be used

as a starting point for a rigorous proof. But it is important to cleanly separate

the two worlds.

Our aim in writing these notes is not to give an exhaustive account of all there

is to know about statistical mechanics ideas applied to engineering problems.

2 Foreword

Indeed, several excellent books which take a much more in-depth look already

exist. We in particular recommend [?, ?].

Our aim was to write the simplest non-trivial account of the most useful sta-

tistical mechanics methods so as to ease the transition for anyone interested in

this strange put powerful world. Therefore, whenever we were faced with an op-

tion between completeness and simplicity, we chose simplicity. On purpose our

language changes progressively throughout the text. Whereas at the beginning

we try to avoid as much jargon as possible, we progressively start talking like a

physicist. Most of the literature uses this language, so you better get used to it.

We decided to structure our notes around three important problems, namely

error correcting codes, compressive sensing, and the random K-SAT problem.

Although we will introduce basic versions of each of these problems, we only

introduce what is necessary for our purpose. It goes without saying that there

are myriad of versions and extensions, none of which we discuss. In fact, we hope

that the reader is already somewhat familiar with these topics and accepts that

these are important problems worth while studying. Using the basic versions of

these problems we explain how they can be cast in a statistical physics framework

and how standard concepts and techniques from statistical physics can be used

to study these problems. This allows us to introduce the necessary terminology

step by step, just when it is needed.

The notes are further partitioned into three parts. In the first part, com-

prised of Chapters 1-4, we introduce the problems, some of the language, and we

rewrite these problems in the language of statistical physics. In the first chapter

of the second part, namely Chapter 5, we then introduce the main protagonist,

a message-passing algorithm which is also know as the belief-propagation algo-

rithm. The remaining chapters of the second part, namely Chapters 6-??, contain

the analysis of the performance of our three problems under this low-complexity

algorithm. We will see that, in many cases, even this simple combination yields

excellent performance. Finally, in the third part, consisting of Chapters ??-??,

we get to the perhaps most surprising part of our story. Our aim will be to study

the fundamental behavior of these three problems without the restriction to low

complexity algorithms. I.e., how well would these systems work under optimal

processing. The surprise is that the same quantities which appeared in our study

of low-complexity suboptimal message-passing algorithms will play center stage

also for this seemingly completely unrelated question.

Although we follow essentially the same pattern for each of the three problems,

we will see that they are not all equally difficult.

Error correcting coding is perhaps easiest, and in principle most of the question

one might be interested in can be answered rigorously. In this case we are dealing

with large graphically models which are locally “tree like.” It is therefore perhaps

not so surprising that message-passing algorithms work well in this setting and

that the performance can be analyzed.

Compressive sensing follows a similar pattern but introduces a few more wrin-

kles. In particular, the story of compressive sensing is leading to the so-called

Foreword 3

AMP algorithm. The surprising fact here is that message-passing works very

well, and that its performance can be predicted, despite that the relevant graph-

ical model is not sparse at all but rather is a complete tree. The key observation

is that every single edge contributes very little to the global performance. AMP

can still be analyzed rigorously but the required computations are quite lengthy.

We will give an outline of the whole story, but we will not discuss every single

step in detail. Once the basic idea is clear, the interested reader should be able

to fill in missing details by studying the pointers to the literature.

The hardest problem is without doubt the random K-SAT problem. We will

only be able to present a partial picture. Many interesting and very basic ques-

tions remain open.

Many people have helped us in creating these notes. In the Spring of 2011 we

gave a series of lectures on these topics at EPFL to mostly a graduate student

population. We would like to thank Marc Vuffray, Mahdi Jafari, Amin Karbasi,

Masoud Alipour, Marc Desgroseilliers, Vahid Aref, Andrei Giurgiui, Amir Hesam

Salavati for typing up initial notes for some lectures. In addition we would like

to thank Mike Bardet who typed up further material as well as Hamed Hassani

who has since contributed material to several of the chapters.

Nicolas Macris, Lausanne, 2013

Rüdiger Urbanke

Part I

Models and their Statistical
Physics Formulations

1 Models and Questions: Coding,
Compressive Sensing, and
Satisfiability

We start by introducing three problems: error correcting coding, compressive

sensing, as well as constraint satisfaction. Although these three problems are

quite different, we will see that essentially the same tools from statistical physics

can be used to gain insight into their behavior as well as to make quantitative

predictions. These three problems will serve as our running examples.

TO COMPLETE

1.1 Coding

Error correcting codes

Codes are used in order to reliably transmit information across a noisy channel.

Let us start with a basic definition. A binary block code C of length n is a

collection of binary n-tuples, C = {x(1), . . . , x(M)}, where x(i), 1 ≤ i ≤ M, is

called a codeword, and where the components of each codeword are elements of

F2 = ({0, 1},⊕,×), the binary field. The totale number of codewords is |C| =M
and the rate of the code is defined as log2 |C|

n .

We will soon talk about various channel models, i.e., various mathematical

models which describe how information is “perturbed” during the transmission

process. In this respect it is good to know that for a large class of such models we

can achieve optimal performance (in terms of the rate we can reliably transmit)

by limiting ourselves to a simple class of codes, called linear codes.

A linear binary block code is a subspace of Fn2 , the vector space of dimension

n over the field F2. Equivalently, a binary block code C is linear iff for any two

codewords x(i) and x(j), x(i) − x(j) ∈ C. In particular x(i) − x(i) = 0 ∈ C. Since

C is a subspace, it has a dimension, call it k, 0 ≤ k ≤ n. Hence |C| = 2k, and the

rate of C is equal to k
n .

All codes which we consider in this course are binary and linear. Therefore, in

the sequel we sometimes omit these qualifiers. It will be convenient to represent

a linear binary code C of length n and dimension k as the kernel (or null space)

of an (n− k)× n binary matrix of rank n− k. Such a matrix is called a parity-

check matrix and is usually denoted by H. Every binary linear code has such a

8 Models and Questions: Coding, Compressive Sensing, and Satisfiability

representation. So equivalently, we may write

C =
{
x ∈ Fn2 : Hx> = 0>

}
for some suitably chosen matrix H. The proof that at least one such matrix

exists is the topic of an exercise.

A few remarks might be in order. First, once we have convinced ourselves that

there is at least one such matrix, it is easy to see that there are exponentially

many (in n−k) such matrices since elementary row operations do not change the

row space and hence the code defined by the matrix. All these matrices define the

same code, and are equivalent in this sense. But the representation of the code

in terms of a bipartite graph, which we will introduce shortly, and the related

message-passing algorithm, do depend on the specific matrix we choose and so

our choice of matrix is important.

Second, and somewhat connected to the first point, rather than first defining

a code C and then finding a suitable parity-check matrix H, we typically specify

directly the matrix H and hence indirectly the code C.
It can then happen that this matrix does not have full row rank, i.e., that its

rank is strictly less than n − k. What this means is that the code C contains

more codewords than 2k. Since this will happen rarely, and since having more

codewords than planned is in fact a good thing, we will ignore this possibility

and only count on having 2k codewords at our disposal.

The factor graph associated to the parity-check matrix H (of a code C)

Assume that we have a code C defined by the (n − k) × n binary parity-check

matrix H. We can associate to H the following bipartite graph G. The graph

G has vertices V ∪ C, where V = {x1, . . . , xn} is the set of n variable nodes

corresponding to the n bits (and hence to the n columns of H), and where

C = {c1, . . . , cn−k} is the set of n− k check nodes, each node corresponding to

one row of H. There is an edge between xi and cj if and only if Hji = 1.

example 1 (Factor Graph) Consider the following parity-check matrix,

H =

 1 0 0 1

0 1 1 1

0 0 1 1

 .
The factor graph corresponding to H is shown in Fig. 1.1. �

Gallager’s ensemble and the configuration model

A common theme in these notes is that instead of studying specific instances of a

problem we define an ensemble of instances i.e., a set of instances endowed with

a probability distribution. We then study the average behavior of this ensemble,

and once the average is determined, we know that there must be at least one

1.1 Coding 9

Figure 1.1 The factor graph corresponding to the parity-check matrix of Example 1.

element of the ensemble with a performance at least as good as this average.

In fact, in many cases, with a little extra effort one can often show that most

elements in the ensemble behave almost as good as the ensemble average.

For coding, we focus on a specific ensemble of codes called the (dv, dc)-regular

Gallager ensemble introduced by Gallager in 1961, [?, ?]. Rather than specifying

the codes directly we specify their factor graphs. The ensemble is characterized

by the triple of integers (n, dv, dc), such that m = ndvdc is also an integer. The

parameter n is the length of the code, dv is the variable node degree, and dc is

the check node degree.

To precisely describe the ensemble we explain how to sample from it. Pick n

variable nodes and ndvdc check nodes. Each variable node has dv sockets and each

check node has r sockets. Number the dvn variable sockets in an arbitrary but

fixed way from 1 till dvn. Do the same with the dvn check node sockets. Pick a

permutation π uniformly at random from the set of permutations on dvn letters.

For s ∈ {1, . . . dvn} insert an edge which connects variable node socket s to check

node socket π(s) ∈ {1, . . . dvn}.
If, after construction, we delete sockets (and retain the connections between

variable and check nodes) then we get a bipartite graph which is the factor

graph representing our code. To this bipartite graph we can of course associate a

parity-check matrix H. But note that in this model there can be multiple edges

between nodes. A moments thought shows that the parity-check matrix H has

a 1 at row i and column j if there are an odd number of connections between

variable i and constraint j. Otherwise it has a 0 at this position. In practice

multiple connections are not desirable and more sophisticated graph generation

algorithms are employed. But for our purpose the typically small number of

multiple connections will not play a role. In particular, it does not play a role if

we are interested in the behavior of such codes for very large instances.

The above way of specifying the ensemble is inspired by the configuration

model of random graphs, see [?]. This is why we call it the configuration model.

This particular ensemble is a special case of what is called a low-density parity-

check (LDPC) ensemble. This name is easily explained. The ensemble is low-

density since the number of edges grows linearly in the block length. This is

distinct from what is typically called the Fano random ensemble where each

entry of the parity-check matrix is chosen uniformly at random from {0, 1}, so

that the number of edges grows like the square of the block length. It is further

10 Models and Questions: Coding, Compressive Sensing, and Satisfiability

a parity-check ensemble since it is defined by describing the parity-check matrix.

We will see that a reasonable decoding algorithm consists of sending messages

along the edges of the graph. So few edges means low complexity and, even more

importantly, we will see that the algorithm works better if the graph is sparse.

For many real systems, LDPC codes are the codes of choice. They have a very

good trade-off between complexity and performance and they are well suited for

implementations. “Real” LDPC codes are often further optimized. For example,

instead of using regular degrees we might want to choose nodes of different

degrees and the connections are often chosen with care in order to minimize

complexity and to maximize performance. We will ignore these refinements in

the sequel. The most important trade-offs are already apparent for the relatively

simple regular Gallager ensemble.

Encoding, Transmission, and Decoding

The three operations involved in the coding problem are encoding, transmission

over a channel, and decoding. Let us briefly discuss each of them.

Encoding: Given C, a binary linear block code of dimension k, we can encode

k bits of information by our choice of codeword, i.e., by choosing one out of the

2k possibilities. More precisely, we have an information word u, u ∈ Fk2 , and

an encoding function g, g : Fk2 → C, which maps each information word into a

codeword.

Although this function is of crucial importance for real systems, it only plays

a minor role for our purpose. This is true since, as we will discuss in more detail

later on, for “typical” channels, by symmetry the performance of the system is

independent of the transmitted codeword. We therefore typically assume that

the all-zero codeword (which is always contained in a binary linear code) was

transmitted. Also, in terms of complexity, the encoding operation is not a diffi-

cult task. One possible option is to write the linear binary code C in the form

C = {Gu : u ∈ Fk2}, where G is the so-called generator matrix and where u is

a binary column vector of length k which contains the information bits. In this

form, encoding corresponds to a multiplication of a vector of length k with a n×k
binary matrix and can hence be implemented in O(k × n) binary operations. In

practice the code is often chosen to have some additional structure so that this

operation can even be performed in O(n) operations. We will hence ignore the

issue of encoding in the sequel.

Transmission over a Channel: We assume that we pick a codeword x uni-

formly at random from the code C. We now transmit x over a “channel”. The

actual channel is a physical device which takes bits as inputs, converts them into

a physical quantity, such as an electric or optical signal, transmits this signal over

a suitable medium, such as a cable or optical fiber, and then converts the physical

signal back into a number which we can processed, perhaps equal to a voltage

1.1 Coding 11

which is measured or the number of photons which were detected. Of course,

during the transmission the signal itself is distorted. This distortion is either due

to imperfections of the system or due to unpredictable processes such as thermal

noise. Instead of considering this potentially very complicated process we use

a typically simple mathematical model which describes the end-to-end effect of

all these physical processes on the signal. We call this model the “channel model.”

Channel Model: Formally, the channel has the input alphabet X = {0, 1} and

an output alphabet Y. E.g., two common cases are Y = {0, 1} and Y = R. We

assume that the channel is memoryless, which means that it acts on each bit

independently. We further assume that there is no feedback from the output of

the channel back to the input. In this case the channel is uniquely characterized

by a transition probability p(y | x) where y ∈ Yn is the output and where

p(y | x) =

n∏
i=1

p(yi | xi). (1.1)

Note that we get this product form from the assumptions that the channel is

memoryless (acts bit-wise) and that we have no feedback.

The following three channels are the most important examples, both from a

theoretical perspective, but also because they form the basis of real-world chan-

nels: These are the binary erasure channel (BEC), the binary symmetric channel

(BSC) and the binary additive white Gaussian noise channel (BAWGNC).

X Y

1 − ε

1 − ε

ε

ε

0

1

0

1

?

Figure 1.2 Binary erasure and symmteric channels with parameter ε.

BEC. The BEC is a very special channel with Y = {0, ?, 1}. As depicted in

Fig. 1.2, the transmitted bit is either correctly received at the channel output

with probability 1 − ε or erased by the channel with probability ε and thus,

nothing is received at the channel output. The erased bits are denoted by “?”.

For example, if x = 1 is transmitted in the BEC, then the set of possible channel

observation is {1, ?}. we may write somewhat formally for the transition proba-

bility p(y|x) = (1− ε)δ(y − x) + εδ(y − ?).

BSC. The output of the BESC is binary Y = {0, 1}. As seen on Fig. 1.2 the bit

is transmitted correctly with probability 1− ε or flipped with probability ε. The

transition probability is p(y|x) = (1− ε)δ(y − x) + εδ(y − (1− x)).

12 Models and Questions: Coding, Compressive Sensing, and Satisfiability

BAWGNC. The output is a real number Y = R. When x ∈ {0, 1} is sent the

received signal is y = x + z with z a Gaussian random number with zero mean

and variance σ2. With these conventions the “signal to noise ratio” is σ−2 and

the transition probability p(y|x) = (
√

2πσ)−1e−
(y−x)2

2σ2 .

One might wonder if these three simple models even scratch the surface of the

rich class of channels that one would assume we encounter in practice. Fortu-

nately, the answer is yes. The branch of communications theory has built up a

rich theory of how more complicated scenarios can be dealt with assuming that

we know how to deal with these three simple models.

Decoding: Given the output y we want to map it back to a codeword x. Let x̂(y)

denote the function which corresponds to this decoding operation. What decoding

function shall we use? One option is to first pick a suitable criterion by which

we can measure the performance of a particular decoding function and then to

find decoding functions which optimize this criterion. The most common such

criteria are the block error probability P [x̂(y) 6= x], and the bit error probability
1
n

∑n
i=1 P [x̂(y)i 6= xi]. We will come back in Chapter 3 to the precise definition

of these error probabilities.

In practice, due to complexity constraints, it is typically not possible to im-

plement an optimal decoding function but we have to be content with a low-

complexity alternative. Of course, the closer we can pick it to optimal the better.

Shannon Capacity

So far we have defined codes, we have discussed the encoding problem, the process

of transmission, the decoding problem, and the two most standard criteria to

judge the performance of a particular decoder, namely the block and the bit

error probability.

It is now natural to ask what is the maximum rate at which we can hope

to transmit reliably, assuming that we pick the best possible codes and the

best possible decoder. Reliably here means that we can make the block or bit

probability of error as small as we desire. In fact, it turns out that the answer is

the same wheter we use the block error probability or the bit error probability.

In 1948 Shannon gave the answer and he called this maximum rate the capac-

ity of the channel. For binary-input memoryless output-symmetric channels the

capacity has a very simple form. If the input alpahbet is binary and the output

alphabet discrete, and if p(y | x), x ∈ X and y ∈ Y, denotes the transition

probabilities, then the capacity of the associated channel can be expressed (in

bits per channel use) as

H(p(·))−H(p(· | x = 0)) (1.2)

1.2 Compressive sensing 13

where H(q(·)) denotes the entropy associated to a discrete distribution q(y),

y ∈ Y . By definition we have

H(q(·)) = −
∑
y∈Y

q(y) log2 q(y). (1.3)

Let us illustrate Shannon’s formula for the BEC(ε). For q(y) = p(y | x = 0)

we have q(0) = p(y = 0 | x = 0) = 1− ε, q(1) = p(y = 1 | x = 0) = 0, and q(?) =

p(y = ? | x = 0) = ε. Further, for q(y) = p(y) = 1
2p(y | x = 0) + 1

2p(y | x = 1)

we have p(0) = p(1) = 1
2 (1− ε) and p(?) = ε. Hence, H(p(·)) = 1− ε+ h2(ε) and

H(p(· | x = 0)) = h2(ε), where h2(ε) = −ε log2 ε − (1 − ε) log2(1 − ε) is the so

called binary entropy function. We conclude that the capacity of the BEC(ε) is

equal to 1 − ε. That the capacity is at most 1 − ε for the BEC is intuitive. For

large blocklengths with high probability the fraction of non-erased positions is

very close to 1− ε. So even if we knew a priori which positions will be erased and

which will be left untouched, we could not hope to transmit more than n(1− ε)
bits over such a channel. What is perhaps a little bit surprising is that this

quantity is achievable, i.e., that we do not need to know a priori what positions

will be erased and still can transmit reliably at this rate.

The capacities of the BSC and BAWGNC are computed similarly (see exer-

cises).

Questions

Now where we know the basic problem and have discussed the ultimate limit of

what we can hope to achieve, the following questions seem natural to investigate.

• What are good and efficient decoding algorithms?

• If we pick a random such code from the ensemble, how well will it perform?

• In particular, is there going to be a threshold behavior so that for large in-

stances the code works up to some noise level but breaks down above this

level as it is indicated schematically in Fig. 1.3? How does this threshold

depend on the decoding algorithm?

• Assuming that there is a threshold behavior, how can we compute the thresh-

olds?

• How do these thresholds compare to the Shannon threshold?

We will be able to derive a fairly complete set of answers to all of the above

questions.

1.2 Compressive sensing

Basic problem

Here is the perhaps the simplest version of compressive sensing. Let xin ∈ Rn
representing an “input signal” that we want to capture. We assume that the

14 Models and Questions: Coding, Compressive Sensing, and Satisfiability

P
(s

u
c
c
e
s
s
)

Channel Quality GoodBad

Figure 1.3 The probability of decoding error for a transmitted message versus the
channel quality. As the blocklength of the code gets larger, we expect to see a sharper
and sharper transition between range of the channel parameters where the system
“works” and where it “breaks down.”

number of non-zero components ‖xin‖0 = |{i|xin
i 6= 0, i = 1, . . . , n}| = k of the

signal is only a fraction of n; so k = κn with κ < 1 (and usually much smaller

than one). The signal is captured thanks to an m × n “measurement matrix”

A with real entries, 1 ≤ m < n. We set m = µn with µ < 1. Let y ∈ Rm be

given by y = Axin. We think of y as the result of m linear measurements, one

corresponding to each row of A. Our basic aim is to reconstruct the k-sparse

signal xin from the least possible measurements y.

We know that at least one solution exists, namely xin, because the measure-

ments y have been produced by this input signal. But since m < n, and in fact m

is typically much smaller, we cannot simply solve the undetermined linear sys-

tem of equations since the solution will not be unique. But we know in addition

that x is k-sparse, i.e. has only k non-zero entries entries with k < n, (but we

do not know which of these entries are non-zero). Therefore, we determine if the

set of possible signals, namely

{x : Ax = y and ‖x‖0 = k}. (1.4)

has cardinality one. If this is the case we may in principle be able to reconstruct

our signal unambiguously.

One way to ensure the unicity of the solution is to take a measurement ma-

trix A satisfying a Restricted Isometry Property. We say that A satisfies the

RIP(2k, δ) condition if one can find 0 ≤ δ < 1 such that

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2, for all 2k-sparse vectors x ∈ Rn. (1.5)

It is not difficult to see that when this condition is met, then (1.4) has a unique

solution given by

x̂0(y) = argminx:Ax=y‖x‖0. (1.6)

Indeed, first notice that evidently Ax̂0(y) = y so we only have to prove unicity.

Suppose x′ is another solution of (1.4). Then, since both x′ and x0(y) are k-

sparse, their difference is 2k-sparse. The left hand inequality of the RIP(2k, δ)

1.2 Compressive sensing 15

condition states (1− δ)‖x′ − x̂0(y)‖2 ≤ ‖Ax′ −Ax̂0(y)‖2 = ‖y − y‖2 = 0, which

of course implies x′ = x̂0(y).

Solving the optimization problem (1.6) essentially requires an exhaustive search

over
(
n
k

)
possible supports of the sparse vectors, which is intractable in practice.

One avenue for simplifying this problem is to replace the “`0 norm” in (1.6) with

the `1 norm. In other words we solve the convex optimization problem,

x̂1(y) = argminx:Ax=y‖x‖1. (1.7)

A fundamental theorem of Candes and Tao states that one can find δ′, 0 < δ′ < δ,

such that if A satisfies RIP(2k, δ′) the solution of this problem is unique and

identical to (1.6), [?].

This result shows that, for suitable measurement matrices, the `0 and `1 op-

timization problems are equivalent. Thus it suffices to solve the `1 problem. We

will not prove it here but only offer some intuition for it through a simple toy

example. Suppose that n = 2, so x = (x1, x2)T , and that we perform a single

measurement y = a1x1 + a2x2. This equation corresponds to the line on figure

FIGURE

Figure 1.4 The `p balls

1.4. We seek to find a point on this line, which minimizes (xp1 + xp2)1/p, p ≥ 0

where the case p = 0 is to be understood as the number of non-zero components

of (x1, x2). As shown on figure 1.4 the solution is found by “inflating” the “`p-

balls” around the origin until the line is touched. It is clear that for a generic line

the solution is the same for all 0 ≤ p ≤ 1. Note also that for 0 ≤ p ≤ 1 the solu-

tion only has a single non-zero component, so is “sparse”. For p > 1 the solution

changes with p and both components are non-zero. Note when p = 1 there are

non-generic measurement matrices corresponding to lines parallel to the faces of

the `1-ball for which the solution is not unique; but as discussed shortly such

cases will not bother us because the matrices will be chosen at random.

But what matrices satisfy the RIP condition ? It should come as no surprise

that a matrix satisfying teh RIP condition should have a number of lines m at

least as large as k. In fact one can show that necessarily m ≥ Cδk log n
k for a

suitable constant Cδ > 0 [?]. It is not easy to make deterministic constructions of

“good” measurement matrices approaching such bounds. The same is true with

other deterministic conditions yielding equivalence of the `0 and `1 optimization

16 Models and Questions: Coding, Compressive Sensing, and Satisfiability

problems. However the toy example suggests that in fact all we migth need are

“random measurement matrix”. This is indeed a fruitful idea, at least in the

asymptotic setting n,m→ +∞ with κ = k
n , µ = m

n fixed, very much in the spirit

of random coding. This is the route we will follow.

Ensembles of Measurement Matrices

While deterministic constructions of matrices satisfying the RIP condition are

difficult, they can be shown to exist thanks to the probabilistic method [?]. The

m × n matrix A will be taken from the Gaussian ensemble where the matrix

entries are independent identically distributed Gaussian variables of zero mean

and variance 1/m. This normalization is such that each column of A has an

expected `2 norm of 1. As in coding we will consider the assymptotic regime

n,m, k → +∞ with sparsity parameter κ = k
n and measurement fraction µ = m

n

fixed. One can then show that there exists positive numerical constants c1, c2 such

that for m ≥ c1δ
−2k log(enk) matrices from this ensemble satisfy the RIP(k, δ)

condition with overwhelming probability 1 − exp(−c2δ2m) where the constants

c1, c2 are numerical constants. More general ensembles are also possible.

The ensemble formulation for the measurement matrices, may also be extended

to the signal model. One of the simplest signal distributions assumes that the

components xi are independently identically distributed according to a law of

the form

p0(x) = (1− κ)δ(x) + κφ0(x) (1.8)

where φ0(x) is a continuous probability density. Depending on the model or

the application φ0(x) is known or unknown. The most realistic assumption for

applications is to consider that φ0(x) is unknown, and in that case we call Sκ
this class of signals.

Noisy measurements and LASSO

A somewhat more realistic version of the measurement model is

y = Ax+ z,

where z is a noise vector, typically assumed to consist of m iid zero-mean Gaus-

sian random variables with variance of σ2. Again our aim is to reconstruct an

k-sparse signal with as few measurements as possible. The matrix A is chosen

from the random Gaussian ensemble and the signal from the class Fκ.

If we ignored the sparsity constraint then it would be natural to pick the esti-

mate x̂(y) which solves the least-squares problem minx‖Ax− y‖22. This problem

is easily solved and the solution is well known x̂(y) = (ATA)−1AT y. But in

general this solution will not be k-sparse.

To enforce the sparsity constraint, we can add a second term to our objective

1.2 Compressive sensing 17

function, i.e., we can solve the following minimization problem,

x̂0(y) = argminx(‖Ax− y‖22 + λ‖x‖0), (1.9)

for a properly tuned parameter λ. Unfortunately this minimization problem is

intractable, again because it requires an exhaustive search over the
(
n
k

)
possible

supports of the sparse vectors.

We saw in the noiseless case that replacing the “`0 norm“ by the `1 norm

is a fruitful idea. We follow the same route here and consider the following

minimization problem

x̂1(y) = argminx(‖Ax− y‖22 + λ‖x‖1). (1.10)

This estimator is called the Least absolute Shrinkage and Selectio Operator (LASSO).

Again λ has to be chosen appropriately. This estimator can in principle be cal-

culated by standard convex optimizaton techniques, which is already a big im-

provement over exhaustive search.

Although the LASSO estimator is popular, its a priori justification is not so

straightforward. Our discussion suggests that in the noiseless limit it reduces to

the pure `1 estimator which we know gives for a certain range of parameters the

correct solution of the `0 problem. This is one possible justification. Interestingly,

the analysis of the LASSO in Chapter ?? the exact frontier for the `0-`1 equiv-

alence in the (κ, µ) plane. This frontier is known as the Donoho-Tanner curve

which they originally derived by completely different methods. In Chapter 3 we

also discuss a somewhat more Bayesian justification of the LASSO in a setting

where the signal distribution is not known, but only the parameter κ is assumed

to be known. All this is ample justification for studying the LASSO in detail.

Graphical representation

As for coding one can set up a graphical representation for the measurement

matrix. We associate to A a bipartite graph G with vertices V ∪ C, where V =

{x1, . . . , xn} is the set of variable nodes corresponding to the n signal components

and C = {c1, . . . , cm} is the set of check nodes each node corresponding to

a row (a measurement) of A. There is an edge between xi and cj if an only

if Aji 6= 0. For the random measurement matrices discussed above this will

essentially always be the case and therefore the graph is simply the complete

bipartite graph depicted on figure 1.5.

If one wishes one may atribute a ”random weight“ to the edges, but we will

seldom need to do so. Therefore, unlike coding, here the graph is always the

same. At this point this graphical construction may seem slightly trivial and

arbitrary, but it will turn out to be a very useful way of thinking. The reason is

that, much as in coding theory, we will develop iterative algorithms exchanging

messages along the edges in order to reconstruct the signal. For example, this

immediately suggests that the complexity of these algorithms scales like O(n2)

18 Models and Questions: Coding, Compressive Sensing, and Satisfiability

FIGURE

Figure 1.5 The factor graph corresponding to the random gaussian 2× 4 measurement
matrix

because there are nm = n2µ edges. Nevertheless each edge has a random weight

of order ±1/
√
n and this will allow us to reduce the complexity to O(n).

Questions

Consider the regime where n tends to infinity and κ = k/n, µ = m/n constant.

• For given κ what fraction µ of measurements do we need so that with high

probability we can recover xin from the measurement y if we have no lim-

itations on complexity?

• If we restrict ourselves to the low-complexity LASSO algorithm, how many

measurements do we need then?

• Are there ways of designing compressive sensing schemes which achieve the

theoretical limits under low-complexity algorithms?

1.3 Satisfiability

SAT problem

Suppose that we are given a set of n Boolean variables {x1, . . . , xn}. Each variable

xi can take on the values 0 and 1, where 0 means “false” and 1 means “true”.

We define a literal to be either a variable xi or its negation x̄i. A clause is a

disjunction of literals, e.g.,

c = x1 ∨ x2 ∨ x̄3

where the operation “∨” denotes the Boolean “or” operation. An assignment

is an assignment of values to the Boolean variables, e.g., x1 = 0, x2 = 1, and

x3 = 0. Such an assignment will either make a clause to be satisfied or not

satisfied. For example the clause x1 ∨ x2 ∨ x̄3 with assignment x1 = 0, x2 = 1,

and x3 = 0 evaluates to 1, i.e., the clause is satisfied. A SAT formula, call it F ,

is a conjunction of a set of clauses. For example, consider the SAT formula

F = (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x̄4) ∧ x3.

where “∧” is the Boolean “and” operation.

1.3 Satisfiability 19

The basic SAT problem is defined as follows. Given a SAT formula F , de-

termine the satisfiability of F , i.e., determine if there exists an assignment on

{x1, . . . , xn} so that F is satisfied. This is the SAT decision problem. If such an

assignment exists we might also want to find an explicit solution.

Why on earth would anyone be interested in studying this question? Perhaps

surprisingly, many real-world problems map naturally into a SAT problem. For

example designing circuits, optimizing compilers, verifying programs, or schedul-

ing can be phrased in this way. The bad news is that Cook proved in 1973 that

it is unlikely that there exists an algorithm which solves all instances of this

problem in polynomial time (in n). More precisely, the SAT decision problem is

NP-complete.

We say that a formula F is a K-SAT formula if every clause involves exactly

K literals. E.g., (x1 ∨x2 ∨ x̄3)∧ (x2 ∨x3 ∨ x̄4) is a 3-SAT formula. The following

facts are known. The 2-SAT decision problem is easily solved in a polynomial

number of steps. Problem 1.6 discusses a simple algorithm called unit-clause

propagation which solves a 2-SAT decision problem in at most 2n steps and

produces a satisfying assignment if one exists. On the other hand for K ≥ 3 the

K-SAT decision problem is NP-complete.

Graphical representation of SAT formulas

Given a SAT formula F , we associate to it a bipartite graph G. The vertices

of the graph are V ∪ C, where V = {x1, . . . , xn} are the Boolean variables and

C = {c1, . . . , cm} are the m clauses. There is an edge between xi and cj if and

only if xi or x̄i is contained in the clause cj . Further we draw a “solid line” if cj
contains xi and a “dashed line” if cj contains x̄i.

example 2 (Factor Graph of SAT Formula) As an example, the graphical

presentation of F = (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x3 ∨ x̄4) is shown in Fig. 1.6. �

Figure 1.6 The factor graph corresponding to the SAT formula of Example 2.

Ensemble of random K-SAT Formulas

Just like in the coding and compressed sensing problems, rather than looking

at individual SAT formulas, we will define an ensemble of such formulas and we

will then study the probability that a formula from this ensemble is satisfiable.

In particular, we will stick to the behavior of random K-SAT formulas.

20 Models and Questions: Coding, Compressive Sensing, and Satisfiability

The ensemble F(n,m,K) is characterized by 3 parameters: K is the number

of literals per clause, n is the number of Boolean variables, and m is the number

of clauses. Notice that with K variables we can form
(
n
K

)
2K clauses by taking K

variables among x1, . . . , xn and then negating them or not. We define F(n,m,K)

by showing how to sample from it. To this end, pick m clauses c1, . . . , cm inde-

pendently, where each clause is chosen uniformly at random from the
(
n
K

)
2K

possible clauses. Then form F as the conjunction of these m clauses. In other

words, the ensemble F(n,m,K) is the uniform probability distribution over the

set of all possible formulas F constructed out of n Boolean variables by choosing

m clauses. The cardinality of this set is
(

m
(nK)2K

)
.

Threshold behavior

Now let us consider the following experiment. Fix K ≥ 2 (e.g., K = 3) and draw

a formula F from the F(n,m,K) ensemble. Is such a formula satisfiable with

high probability? It turns out that the most important parameter that affects

the answer is α = m
n . This ratio is called the clause density. Like in coding and

compressed sensing we are interested in the asymptotic regime where n,m→ +∞
and α is fixed.

Fig. 1.7 shows the probability of satisfiability of F as a function of both n and

α. As we see from this figure, as n becomes larger the transition of the probability

of satisfiability becomes sharper and sharper. This is a strong indication that

there exists a threshold behavior, i.e., there exists a real number αs(K) such

that

lim
n→∞

P [F is satisfied] =

{
1, α < αs(K),

0, α > αs(K).
(1.11)

Here P [−] is the uniform probability distribution of the ensemble F(n,m,K).

As the density α increases one has more and more clauses to satisfy, so it

intuitively quite clear that the probability of satisfaction decreases as a function

of α. However the existence of a sharp threshold is much less evident, let alone

its computation. Such a threshold behavior was conjectured nearly two decades

ago based on experiments []. For many years this was proved only for K = 2

for which αs(2) = 1. For K ≥ 3 Friedgut proved that there exists a sequence

αs(K,n), n ∈ N, such that for all ε > 0

lim
n→∞

P [F is satisfied] =

{
1, α < (1− ε)αs(K,n),

0, α > (1 + ε)αs(K,n).
(1.12)

This result leaves open the possibility that the sequence of thresholds αs(K,n)

does not converge to a definite value as n→ +∞. The proof of a sharp threshold

behavior (1.11) was proved recently in [] for K large enough (but finite), but for

small K’s (except K = 2) a proof is still a challenging problem.

The underpinnings of this proof for large K’s rest on the statistical mechanics

methods which also give the means to compute αs(K) (for example it is known

1.3 Satisfiability 21

that αs(3) ≈ 4.259 to three decimal places). As we will see these methods yield

much more information than just the threshold value. We will uncover various

other threshold behaviors, related not only to the satisfiability of random for-

mulas, but also to the nature of the solution space. Understanding the nature of

these threshold behaviors in K-SAT is an order of magnitude more difficult than

in coding theory and compressed sensing, and forms part of the more advanced

material in chapters ??, ??.

Random max-K-SAT

In the K-SAT decision problem, one is given a formula and is asked to determine

if this formula is satisfiable or not. An important variation on this theme is

the max-K-SAT problem. In this problem one is interested in determining the

maximum possible number of satisfied clauses where the maximum is taken over

all possible 2n assignments of variables x1, . . . , xn ∈ {0, 1}n. Of course it is

equivalent to determine the minimum possible number of violated clauses where

the minimum is taken over all assignments of variables. In later chapters we

will adopt this perspective which makes the contact with traditional statistical

mechanics questions clearer.

We will be interested in the random version of max-K-SAT which we know for-

mulate more precisely. Take a formula at random from the ensemble F(n,m,K).

This formula contains m clauses labelled c1, . . . , cm. If we let 1c(x) be the indi-

cator function over assignments that satisfy clause c (i.e the function evaluates

to 1 if x satisfies c and 0 if x does not satisfy c) then the maximum possible

number of satisfied clauses is

max
x

m∑
i=1

1ci(x)

In the random max-K-SAT problem we want to compute

lim
m→+∞

1

m
E
[
max
x

m∑
i=1

1ci(x)
]

(1.13)

where the expectation is taken over the ensemble F(n,m,K) (the existence of teh

limit has been proven by methods that we will study in Chapter ??). Equivalently

we want to compute the average of the minimum possible number of violated

clauses

e(α) ≡ lim
m→+∞

1

m
E
[
min
x

m∑
i=1

(1− 1ci(x))
]

(1.14)

We define the max-K-sat threshold as

αs,max(K) = sup{α|e(α) = 0} (1.15)

We will give a non-rigorous computation of (1.14) and (1.15) in chapters ??,

22 Models and Questions: Coding, Compressive Sensing, and Satisfiability

??. In fact, the proof methods [] for the sharp threshold behavior (1.11) have

their origin in such statistical mechanics computations.

Intuitively one expects that αs,max(K) = αs(K). It is clear that one must have

αs(K) ≤ αs,max(K). However the converse bound is not immediate because one

could conceivably have a finite interval]αs(K), αs,max(K)[where e(α) = 0 but

at the same time a sublinear fraction of unsatisfied clauses. Nevertheless it is

widely believed this does not happen and that αs(K) = αs,max(K). At least we

know that this is true for K = 2 and for large enough (finite) K [] .

Questions

Here is a set of questions we are interested in:

• Does this problem exhibit a threshold behavior?

• If so, can we determine this threshold αK?

• Are there low-complexity algorithms which are capable of finding satisfying

assigments, assuming such assignments exist?

• If so, up to what clause density do they work with high probability?

P
(s
a
ti
s
fi
a
b
il
it
y
)

Figure 1.7 The probability that a formula generated from the random K-SAT
ensemble is satisfied versus the clause density α.

Perhaps surprisingly, many of the above questions do not yet have a rigorous

answer and the satisfiability problem is by far the hardest of our three examples.

Nevertheless we will have non-trivial things to say about this problem and if one

admits non-rigorous methods, the problem is fairly well understood.

1.4 Overview of coming attractions

TO DO

1.5 Notes 23

1.5 Notes

Here we should put some further historical info as well as reference to the liter-

ature.

Problems

1.1 Capacity of the BSC and BAWGNC. Apply formula (1.2) to compute

the Shannon capacity of the two channels.

1.2 Configuration Model. The aim of this problem is to write a program

that can sample a random graph from the configuration model. Your program

should take as input the parameters n, m, dv, and dc, it should then check that

the input is valid, and finally return a bipartite graph according to the config-

uration model. Think about the data structure. If we run algorithms on such a

graph it is necessary to loop over all nodes, refer to edges of each node, be able to

address the neighbor of a node via a particular edge and store values associated

to nodes and edges.

1.3 Norms and pseudo-norms. Let ‖x‖p = (
∑n
i=1 |xi|p)1/p for p > 0.

Let also ‖x‖0 =](non zero x1, . . . , xn) and ‖x‖∞ = maxi |xi|. Show first that

‖x‖0 = limp→0 ‖x‖p and ‖x‖∞ = limp→+∞ ‖x‖p. Explain why ‖ · ‖p is a norm

for 1 ≤ p ≤ +∞ and is not a norm for 0 ≤ p < 1 (this is why for 0 ≤ p < 1 we

call it a pseudo-norm). Hint: refer to the figure 1.4.

1.4 Least square estimator. Show that the minimizer of ‖y − Ax‖22 is the

least square estimator x̂(y) = (ATA)−1AT y.

1.5 Poisson Model. An important model of bipartite random graphs is the

Poisson model. For example the random K-SAT problem is often formulated on

this graph ensemble. Pick two integers, n and m. As before, there are n variable

nodes and m check nodes. Further, let K be the degree of a check node. For

each check node pick K variables uniformly at random either with or without

repetition and connect this check node to these variable nodes. For each edge

store in addition a binary value chosen according to a Bernoulli(1/2) random

variable.

This is called the Poisson model because the node degree distribution on the

variable nodes converges to a Poisson distribution for large n. This is also the case

for the formulation in 1.3. The two formulation are equivalent in the asymptotic

limit.

Write a program that takes n,m,K as input parameters and outputs a graph

instance from the Poisson model. Again, think of the data structure.

1.6 Unit Clause Propagation for Random 3-SAT Instances. The aim

of this problem is to test a simple algorithm for soving SAT instances. Generate

24 Models and Questions: Coding, Compressive Sensing, and Satisfiability

random instances of the Poisson model. Pick n = 105 and let K = 3. Let α

be a non-negative real number. It will be somewhere in the range [0, 5]. Let

m = bαnc. For a given α generate many random bipartite graphs according to

the Poisson model. Interpret such bipartite graphs as random instances of a 3-

SAT problem. This means, the variables nodes are the Boolean variables and the

check nodes represent each a clause involving 3 variables. Associate to each edge

a Boolean variable indicating whether in this clause we have the variable itself

or its negation.

For each instance you generate, try to find a satisfying assignment in the fol-

lowing greedy manner. This is called the unit clause propagation algorithm:

(i) If there is a check node in the graph of degree one (this corresponds to a

unit-clause), then choose one among such check nodes uniformly at random. Set

the variable to satisfy it. Remove the clause from the graph together with the

connected variable and remove or shorten other clauses connected to this vari-

able (if the variable satisfies other clauses they are removed while if not they are

shortened).

(ii) If no such check exists, pick a variable node uniformly at random from the

graph and sample a Bernoulli(1/2) random variable, call it X. Remove this vari-

able node from the graph. For each edge emanating from the variable node do

the following. If X agrees with the variable associated to this edge then remove

not only the edge but the associated check node and all its outgoing edges. If

not, then remove only the edge.

Continue the above procedure until there are no variable nodes left. If, at the

end of the procedure, there are no check nodes left in the graph (by definition

all variable nodes are gone) then we have found a satisfying assignment and we

declare success. If not, then the algorithm failed, although the instance itself

might very well be satisfiable.

Plot the empirical probability of success for this algorithm as a function of α.

You should observe a threshold behavior. Roughly at what value of α does the

probability of success change from close to 1 to close to 0?

2 Basic Notions of Statistical
Mechanics

Gibbs distributions play a fundamental role in the analysis of the models intro-

duced in Chapter 1. These distributions can be viewed as purely mathematical

objects which arise quite naturally in the context of coding, compressed sensing

and satisfiability, as we will see in Chapter 3. However, much insight and useful

analogies can be gained by understanding why Gibbs distributions are natural

and ubiquitous for macroscopic physical systems. It is the goal of this chapter to

expound on the second point. This will also enable us to introduce some of the

language and standard notions and settings of statistical mechanics.

Statistical mechanics describes the macroscopic (large scale) behavior of sys-

tems that are composed of a very large number of “elementary” degrees of free-

dom. For example condensed matter systems are composed of around 1023 atoms,

molecules, magnetic moments or spins, etc. Similarly, we are interested in the be-

havior of our models when the number of transmitted bits, of signal components

or literals is very large.

In physical systems a precise knowledge and description of the microscopic dy-

namics of each degree of freedom (say solving 1023 Newton differential equations

for the positions and velocities of molecules) in a macroscopic system is impos-

sible. Fortunately this is not required for the understanding of the macroscopic

properties of the system. The general approach of statistical mechanics is to re-

place the full microscopic dynamical description by a probabilistic one based on

appropriate probability distributions. It also turns out that the precise nature

of teh microscopic dynamics is largely irrelevant (for example whether it is de-

terministic or random) except for the existence of quantities that are conserved

under the dynamics (e.g. the energy). In fact even the existence of a dynamics

is not needed, or at least it is not explicitely needed. This is important because

in our models no dynamics is a priori given, and if for some reason we would

choose one, presumably this choice would not be unique.

Let us briefly warn the reader that this approach also has its limits. For phys-

ical systems the “universal” probabilistic description - given by Gibbs distribu-

tions - is valid only once the so-called thermodynamic equilibrium is reached.1

1 It is not easy to precisely define thermal equilibrium but intuitively this means the
temperature is homogeneous so that there are no heat currents, the pressure is

homogeneous so that there are no mechanical stresses, and the chemical potential is

homogeneous so that there are no particle currents and chemical reactions.

26 Basic Notions of Statistical Mechanics

Systems that are not in thermodynamic equilibrium are said to be out of equilib-

rium. Their fundamental probabilistic description(s) (assuming it exists) is not

yet elucidated. Such systems range from the simplest stationary heat or electric

flows all the way to living systems!

Thermodynamic equilibrium can somehow be defined as a state of “maximal

disorder” but still compatible with whatever “conserved quantity” which might

be relevant. This gives us a clue into the nature of the Gibbs distributions: these

are the distributions that maximize an entropy functional (Shannon’s entropy)

under the constraints provided by the conserved quantities. The notion of con-

served quantity might not be familiar to the reader. This should not be a problem

because the most important one - and the only one that is relevant to us - is

the energy function or Hamiltonian of the system. The engineer or the computer

scientist may think of this quantity as some sort of cost function. We already

encountered one such cost function in the max-K-SAT problem, namely the

minimum possible number of violated clauses. In compressed sensing the mean

square errors penalized or not by the `0 or `1 norms are also cost functions.

To lay the foundations on a concrete footing we will first describe “toy models”

of statistical mechanics, which have turned out to be among its most important

paradigms. Then we give the simplest possible derivation of the Gibbs distri-

bution from a “maximum entropy principle”. We then introduce the standard

notions of free energy, marginals, correlation functions, thermodynamic limit and

briefly discuss the concept of phase transition. There is no unique way to intro-

duce Gibbs distributions and the main body of this chapter goes along a short

path. But one should note that this path uses the notion of Shannon entropy

which itself is not an obvious primary object for physical systems. The founding

fathers of statistical mechanics deduced Gibbs distributions from more primary

principles. The interested reader will find a derivation along such lines in the last

section; but the impatient reader can skip this section without harm.

2.1 Lattice gas and Ising models

The lattice gas and Ising models - or more generally spin systems - are very

simple to formulate but have taught us surprisingly much about statistical me-

chanics and their importance cannot be understated. There is an immense body

of theory that is known about such systems which we will completely omit here

(some of it is briefly reviewed in Chapter 4, Sect. 4.7). These models will serve

us well to get to rapid and concrete derivation of the Gibbs distribution. This

section introduces the Hamiltonians first in the traditional language of statistical

mechanics; then a factor graph representation is also discussed.

2.1 Lattice gas and Ising models 27

J

Λxi = 1

xi = 0

Figure 2.1 Left: a particle configuration in the lattice gas model. Full circles represent
occupied sites xi = 1 and empty circles unocupied sites xi = 0. At most one particle
occupies a lattice site. Right: a magnetic configuration in the Ising model. Positive
signs indicate “up spins” si = +1 and negative signs “down spins” si = −1.

Lattice gas model

Consider a discrete d-dimensional grid (see Fig. 2.1; naturally, d = 3 is an impor-

tant case but other values of d are of also of great relevance both theoretically

and practically). Particles (e.g. atoms) occupy the vertices of this grid and at

most one atom can be present on any single vertex. We call V the set of vertices

and E the set of edges. The configuration of the system is described by a vector

x = (x1, · · · , x|V |) where xi = 1 if an atom is present at vertex i and xi = 0 if

vertex i is empty. To describe the system, let us introduce an energy function.

In physics it is usually called the Hamiltonian, in computer science it is more

common to say cost function. We define

H(x) = −
∑
{i,j}∈E

Jijxixj −
∑
i∈V

µixi. (2.1)

Each edge {i, j} is counted once in the sum. Here only neighboring atoms interact

and that the interaction “energy” is −Jij .
In the canonical model Jij = J and µi = µ are constant, with J < 0 corre-

sponding to repulsive interaction and J > 0 to attractive interaction between

neighboring atoms. The real number µ is an energy cost associated to the pres-

ence or absence of a particle (this might be a chemical affinity or a chemical

potential; or for example if a two dimensional grid models the surface of some

material which absorbs some vapour one may think of µ as a binding energy

between the atoms of the vapour and the surface).

28 Basic Notions of Statistical Mechanics

Ising model

The Ising model is one of the oldest models and one of the best studied. We will

refer to it frequently. In this model the degrees of freedoms describe “magnetic

moments” localized at the sites of a crystal. For our case these sites are the

vertices of the square lattice. The magnetic moments are modeled by so-called

Ising spins si = ±, i ∈ V , which are binary variables taking values in {+1,−1}.
More precisely, the Hamiltonian is

H(s) = −
∑
{i,j}∈E

Jijsisj −
∑
i∈V

hisi. (2.2)

where s = (s1, . . . , s|V |). Again in the canonical Ising model Jij = J and hi = h

are constant throughout the lattice. For J > 0 neighboring spins have a tendency

to align in the same direction (ferromagnetic interaction) while for J < 0 they

have a tendency to be in opposite directions (antiferromagnetic interaction).

Mathematically speaking the lattice-gas and Ising models are equivalent. One

can go from one to the other simply by performing the change of variable

xi =
1

2
(1− si), or si = 1− 2xi

and redefining the interaction constants.

General Ising spin systems

It is quite clear that one can generalize such models to other regular grids or

lattices, eg. a triangular lattice. Usually the nature of the grid depends on the

physical system. It may represent an underlying crystalline structure or a mathe-

matical approximation of continuous space. One can also go beyond the hypothe-

sis of nearest neighbor interactions which means that there are terms −Jijxixj or

−Jijsisj in the cost function with associated to sites i, j separated by more than

one edge. More generally one may consider multispin interactions, for example

on a square grid the four spins of elementary plaquettes may interact through

terms of the form −
∑

(i,j,k,l)∈P Jijklsisjsksl where P is the set of all elementary

plaquettes of the square grid and Jijkl is the “plaquette interaction strength”.

The most general Ising spin Hamiltonian can be cast in the form

H(s) = −
∑
A⊂V

JA
∏
i∈A

si (2.3)

where JA ∈ R and the sum over A ⊂ V carries over all possible subsets of V

(the power set with 2|V | elements). The most general lattice gas has a similar

Hamiltonian. The canonical Ising or lattice gas models then corresponds to the

choice JA = h for A = {i}, i ∈ V ; JA = J for all A = {i, j} ∈ E and JA = 0

otherwise. If we add plaquette interaction we also have JA = Jijkl for all A =

{i, j, k, l} ∈ P the set of all plaquettes.

The factor graph representation is a convenient representation for such sys-

tems. Here the factor graph is a bipartite graph with variable nodes associated

2.2 Gibbs distribution from maximum entropy 29

FIGURE

Figure 2.2 Left: factor graph of the canonical Ising model. Right: factor graph of a
spin system with pair and plaquette interactions.

to spin variables s1, . . . , sn (or lattice gas variables x1, . . . , xn) and clause nodes

associated to subsets A ⊂ V with JA 6= 0. The factor graphs associated to the

Ising and lattice gas models on a grid, as well as the one with plaquette interac-

tions added are is shown on Fig. 2.2. Note that in general the factor graph itself

does not represent the underlying physical lattice but rather is a summary of the

various interactions present in the system.

The reader can already see that the LDPC codes and K-SAT models have

cost functions that are of the Ising type. For compressed sensing the “spins’ are

real numbers and one talks about ”continuous spins“. All that will be described

in more depth in Chapter 3.

2.2 Gibbs distribution from maximum entropy

The Gibbs distribution dates back to the very beginning of the 20th century

(see Section 2.7). But in the decade following Shannon 1948 paper, Jaynes, Bril-

louin and others [?], [?] showed that one can derive Gibbs distributions from a

”maximum entropy principle“.

Let p(x) (or p(s)) be a probability distribution supposed to describe the

thermal equilibrium state of a macroscopic system with degrees of freedom

(x = (x1, . . . , xn) (or (s = (s1, . . . , sn)). Here one may keep in mind the lat-

tice gas, Ising or generalized spin systems for concreteness (with |V | = n), but

it will soon be clear that the development here is very generic. The question is:

how do we choose the probability distribution?

This probability distribution should describe typical configurations of the de-

grees of freedom. If the system were to be completely isolated from the rest of the

universe then certainly its energy would be conserved. There could also be other

relevant conserved quantities depending on the nature of the system but for our

purposes we can ignore more general cases. In reality the system has reached

thermal equilibrium through its interactions with the environment, so it is not

isolated and the energy is not strictly conserved. However in thermal equilibrium

there are no macroscopic fluxes between the system and its environnement, and

we can assume that the average energy is fixed. Thus p(x) should satisfy∑
x

p(x)H(x) = E (2.4)

where E is the average total energy. Of course there remain energy fluctuations

due to random exchanges between the system and the environnement but these

are expected to be of order m(d−1)/d.

30 Basic Notions of Statistical Mechanics

Now, we postulate that the state of thermal equilibrium is a maximaly disor-

dered state (since e.g. there are no density or temperature gradients or no electric

currents etc) which maximizes the entropy but still satisfies the constraint (2.4).

For the entropy we take Shannon’s functional

S(p(·)) = −
∑
x

p(x) ln p(x) (2.5)

We use the letter S instead of H because the logarithm is neperian as is tradi-

tional in statistical mechanics.

This ”guess work“ leads us to the following principle: the distribution that

describes the thermal equilibrium state is the one that maximizes

S(p(·))− β
∑
x

p(x)H(x) (2.6)

Here β is a Lagrange multipier enforcing the constraint (2.4).

The Shannon entropy is a concave functional and other term is linear, therefore

the whole functional is concave so it has a unique maximizer. To find it we must

recall that there is one more constraint to enforce, namely
∑
x p(x) = 1 so we

introduce one more Lagrange multplier γ and maximize

S(p(·))− β
∑
x

p(x)H(x) + γ
∑
x

p(x)

Setting the derivative with respect to to p(x′) (for any fixed x′) to zero we find

p(x) = eγ−1e−βH(x)

The constant γ is fixed by the normalization condition and we find for the max-

imizer of (2.6)

pG(x) =
e−βH(x)

Z
(2.7)

where

Z =
∑
x

e−βH(x) (2.8)

The distribution (2.7) is called the Gibbs distribution and Z the partition function

(or sometimes the sum over states).

What is the interpretation of of the Lagrange multiplier β? For physical sys-

tems β−1 = kBT where T is the temperature of the system and kB a constant

(called the Boltzmann constant) such that kBT has units of energy. We briefly

explain why in the next paragraph. But of course for our problems (coding, com-

pressed sensing, SAT) there is no ”physical temperature“ so the reader may well

think of β as a mathematical Lagrange parameter enforcing the constraint (2.4).

As we will see in Chapter 3 this parameter often has a natural interpretation

specific to each problem.

2.3 Free energy and variational principle 31

We define the Gibbs entropy

S(β) ≡ S(pG(·)) = −
∑
x

pG(x) ln pG(x) (2.9)

and the internal energy

E(β) ≡ −
∑
x

pG(x)H(x). (2.10)

as functions of β. A remark is in order here: we use an abuse of notation (as is

traditional in statistical mechanics and thermodynamics) and the argument of

S and E tells us whether we view them as functional, or functions of β or as we

will shortly see E. Note the relation

S(β) = lnZ + βE(β) (2.11)

Obviously then the Gibbs entropy is S(β) = βE(β) + lnZ; but to make contact

with the temperature we have to look at the entropy as a function of the average

energy E,

S(E) = β(E)E + lnZ(β(E)) (2.12)

where β(E) is computed by inverting the relation E(β) = E. Differentiating

(2.12) with respect to E,

d

dE
S(E) =β +

(dβ
dE

)
E +

(d
dβ

lnZ
) dβ
dE

= β +
(dβ
dE

)
E − E(β(E))

dβ

dE

= β (2.13)

We have derived the relation d
dES(E) = β, and comparing with ”thermody-

namic identity“ d
dES(E) = 1

kBT
(T the temperature in degree Kelvin and kB

Boltzmann’s constant in Joules per degree Kelvin), we get the interpretation of

β = 1/kBT . One commonly says that β is the ”inverse temperature“.

2.3 Free energy and variational principle

On the way of our derivation of the Gibbs distribution we have encountered a

few important facts that we highlight in this section. But first we introduce a

notation that is standard in statistical mechanics.

Bracket notation

Let A(x) be any function of the configurations x of the system (these functions

are sometimes called observables). The average with respect to pG(x) is denoted

32 Basic Notions of Statistical Mechanics

by the bracket 〈−〉,

〈A(x)〉 ≡ 1

Z

∑
x

A(x)e−βH(x) (2.14)

The normalization factor in such averages is always given by the partition func-

tion (2.8). It will become apparent in the next Chapter how convenient it is

to have a reserved notation for the Gibbs average 〈−〉, and distinguish it from

expectations E over other random objects.

Free energy

A notion of paramount importance is the free energy defined by

F (β) = − 1

β
lnZ (2.15)

We have the important relationship2 (equivalent to (2.11))

F (β) = E(β)− β−1S(β) (2.16)

Computating, exactly or approximately, the free energy is often a major goal

and when this is possible we learn a great deal about the model or system

at hand. In particular, from the free energy we deduce the internal energy by

differentiating βF (β) with respect to β,

E(β) = 〈H(x)〉

= − d

dβ
lnZ =

d

dβ
(βF (β)). (2.17)

Also, we can compute the Gibbs entropy by differentiating F (β) with respect to

1/β. Indeed,

S(β) = −〈ln pG(x)〉

= lnZ − β〈H(x)〉) = βF (β)− β d

dβ
(βF (β))

= −β2 d

dβ
F (β) =

d

d(1/β)
F (β) (2.18)

The ”energy fluctuations“ are obtained by differentiating twice lnZ. We leave

the derivation of the following identity to the reader,

〈H(x)2〉 − 〈H(x)〉2 =
d2

dβ2
(βF (β)) (2.19)

2 This allows an interpretation of the free energy as the amount of energy that is not in a

disordered form, i.e in the form of heat. It is the amount of mechanical work that can be

extracted from the system, hence the name free.

2.4 Marginals, correlation functions and magnetization 33

Gibbs variationnal principle

The free energy satisfies an important variational principle. Recall that we de-

duced the Gibbs distribution as the one which maximizes the functional (2.6).

This is the content of the so-called ”Gibbs variationnal principle“ which is usually

formalized as follows. Define the Gibbs free energy functional as

F(p(·)) ≡
∑
x

p(x)H(x)− β−1S(p(·)) (2.20)

This is a convex functional and for any distribution we have the lower bound

F(p(·)) ≥ F (β) (2.21)

with equality attained for p(·) = pG(·). This principle is often used to compute

lower bounds to the free energy by taking ”trial distributions“ for p(·). These

lower bounds sometimes turn out to be useful approximations or may even be

sharp.

It is instructive to cast the variational principle in a language that is familiar

in information theory or statistics. The Kulback-Leibler divergence between two

distributions p(·) and q(·) is

DKL(p||q) ≡
∑
x

p(x) ln
(p(x)

q(x)

)
(2.22)

This functional satisfies DKL(p||q) ≥ 0 with equality when p = q (see exercises).

Now, note that for q = pG we have (using (2.7), (2.15) and (2.20))

DKL(p||pG) =
∑
x

p(x) ln
(p(x)

pG(x)

)
= −S(p)−

∑
x

p(x) ln pG(x)

= −S(p) + β
∑
x

p(x)H(x) + lnZ
∑
x

p(x)

= βF(p(·))− βF (β) (2.23)

The ”free energy difference“ between a trial distribution and the Gibbs dis-

tribution is equal (up to a factor β) to the Kullback-Leibler divergence. Also,

F(p(·)) ≥ F (β) and DKL(p||pG) ≥ 0 are one and the same inequality. It is fitting

that sometimes DKL(p||q) ≥ 0 is called the ”Gibbs inequality“.

2.4 Marginals, correlation functions and magnetization

Assume that a system is described by a Gibbs distribution. In practice, in order

to answer many basic questions, it is often sufficient to compute (exactly or ap-

proximately) the first few marginals or even only the averages of a few important

observables. In this section we collect a few related definitions and remarks.

34 Basic Notions of Statistical Mechanics

Marginals

The definition of marginals is just the usual probabilistic one. More precisely the

”first order“ marginal, is defined as

νi(xi) =
∑
∼xi

pG(x) (2.24)

where
∑
∼xi means that we sum over all xj for j = 1, . . . i − 1, i + 1, . . . n. In

other words we sum over all variables except xi. The ”second order“ marginal is

νi,j(xi, xj) =
∑
∼xi,xj

pG(x). (2.25)

where we sum over all variables except xi, xj . Note that the marginals are nor-

malized probability distributions.

To illustrate the use of marginals, suppose that in the lattice gas model we

want to compute the averages of the total number of particles
∑
i∈V xi and

energy H(x). If the marginals are known we use (the reader should check these

identities)

〈xi〉 =
∑
xi

xiνi(xi), 〈xixj〉 =
∑
xi,xj

xixjνi,j(xi, xj) (2.26)

and once these averages are determined we easily get the averages of the two

observables∑
i∈V
〈xi〉, and E(β) =

∑
{i,j}∈E

Jij〈xixj〉 −
∑
i∈V

hi〈xi〉. (2.27)

Correlation functions

In the previous section we saw that the internal energy, energy fluctuations and

entropy can be computed by differentiating the free energy. Something similar

is also true for the averages (2.26). Consider the following perturbation of the

Hamiltonian where we add ”source terms“

H(x)→ H(x) +

n∑
i=1

λixi (2.28)

with λi ”small“ real numbers. It is sometimes the case that if we know how

to compute the free energy for the unperturbed Hamiltonian then we can also

compute it for small values of λi’s. When this optimistic situation is met, such

perturbations may be turned into a useful theoretical tool. Suppose we have

access to lnZ(λ), λ = (λ1, . . . , λn). We have

〈xi〉 =
∂

∂λi
lnZ(λ)|λ=0, 〈xixj〉 − 〈xi〉〈xj〉 =

∂2

∂λi∂λj
lnZ(λ)|λ=0. (2.29)

It is a general fact that higher order derivatives yield higher order cumulants.

In statistical mechanics these are called ”truncated correlation functions“. The

2.5 Thermodynamic limit and notion of phase transition 35

covariance 〈xixj〉 − 〈xi〉〈xj〉 is the ”two-point“ truncated correlation function,

and the average 〈xi〉 is sometimes called the ”one-point“ function. It is a good

exercise to compute the third order derivative (with respect to λi, λj , λk) to see

what kind of correlation function is obtained.

Note that for binary variables (i.e xi ∈ {0, 1} or si ∈ {+1,−1} as is the case

for a lattice gas, an Ising spin system, coding or SAT) the marginals νi(xi) can

be recovered from the averages 〈xi〉. For example, for xi ∈ {0, 1} we have 〈xi〉 =

0.νi(0) + 1.νi(1) = νi(1) and from the normalization condition νi(0) = 1− 〈xi〉.
For si ∈ {+1,−1} we have 〈si〉 = νi(1) − νi(−1) and 1 = νi(1) + νi(−1), thus

νi(1) = 1
2 (1+〈si〉), νi(−1) = 1

2 (1−〈si〉). Similarly one can reconstruct νi,j(xi, xj)

from one and two-point correlation functions (see exercises).

Magnetization

An observable that plays a specially important role in Ising spin systems is the

magnetization of a spin configuration m(s) = 1
n

∑
i∈V si. The average magneti-

zation (also simply called magnetization) is the expectation with respect to the

Gibbs distribution.

〈m(s)〉 =
1

n

∑
i∈V
〈si〉. (2.30)

According to the remarks of the previous paragraph, when the Hamiltonian

contains a term h
∑
i∈V si the magnetization can be obtained as a derivative of

the free energy with respect to the magnetic field,

〈m(s)〉 = − 1

β

∂

∂h
lnZ = − ∂

∂h
f(β) (2.31)

In general one can always add an infinitesimal magnetic field to the Hamiltonian,

differentiate the free energy, and then take the additional magnetic field to zero.

As a last remark we note that for certain models with a symmetry between

sites it is often the case that 〈si〉 is independent of i, so that 〈m(s)〉 = 〈si〉.
For example if we replace the square grid by a complete graph in the Ising

model and take interaction constants independent of edges and vertices we have

a permutation symetry between sites, so 〈si〉 is obviously independent of i. This

is the Curie-Weiss model treated in chapter 4.

2.5 Thermodynamic limit and notion of phase transition

The regime of validity of statistical mechanics is the asymptotic limit of large

systems where the number of degrees of freedom tends to infinity, n→ +∞. This

is also the regime of interest in these notes for the coding, compressed sensing

and SAT problems. In the language of statistical mechanics this regime is called

the thermodynamic limit. This is also the limit in which phase transitions are

36 Basic Notions of Statistical Mechanics

well defined. Here a first rather informal discussion of these concepts. They will

be defined more precisely on a case by case basis in later chapter.

Thermodynamic limit

For the models of interest here we expect that lnZ, S(β) and 〈H(x)〉 all scale

like n, for large n. Such quantities are called extensive. Their thermodynamic

limit, if it exists, is defined as

f(β) ≡ lim
n→+∞

1

n
lnZ, s(β) ≡ lim

n→+∞

1

n
S(β), e(β) ≡ lim

n→+∞
〈H(x)〉

(2.32)

Taking the limit of (2.11) we obtain that these quantities are related by

f(β) = e(β)− β−1s(β) (2.33)

Relations (2.17), (2.18), (2.19) are also true for the limiting quantities scaled by

1/n, provided one can permute d/dβ and limn→+∞. This is the case as long as

f(β), s(β) and e(β) are ”sufficiently smooth“ functions of β. The issue here is

a real one and is connected to the subject of phase transitions to which we will

come back.

Let us now discuss the issue of thermodynamic limit for the correlation func-

tions and the Gibbs distribution. One cannot simply use the definition (2.7) in

the limit n → +∞ since the numerator and denominator both tend to infinity

(generically exponentially fast). So what is the meaning of the Gibbs distribu-

tion in the thermodynamic limit? One way to proceed would be to compute the

limits of the marginals, e.g.

lim
n→+∞

νi(xi), lim
n→+∞

νi,j(xi, xj), lim
n→+∞

νi,j,k(xi, xj , xk), . . . (2.34)

and define the ”infinite volume“ Gibbs distribution as the distribution with this

set of marginals. Because of phase transition phenomena such limits are not

always defined in a unique way.

Phase transitions

Let us now say a few words about phase transitions, a subject to which we will

come back in due course. The free energy f(β) is always a continuous and convex

function of β. To see this note that for finite n, F (β)/n is analytic as a func-

tion of β, and also that F (β)/n is convex as can be seen from the positivity

of the variance of the Hamiltonian in (2.19). The limit of a continuous convex

function is continuous and convex, thus f(β) is continuous and convex. Values

of β where differentiability fails are called phase transition points. Points where

the first derivative of f(β) has a jump are called first order phase transition

points; those where the first derivative is continuous but the second derivative is

discontinuous are called second order phase transition points (such points form

2.6 Spin glass models 37

a set of measure zero by a theorem of Alexandrov). Phase transitions of higher

order are also possible: a phase transition of n-th order is one where the n−1-th

derivatives of f(β) are all continuous and the n-th one is discontinuous. This

classification of phase transitions is due to Ehrenfest [?]. We stress that this is

not the only classification, nor the most modern one, but one that will suit us.

Temperature is not the only parameter with respect to which the free energy

can be non-differentiable. For example in the canonical Ising model (with hi = h

constant) there are phase transitions with respect to the magnetic field h. This

helps us understand the statement made above about the non-unicity of the

Gibbs distribution in thermodynamic limit. Indeed we saw that the magnetiza-

tion is obtained as derivative of the free energy with respect to h; thus if at a

first order phase transition point this derivative can take two distinct values this

means that one should define two one-point marginals and hence two Gibbs dis-

tributions, in thermodynamic limit. In Chapter 4 we solve explicitly a useful toy

model - the Curie-Weiss model - which will allow us to discuss phase transitions

more concretely. A mini-review of the phase transitions in the Ising and lattice

gas models is found as an aside at the end of that Chapter 4.

2.6 Spin glass models

In the next chapter we will see that our three problems coding, compressive

sensing and satisfiability can be formulated as a particular type of statistical

mechanics models, the so-called spin glass models. In this paragraph we briefly

explain what spin glass models are in general.

One of the ambitions of statistical mechanics is to describe the great variety of

”phases” of condensed matter (a non-exhaustive list: gases, liquids, crystalline

solids, metals, insulators, semi-conductors, superconductors, superfluids, mag-

netic materials, liquid crystals, polymers, glasses, emulsions etc). One of the

oldest known but still badly understood and intriguing phase is ”glass”. Ordi-

nary glass is an amorphous material where the geometrical arrangement of atoms

is frozen as in a solid but at the same time is irregular as in a liquid; it is believed

that in a sense ordinary glass is a “frozen liquid” with such a huge viscosity that

it does not flow for all practical purposes. There also exist magnetic materials

whose magnetic degrees of freedom interact through irregular interactions with

varying signs and have a glassy behaviour. Here we will not say more about the

physical concept of “glass” which is often a mater of debate.

Spin glass models are Ising spin systems, such as (2.1), (2.2), (2.3), with ran-

dom interaction constants. These models where introduced by Anderson and

Edwards in the 1970’s in an attempt to capture the irregular arrangements of

degrees of freedom or their irregular interactions. The Edwards-Anderson model

is simply given by the Hamiltonian (2.2) with Jij = ±J where the sign on each

edge is iid Bernoulli (probability 1/2 for each sign), and hi = h is constant.

Another widely studied model is the random field Ising model with Hamiltonian

38 Basic Notions of Statistical Mechanics

(2.2) with Jij = J constant and hi = ±h with iid Bernoulli signs. Variants of

these models use other distributions for teh interaction constants, for example

Gaussians. One can also take more complicated models with more general inter-

actions, e.g. JA’s in (2.3) may be random variables, or also replace the regular

grids by a random graph. The study of such simple models has turned out be

very non-trivial and is a source of many fundamental concepts in statistical me-

chanics of so-called disordered systems. We point out that even after fourty years

the Edwards-Anderson and random field Ising models are still not well under-

stood and many open questions remain. Fortunately, the spin glass models that

will be relevant for our three problems are defined on complete or locally tree-

like graphs and as we will see the absence of “low dimensional geometry” makes

them somehow easier to study. This is already the case for non-random versions

as we will see in Chapter 4.

The Gibbs distribution associated to a spin glass Hamiltonian has two lev-

els of randomness. First we have the randomness of the Hamiltonian itself, i.e.

the interaction constants or the underlying grid. Once they are sampled from a

specified ensemble we have a fixed instance of a Gibbs distribution which is a

probability distribution over the spin or lattice gas variables. So the study of spin

glass models is the study of ensembles of random Gibbs distributions. A word

about a terminology that comes from the manufacturing processes of materials

and has become standard is in order here. The random interaction constants of

the Hamiltonian are called quenched variables because once the instance (or the

sample) is specified they are fixed or ”frozen“ once for all. The spin or lattice gas

degrees of freedom are sometimes called annealed variables because they ”adapt“

themselves into their typical configurations. A word about notation is also in or-

der. It is very convenient to have two separate notations to distinguish averages

with respect to quenched and annealed variables. The expectations with respect

to the Gibbs distribution are always denoted by the same bracket 〈−〉 and those

with respect to the quenched variables by E with possible subscripts describing

the ensemble. Thus if A(x) is an observable (say the magnetization) the aver-

age over the annealed and quenched variables is E[〈A(x)〉]. The reader should

convince himself that it would be meaningless to permute the two expectations.

The quenched randomness is ubiquitous in many engineering problems where

one has to deal with particular instances that belong to a model ensemble. This

is the point of view that we took in the definition of the coding, compressive

sensing and satisfiability problems. As we will see in the next Chapter once

an instance of the ensemble is specified the Gibbs distribution appears more

or less naturally in the mathematical formulation. So in a sense the connections

between our models and the statistical mechanics of spin glasses is not surprising

but just very natural. In fact such connections have been with us since the 1970’s

for various computer science problems such as the travelling salesman or graph

partionning problems and also in neural networks (see references [?]).

2.7 Gibbs distribution from Boltzmann’s principle 39

2.7 Gibbs distribution from Boltzmann’s principle

This section is not needed for the main development of these notes and can

be skipped in a first reading.

We will derive the Maxwell-Boltzmann or Gibbs distributions from two basic

principles. We first discuss these principles and then derive the Gibbs distribution

in the next section. We point out that there is not only one way of deriving Gibb’s

distributions and not only one set of generally agreed upon principles which lead

to them. Rather, as with any physical law, is has to be “gussed” from a variety

of experiments, plausible assumptions and models, which all lead to a conclusion

that is then validated by experiments.

For concreteness the reader may keep in mind the lattice gas model in the

arguments of this section. We suppose that the particles have a dynamics with

“trajectories” xi(t), i = 1, . . . , n on the lattice parametrized by time t. As we

will see the rpecise nature of the dynamics will not concern us except for an

“ergodicity hypothesis”.

Uniform microcanonical measure

Let [0, T] be the time interval over which we measure an observable quantity

A(x(t)) and let τ be a characteristic microscopic time scale, for example the

time scale on which a single particle jumps from a position to a neighboring one.

In practice we have T � τ . We assume that a measurement returns an average

over time

1

T

∫ T

0

dt φ(x(t)), (2.35)

and that in the state of thermodynamic equilibrium this average is independent

of T for T � τ , and independent of the origin of time and initial condition (in

other words we can shift [0, T]→ [s, s+T] and the average is independent of s).

During the measurement interval the state of the system x(t) will wander

across the energy surface ΓE ⊂ {0, 1}|V | = {x | H(x) = E}. Let t(x)/T be the

fraction of time it spends in state x.

Our first principle states that for an isolated system, when T � τ , the fraction

of time t(x)/T spent in state x, is given by the uniform distribution on the energy

surface ΓE . In other words for t(x)/T we take,

µE(x) =
1(x ∈ ΓE)

W (E)
(2.36)

where the normalization factor is

W (E) =
∑

x∈{0,1}|V |
1(x ∈ ΓE). (2.37)

40 Basic Notions of Statistical Mechanics

This distribution is called the microcanonical distribution. In words this assump-

tion states that if the system is isolated it spends an equal time in all states.

A fundamental consequence is that we can replace the time average (2.35) by

a configurational average,

1

T

∫ T

0

dtA(x(t)) ≈
∑

x∈{0,1}|V |
µE(x)A(x), T � τ (2.38)

Often equ. (2.38) is formalized and called the ergodic hypothesis. The ergodic

hypothesis states that the dynamics exactly satisfies this identity in the limit

T → +∞, for almost all initial conditions x(0) (note that the right hand side

does not depend on the initial condition) and all observables A(x).

This ergodic hypothesis has played a very important historical role but has

never been proved for macroscopic systems, and its physical relevance has often

been debated.3 In fact its precise validity is not so important, and ultimately we

just postulate that averages of a class reasonable of observables in an isolated

system can be computed from the uniform distribution.

Boltzmann’s principle

Consider the normalization of the microcanonical measure, W (E). Generically

this has exponential behavior in the number of degrees of freedom. It is therefore

to introduce the Boltzmann entropy as

SB(E) = lnW (E). (2.39)

We stress that this is a priori a purely combinatorial quantity: more about it

later.

example 3 Let us consider the lattice gas model introduced in the previous

example for the non-interacting case J = 0. Since the energy surface consists of

ΓE = {x |
∑
i∈V xi = E/µ} there must be E/µ lattice nodes with xi = 1 among

|V | = n of them (and the rest with xi = 0). Hence

W (E) =

(
n

E/µ

)
' exp

(
nh2

(E
µn

))
, (2.40)

where h2(·) is the binary entropy function. In the infinite size limit we have

s(e) = lim
n→∞
E/n=e

1

n
SB(E) = h2

(
e

µ

)
, (2.41)

where e = E/n and h2(u) = −u lnu−(1−u) ln(1−u) the binary entropy function.

Note that this is a concave function (for physically sensible Hamiltonians the

Boltzmann entropy is a concave function of e; this is not always the case in

computer science and coding problems with hard constraints).

3 It should be noted that this hypothesis is at the origin of a deep branch of mathematics,

“ergodic theory”, and has been proven to hold for systems with a few particles such as
billiard balls [?]

2.7 Gibbs distribution from Boltzmann’s principle 41

There is a purely thermodynamic (and experimentally measurable) notion of

entropy elucidated in the 19-th century (along with the notions of heat and

work) by Carnot, Clausius, Joule, Helmholtz, Kelvin and others. For a system at

thermodynamic equilibrium with homogeneous temperature and pressure T and

p, the thermodynamic entropy Sthermo(E, V) is a function of the total energy E

and volume V satisfying

∂

∂E
Sthermo =

1

T
,

∂

∂V
Sthermo =

p

T
. (2.42)

From T and p one can in principle recover Sthermo. Note that the unit of Sthermo

are Joules per dgree Kelvin.

Boltzmann’s principle postulates equality of the thermodynamic and Boltzmann

entropies. The former is a physically measurable quantity and later is a mathe-

matical combinatorial quantity that can in principle be calculated. So,

Sthermo = kBSB, (2.43)

Here, kB is Boltzmann’s constant with units of Joules per degree Kelvin. If we

combine this identitywith the first equation in (2.42) then we get

∂SBoltz

∂E
=

1

kBT
. (2.44)

This fundamental principle makes the connection between statistical mechan-

ics and thermodynamics. In the next paragraph we will see that it is a crucial

ingredient in the derivation of the Gibbs distribution.

Derivation of the Gibbs distribution

The microcanonical distribution described earlier, only characterizes an isolated

system. However, real macroscopic systems are not isolated. One should also

notice that in practice, in order to reach thermal equilibrium it is necessary to

put systems in contact with a thermal bath, an infinite reservoir which is at a

constant temperature.

For simplicity, we take the lattice gas as our big reservoir and suppose it is

isolated with total energy E. The real system of interest is a much smaller but still

macroscopic system Σ ⊂ V (see Figure 2.3). We label the degrees of freedom in

Σ as (x1, . . . , xm) and those outside Σ by (xm+1, . . . , xn). The regime of interest

is 1 � m � n. We are interested in computing only averages of observables

which depend on the degrees of freedom of the smaller system Σ, A(x1, . . . , xm).

Of course we can compute them with the microcanonical distribution

µE(x1, . . . , xn) =
1((x1, . . . , xn) ∈ ΓE)

W (E)
. (2.45)

but clearly, since A depends only on x1, . . . , xm, we only need the marginal of

this distribution over the degrees of freedom of Σ.

42 Basic Notions of Statistical Mechanics

S

Λ

∂S

Figure 2.3 The system S is embedded in a thermal bath V . The total system V is
considered as an isolated system and its total energy E is conserved. We compute the
induced measure on S.

We now show that the marginal of (??) is the Gibbs distribution with inverse

temperature 1
kBT

= ∂
∂ESB(E).

The marginal distribution for Σ reads systems is x1, . . . , xm reads

µind(x1, . . . , xm) =
∑

xm+1,...,xn

µE(x1, . . . , xn)

=

∑
xm+1,...,xn

1((x1, . . . , xn) ∈ ΓE)∑
x1,...,xn

1((x1, . . . , xn) ∈ ΓE)
. (2.46)

The total energy E is a sum of the energy inside Σ, the energy outside Σ and an

interaction part between the inside and the outside,

E = H(x1, . . . , xn)

= HΣ(x1, . . . , xm) +HV \Σ(xm+1, . . . , xn) +Hint,

GenericallyHΣ is of the order of m (the volume of Σ),HV \Σ is of order n−m (the

volume of the outside of Σ) and Hint is of order the surface of Σ. In d dimensions

the surface of Σ is of order m(d−1)/d << m << n − m, thus neglecting the

interaction term we conclude that if (x1, . . . , xn) belongs to the energy surface

ΓE then (xm+1, . . . , xn) belongs to the energy surface ΓE−HΣ(x1,...,xm). With

2.8 Notes 43

these remarks we obtain

µΣ(x1, . . . , xm) =

∑
xm+1,...,xn

1((xm+1, . . . , xn) ∈ ΓE−HΣ(x1,...,xm))∑
x1,...,xm

∑
xm+1,...,xn

1((xm+1, . . . , xn) ∈ ΓE−HΣ(x1,...,xm))

=
exp(SB(E −HS(x1, . . . , xm))∑

x1,...,xm
exp(SB(E −HΣ(x1, . . . , xm))

=
exp(SB(E)−HΣ(x1, . . . , xm) ∂

∂ESB + . . .)∑
x1,...,xm

exp(SB(E)−HS(x1, . . . , xm) ∂
∂ESB + . . .)

=
exp (−HΣ(x1, . . . , xm)/kBT)∑

x1,...,xm
exp (−HΣ(x1, . . . , xm)/kBT)

,

The second equality follows from the definition of the Boltzmann entropy. The

third equality uses a Taylor expansion to first order since E � HΣ(x1, . . . , xm)

since n� m). The last equality is the point where Boltzmann’s principle is used.

The final result is exactly the Gibbs distribution for Σ.

2.8 Notes

If you visit Boltzmann’s grave in Vienna you will see the inscription S = k lnW .

Austrian physicist and philosopher. He was a professor of mathematics in Vienna.

He hanged himself.

Problems

2.1 Gibbs distribution. Give the details of the derivation leading to (2.7)

and (2.8).

2.2 Energy fluctuations. Derive relation (2.19).

2.3 Positivity of Kullback-Leibler divergence. Prove in two different ways

that DKL(p||q) ≥ 0 with equality if and only if p(x) = q(x) for all x. Hint: use

lnu ≤ u− 1 for u > 0 and also the convexity of f(u) = u lnu.

2.4 Correlation functions from derivatives of partition function. Check

the formulas (2.29) and also

∂3

∂λiλjλk
lnZ(λ)|λ=0 =〈xixjxk〉 − 〈xixj〉〈xk〉 − 〈xjxk〉〈xi〉

− 〈xixk〉〈xj〉+ 2〈xi〉〈xj〉〈xk〉

2.5 Marginals for Ising spins. Consider any spin system with binary vari-

ables si ∈ {+1,−1}. Express the marginals νi(si) and νi,j(si, sj) in terms of the

44 Basic Notions of Statistical Mechanics

averages 〈si〉, 〈sj〉 and 〈sisj〉.

2.6 Ising model in one dimension: transfer matrix method. The aim of

this problem is to solve the one-dimensional Ising model by the transfer matrix

method. The Hamiltonian of the one-dimensional Ising model on a ring is

H = −J
n
2−1∑
i=−n2

sisi+1 − h
n
2∑

i=−n2

si − Js−n2 sn2

The last term accounts for the fact that the sites are on a ring. Consider the

transfer matrix

T =

(
eK+h e−K

e−K eK−h

)
(i) Show that the partition function can be expressed as ZN = tr (Tn) where tr

is the sum over eigenvalues (the trace).

(ii) Find the eigenvalues of T and show that the free energy per spin is in the

thermodynamic limit n→ +∞

f = −β−1 ln[eβJ cosh(βh) + (e2βJ sinh2(βh) + e−2βJ)1/2].

(iii) Compute the magnetization from the thermodynamic definition: m = − ∂
∂hf

and plot the curve m as a function of h for various values of β. Convince yourself

both on the plot and from the analytic formula that there is no sharp phase

transition for any temperature T > 0.

2.7 Ising model in one dimension: message passing method. In this

problem we solve the one-dimensional Ising model by a “message passing” or

“iterative” method. We consider the model on an open chain, which means that

the Hamiltonian is

H = −J
n
2−1∑
i=−n2

sisi+1 − h
n
2∑

i=−n2

si

We want to compute the average 〈si〉 in the thermodynamic limit n→ +∞. For

simplicity we consider the middle spin 〈s0〉 (it can be checked that limn→+∞〈si〉
is independent of i, for i fixed).

(i) In the Gibbs average for 〈si〉 perform explicitely the sum over the two end

spins s−n/2 and sn/2. Show that this leads to a new model on a shorter chain

with new Hamiltonian

βH(1) = −J
n
2−2∑

i=−n2 +1

sisi+1 − h
n
2−2∑

i=−n2 +2

si

− β−1(h+ tanh−1(tanh(βJ) tanh(βh)))(s−n2 +1 + s−n2−1)

2.8 Notes 45

(ii) Repeat this calculation to show that

lim
N→+∞

〈s0〉 = tanh(βh+ 2 tanh−1(tanh(βJ) tanh(βu)))

where u is the solution of the fixed point equation

u = βh+ tanh−1(tanh(βJ) tanhβu)

(iii) Show that the solution of this fixed point equation is unique (so that there

is no ambiguity in this result).

(iv) Check that the result agrees with the expression for m found in the first

problem. Hint: use the identity tanh(x+y) = (tanhx+tanh y)/(1+tanhx tanh y)

3 Formulation of Problems as Spin
Glass Models

We will reformulate the three problems introduced in Chapter 1 in a statistical

physics language. Both the coding as well as the compressive sensing problem

are inference problems, and in this context Gibbs distributions appear quite nat-

urally. The random K-SAT problem is not an inference problem and the Gibbs

distribution does not appear in a completely straightforward way. A simple and

natural distribution is the uniform one over the set of satisfying assignments.

In a sense this distribution is akin to the microcanonical measure introduced in

Sec. 2.7. But, given a formula, the set of satisfying assignments is not known,

typically we dont even know if it is empty or not, and in any case it is difficult

to get a handle on the uniform distribution. Instead, we will take a Gibbs distri-

bution which is always well defined on all possible assignments and get a good

approximation to the uniform distribution when the inverse temperature β tends

to infinity.

In all cases we end up with spin glass models. What do we mean by this? Take

for example the coding or satifiability examples. Instead of talking about physical

degrees of freedoms (e.g. magnetic spins), we can think of the bits which are to

be transmitted or the Boolean variables and which can take one of two possible

values as spins. This explains why we talk about spin systems. In compressed

sensing the signal components are continuous and this model falls in the class

of continuous spin systems. But where is the glass? In coding the way we have

defined our code ensemble, a check interacts with a random subset of the bits

so the graph and interactions are random. The same is true for satisfiability. In

compressed sensing the measurement matrices are random which results in ran-

dom interaction constants between the continuous spins. Note that in compressed

sensing the graph itself is bipartite complete and is therefore not a random ob-

ject. In all our models this type of randomness is quenched: once we pick an

instance from the appropriate ensemble we have a fixed Gibbs distribution. In

this sense our models fall in the general category of spin glasses.

To summarize, our reformulations will lead us to random Gibbs distributions.

For each problem we will identify a Hamiltonian function over “spins” with

underlying graphs and interaction constants belonging to a random ensemble.

3.1 Coding as a spin glass model 47

3.1 Coding as a spin glass model

Let C be a code from Gallager’s (dv, dc) ensemble of block length n. Recall that

dv is the degree of variable nodes, and that dc is the degree of check nodes.

Further, n is the block length, i.e., it is the number of variable nodes. We have

ndv = mdc where m is the number of parity checks.

Assume that we transmit the codeword x = (x1, . . . , xn) through a binary,

memoryless symmetric channel without feedback, and let y = (y1, . . . , yn) be

the received word. We will use the spin variable notation for the codebits. This

means that we write si = (−1)xi (or si = 1− 2xi). The channel is described by

transition probabilities

p(y|s) =

n∏
i=1

p(yi|si) (3.1)

The three examples to which we will refer most often are the BEC, the BSC,

and the BAWGNC.

We will always assume that the transmitted (input) codeword sin is selected

uniformly at random, thus the joint distribution for (s, y) is p(y|s)× 1(∈C)
|C| . We

call p(s | y) be the posterior probability distribution of s given the received word

y.

MAP decoding

The bit-MAP estimate ((MAP means maximum a posteriori) is,

ŝi(y) = argmaxsi νi(si|y), (3.2)

where νi(si|y) is the marginal of the posterior p(s|y). This estimator is optimal

in the sense that it minimizes the bit probability of error.

Since sin is picked uniformly at random from the code, the probability that

bit i is wrongly decoded is

1

|C|
∑
sin∈C

P[ŝi(Y) 6= sin
i]

Thus the average bit probability of error is defined as

Pb[error] =
1

n

n∑
i=1

1

|C|
∑
sin∈C

P[ŝi(Y) 6= sin
i] (3.3)

We will see that bit-MAP decoding has a very natural statistical mechanical

interpretation in terms of the magnetization of a spin glass model.

Although we will not be deal much with it, we mention the block-MAP esti-

mate ŝ(y) = argmaxs p(s | y) and the associated the block probability of error

PB[error] = 1
|C|
∑
sin∈C PB [ŝ(Y) 6= sin]. We will see that the block-MAP decoding

is equivalent to finding the minimum energy states of a Hamiltonian; and that

48 Formulation of Problems as Spin Glass Models

there is a ”finite temperature“ decoder which interpolates between the bit-MAP

and block-MAP decoders.

The posterior distribution as a spin glass model

We now show that the posterior distribution p(s | y) is a random Gibbs distribu-

tion. Recall that a code is represented by a bipartite factor graph with variable

nodes i = 1, . . . , n and checks1 a = 1, . . . ,m; like in Fig. 1.1. We call ∂a the set

of variable nodes connected to check a. A code word x has to satisfy all parity

check constraints
∑
i∈∂a xi = 0 for all checks. In spin language are equivalent to∏

i∈∂a si = 1 for all checks. Thus the prior distribution over codewords can be

written as

p0(s) =
1(s ∈ C)
|C|

==
1

| C |

m∏
a=1

1

2
(1 +

∏
i∈∂a

si). (3.4)

Using Bayes law and the channel law (3.1),

p(s|y) =
p(y|s)p0(s)

p(y)

=
p0(s)

∏n
i=1 p(yi|si)∑

s p0(s)
∏n
i=1 p(yi|si)

(3.5)

Now we divide the numerator and denominator by
∏n
i=1 p(yi| − 1) and use

p(yi|si)
p(yi| − 1)

= ehisi+hi (3.6)

where we have introduced the half-loglikelihood variable associated to channel

observation yi

hi =
1

2
ln
p(yi|+ 1)

p(yi| − 1)
, (3.7)

and obtain

p(s|y) =
p0(s)

∏n
i=1 e

hisi+hi∑
s p0(s)

∏n
i=1 e

hisi+hi
. (3.8)

Finally using (3.4) we arrive at the expression

p(s|y) =
1

Z

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi (3.9)

where the normalizing factor in the denominator is

Z =
∑
s

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi . (3.10)

It equivalent to describe the channel outputs by h or y, and we will sometimes

1 We will usually denote variable nodes by letters i, j, k, . . . and checks by a, b, c, . . .

3.1 Coding as a spin glass model 49

interchange them in our notations when this does not lead to ambiguities. So for

example we can write p(s|y) = p(s|h) for the posterior. But for the transition

probability of the memoryless channel we have to be more careful. In terms

of half-loglikelihood variable we denote it c(hi|si), and formally p(yi|si)dyi =

c(hi|si)dhi. In the exercises you compute explicitely c(hi|si) for the BEC, BSC

and BAWGNC.

The posterior (3.9) is a random Gibbs distribution, also called a spin glass

model. Here the word random relates to the randomness of the channel outputs

as well as the choice of code. For each channel realization h and each code C picked

from the Gallager ensemble we have a distribution over the spins s ∈ {−1,+1}n.

In the terminology of physics the randomness associated with the code (or factor

graph) and channel realisations is called ”quenched randomness”. This is because

in a given experiment (here the transmission and reception of a message) the code

and channel realisations are fixed, or frozen. The spins on the other hand are

called annealed variables because they fluctuate and adapt themselves into their

typical configurations.

What are the distributions of the quenched randomness? The distribution

over the codes is the uniform distribution over Gallager’s ensemble. In the con-

figuration model introduced in Chapter 1 this is the uniform distribution over

all permutations among ndv sockets. Averages with respect to codes are denoted

EC [−]. The channel outputs are distributed according to c(h|sin) and correspond-

ing averages Eh|sin [−].

This is a good point to recall that averages with respect to the Gibbs dis-

tribution, in other words with respect to the spins, are denoted by the bracket

〈−〉, and are distinguished from averages over quenched variables generically de-

noted E. Note also that Gibbs brackets depend on h so 〈−〉 and E cannot be

interchanged.

We explained in Chapter 2 that a crucial feature of Gibbs distributions, which

plays a fundamental role in their analysis, is their ”locality”. We see that this

is the case here because each term in the products in (3.9) and (??) depend on

a finite number of spins. This is the essential reason why statistical mechanics

methods can be applied.

Bit-MAP decoder and magnetization

The bit-MAP decoder has a natural relation to the magnetization of the spin

glass. The definition (3.2) is equivalent to

ŝi(h) = sign(νi(si = 1|h)− νi(si = −1|h))

= sign(
∑
si

siνi(si|h)) = sign〈si〉, (3.11)

50 Formulation of Problems as Spin Glass Models

So the bit-MAP estimate for the i-th bit i is given by the sign of the local

magnetisation 〈si〉,

〈si〉 =
1

Z

∑
s

si

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi

=
∂

∂hi
lnZ (3.12)

Using P[ŝi(h) 6= sin
i] = Eh|sin [1(ŝi(h) 6= sin

i) the average bit probability of error

(3.3) becomes

Pb[error] =
1

n

n∑
i=1

1

|C|
∑
sin∈C

1

2

(
1− Eh|sin

[
sin
i sign(〈si〉)

])
. (3.13)

The BEC, BSC and BAWGNC have a special symmetry property which allows

to simplify this expression. In the next section we show that for a general class

of symmetric channels the terms in the sum (3.13) are independent of the in-

put word (see Equ. (3.20)). For such channels there is no loss in generality to

assume that the transmitted word is sin
i = 1, i = 1, . . . , n, or x = 0 the ”all-zero

codeword”. To simplify the notations we set c(h|1) = c(h) and Eh|1in = Eh. For

symmetric channels the average bit error probability is given by

Pb[error] =
1

n

n∑
i=1

1

2

(
1− Eh

[
sign(〈si〉)

])
. (3.14)

Interpolating between bit-MAP and MAP decoders

What is the Hamiltonian corresponding to distribution (3.9)? To answer this

question it is enough rewrite this expression as e−βH(s)/Zβ . If we set β = 1 we

have2

H(s) =

m∑
a=1

1

2
(1−

∏
i∈∂a

si)−
n∑
i=1

hisi (3.15)

So the posterior distribution used in bit-wise MAP decoding can be though as a

Gibbs distribution with inverse temperature set to the special value β = 1.

From this point of view it is natural to try other decoders based on the Gibbs

distribution for arbitrary values of the inverse temperature parameter,

pβ(s|h) =
1

Zβ
e−βH(s) =

1

Zβ

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

eβhisi (3.16)

with the partition function Zβ the sum over all s ∈ {−1,+1}n of the numerator.

The general temperature decoder is defined as

ŝi(h;β) = argmax pβ(si|h) = sgn〈si〉β (3.17)

2 Setting β to a different value would amount to scale the Hamiltonian by the inverse of that

value.

3.2 Channel symmetry and gauge transformations 51

where the bracket 〈−〉β is the average with respect to (3.16). Obviously β = 1

this is the bit-wise MAP decoder. Taking the limit β → +∞ it is not difficult

to see that sgn〈si〉β → argminH(s). This also equals argmax p(s|h), thus in the

zero temperature limit we recover the block MAP decoder. For 1 ≤ β ≤ +∞ the

general temperature decoder interpolates between the bit-wise and block MAP

decoders.

3.2 Channel symmetry and gauge transformations

A binary input channel is said to be symmetric when the transition probability

satisfies p(yi|si) = p(−yi|−si). Using (3.7) and (??) one shows that this is equiv-

alent to c(hi|si) = p(−hi| − si). We show below that without loss of generality

one can assume sin
i = 1, so it is useful to also notice that

c(−hi) = c(hi)e
−2hi (3.18)

example 4 For the BEC, BSC, BAWGNC we check explicitly that p(yi|si) =

p(−yi| − si). One also computes c(hi) = c(hi|1) from (3.7) and (??) and finds

c(h) = (1− ε)δ+∞(h) + εδ(h), BEC(ε)

c(h) = (1− p)δ(h− ln
1− p
p

) + pδ(h− ln
p

1− p
), BSC(p)

c(h) =
1√

2πσ−2
e−(h− 1

σ2)2/ 2
σ2 , BAWGNC(σ2)

The identity (3.18) is explicit on these expressions.

As a first application of channel symmetry let us prove (3.14). Consider first

Eh|sin
[
sin
i sign(〈si〉)

]
. The expectation Eh|sin is an integral over hi’s and the

bracket 〈−〉 contains sums (in a numerator and denominator) over si’s. In the

inetgarls and sums we may perform the change of variables

si → τisi, hi → τisi, i = 1, . . . , n (3.19)

for a code word τ ∈ C. Now we note two crucial facts. First, under this transfor-

mation the posterior (3.9) remains invariant, and therefore 〈si〉 → τi〈si〉, where

〈−〉 is the same expectation on both sides of the equality. Second, because of

channel symmetry Eτihi|sin = Ehi|τisin . Thus

Eh|sin
[
sin
i sign(〈si〉)

]
= Eh|τ?sin

[
τis

in
i sign(〈si〉)

]
(3.20)

where we find it convenient to use v ? u for a vector with components viui,

i = 1, . . . , n. Now, since the code is linear τ ? sin is also a code word, and

therefore the sum over sin is independent of τ . This proves (3.14).

The idea of using a transformation such as si → τi, hi → τisi with τ a code

word, turns out to be very useful in the present framework. Since codewords

τ ∈ C form a group, the set of such transformations also forms a group. Moreover

52 Formulation of Problems as Spin Glass Models

these transformations are local in the sense that for each i the variables get

multipied by different factors. Transformations with these two properties are

called gauge transformations. The invariance of the Gibbs distribution under

such transformations together with channel symmetry allows to derive a number

of useful consequences and identities. We will have the occasion to derive them

as we proceed with the theory. The independence of the error probability on the

transmitted codeword is one of them.

It is important to note that the invariance of the Gibbs distribution under

gauge transformations is a consequence of the linearity of the code. For non-

linear codes such an invariance would typically not be present. Also, for the

random K-SAT problem where the constraints are “non-linear” we do have (or

know) any useful gauge transformations. This is one of the reasons why this

problem is a much harder one.

3.3 Conditional entropy and free energy in coding

Without loss of generality we assume from now on that the all all-zero codeword

is transmitted. We recall the equivalent notation EY |1 = EY , Eh|1 = Eh.

We explained in Chapter 2 that a lot can be learned from the free energy

− 1
n lnZ (recall here we have β = 1). For example differentiating with respect to

hi yields the magnetization 〈si〉 (see Equ. (3.12)). For spin glass models the free

energy is random but usually concentrates in the thermodynamic limit n→ +∞.

in the thermodynamic limit and, although this can be non-trivial, we do have

examples where this can be proven. Such proof techniques will be studied in

Chapter ??. We therefore consider the average free energy − 1
nEh[lnZ]. We will

now show an important relation to the conditional entropy H(X|Y), i.e. the

average entropy of the posterior p(s|y),

H(X|Y) = −EY
[∑

s

p(s|y) ln p(s|y)

]
(3.21)

This relation shows that computing the average free energy or the conditional

entropy is basically equivalent. In part III we will develop powerful methods

to compute the free energy. This will automatically allow us to compute the

conditional entropy and in particular the MAP threshold.

For transmission over a symmetric channel and any fixed linear code (not

necessarily an LDPC code) we have

1

n
H(X|Y) =

1

n
Eh[lnZ]−

∫ +∞

−∞
dh c(h)h. (3.22)

Observe that the last term in (3.43) depends only on the channel. For the BSC

it is equal to (1 − 2p) ln 1−p
p and for the BAWGNC 1/σ2. For the BEC there is

a little ambiguity here. Formally
∫ +∞
−∞ dh c(h)h is infinite, but this infinity is

3.3 Conditional entropy and free energy in coding 53

cancelled with another infinity in lnZ. Indeed the weight factors ehisi in Z

diverge when si = 1 and hi = +∞. However we can redefine the partition

function replacing ehisi by ehisi−hi , so that the new Z is finite and the last term

in (3.43) is not present. This should in principle be done for any channel having

a non-zero weight on hi = +∞, but is not real problem.

The proof of this relation will be a good occasion to illustrate once a again the

use of gauge transformations and channel symmetry. Replacing (3.9) in (3.21)

H(X|Y) = EY [lnZ(y)]− EY
[∑

s

p(s|y) ln
∏
c∈C

1

2
(1 +

∏
i∈c

si)

]

− EY
[∑

s

p(s|y)

n∑
i=1

hisi

]

= Eh[lnZ]−
n∑
i=1

Eh[hi〈si〉] (3.23)

To get the last equality we noticed that the second expectation vanishes because

p(s|y) is supported on code words and ln 1 = 0. Finally we replaced EY by Eh.

It remains to show the identity

Eh[hi〈si〉] = Eh[hi] (3.24)

This is part of a whole class of relationships, called Nishimori identities, which

follow from gauge invariance and channel symmetry. We will encounter a number

of them in susequent chapters. Using a gauge transformation si → τisi, hi → τihi
and the channel symmetry in the form c(τihi) = c(hi)e

hiτi−hi we have

Eh[hi〈si〉] = Eτ?h[hi〈si〉]

= Eh[hi〈si〉
n∏
j=1

ehjτj−hj] (3.25)

Summing over all code words τ ∈ C,

Eh[hi〈si〉] =
1

|C|
=

1

|C|
Eh[Zhi〈si〉

n∏
j=1

e−hj]

=
1

|C|
Eh[hi

∑
s

si

m∏
c=1

1

2
(1 +

∏
i∈∂c

si)

n∏
j=1

ehjsj−hj]

=
1

|C|
∑
s

si

m∏
c=1

1

2
(1 +

∏
i∈∂c

si)Eh[hi

n∏
j=1

ehjsj−hj]

=
1

|C|
∑
s

si

m∏
c=1

1

2
(1 +

∏
i∈∂c

si)Eh[hie
hisi−hi]

∏
j 6=i

Eh[hi

n∏
j=1

ehjsj−hj]

(3.26)

54 Formulation of Problems as Spin Glass Models

The result then follows from the two identities

Eh[ehisi−hj] = 1, Eh[hie
hisi−hi] = si (3.27)

because
∑
s si
∏m
c=1

1
2 (1 +

∏
i∈∂c si) = |C|. These two identities simply amount

to the normalization of c(h) when si = 1. When si = −1 it is elementary to see

that they follow from c(−hi) = c(hi)e
−2hi .

3.4 Compressive Sensing as a spin glass model

Recall that we are considering the model

y = Ax+ z, (3.28)

where the measurement matrix A is an m × n real valued matrix with iid zero

mean Gaussian entries with variance 1/m, the noise z consists of m iid zero-

mean Gaussian entries of variance σ2, and where the signal x consists also of n

iid entries distributed with the prior p0(x). We will assume this prior belongs to

the sparse class, p0 ∈ Fκ, that is

p0(x) = (1− κ)δ(x) + κφ0(x) (3.29)

where φ0 is a continuous positive and normalized density. So the expected number

of non-zero entries in the signal is k = κn.

The conditional probability of observing y given x is

p(y | x) =
1

(2πσ2)
n
2
e−

1
2σ2 ‖y−Ax‖

2
2 , (3.30)

and the joint distribution, taking the prior into account, has the form

p(x, y) =
1

(2πσ2)
n
2
e−

1
2σ2 ‖y−Ax‖

2
2

n∏
i=1

p0(xi). (3.31)

We discuss two scenarios. In the first one the prior is known (so here φ0(x) is

known) and in the second scenario which is more realistic the prior is not known

and one only knows that it belongs to Fκ. In other words κ is assumed to be

known but not φ0.

Known prior: MMSE estimator

When the prior is known a reasonable way to estimate the signal is to use the

Minimum Mean Square Estimator (MMSE). This estimator is optimal in the

sense that it minimizes the Mean Square Error (MSE). The MSE is the functional

over the space of estimators x̂(y) : Rr → Rn

MSE[x̂] = E[(x̂(Y)−X)2] (3.32)

3.4 Compressive Sensing as a spin glass model 55

Here the expectation is with respect to the joint distribution (3.31) and the iid

Gaussian entries of A. A standard exercise shows that the minimum is attianed

by the MMSE,

x̂i(y) = EX|y[X] =

∫
dnxxi p(x | y), i = 1, . . . , n. (3.33)

In this expression p(x|y) is the posterior distribution associated to (3.31), and we

have adopted the notation dnx =
∏n
i=1 dxi. Analogously to the case of coding,

we will interpret the posterior as a Gibbs distribution and the MMSE as a

”magnetization“.

Unknown prior: LASSO estimator

We will almost exclusively concentrate on this situation which is more realistic.

A popular choice for the estimator is the LASSO, (??)

x̂1(y) = argminx

{
1

2
‖y −Ax‖22 + λ‖x‖1

}
. (3.34)

where the real parameter λ has to be chosen suitably. Since the prior is unknown

it is natural to choose the best possible λ for the worse possible prior. Formally

we solve a minimax problem,

inf
λ∈R

sup
p0∈Fκ

1

n
E[(x̂1(y)− x)2] (3.35)

The expectation is again here over the joint distribution (3.31) and the random

matrix ensemble. Solving teh minimax problem amounts to find the best possible

parameter λ when the signal distribution p0(x) is the worst possible. The value

given by (3.35) is sometimes called teh LASSO minimax risk and will constitute

our performance measure.

As explained in Chapter 1 it is not so easy to unambiguously justify a priori

the choice of this estimator. We will be able to solve exactly this problem in

Chapter ?? and we will find that the minimax-MSE is finite in the same region of

parameters for which l1-l0 equivalence holds. In the region were l1-l0 equivalence

does not hold the minimax-MSE diverges. In this sense LASSO is as good as

pure l1 minimization for the noiseless problem, and this justifies the use of Lasso

a posteriori. We will shortly give a different, somewhat more phenomenological,

justification which does not require to develop the whole theory. We will see

that the Lasso estimator can also be considered as a zero temperature limit of

a ”finite temeprature MMSE“ with a Laplacian prior modelling the unknown

distribution p0.

56 Formulation of Problems as Spin Glass Models

MMSE and LASSO as spin glass models

The posterior entering in the MMSE estimator (3.33) is derived from 3.31,

p(x | y) =
1

Z

m∏
a=1

e−
1

2σ2 (ya−ATa x)2
n∏
i=1

p0(xi), (3.36)

where ya, a = 1, . . . ,m are the components of y and Aa is the column vector

equal to the a-th row of the matrix A. Thus ATa x =
∑n
i=1Aaixi. The explicit

expression of the normalisation factor is

Z =

∫
dnx

m∏
a=1

e−
1

2σ2 (ya−ATa x)2
n∏
i=1

p0(xi) (3.37)

The interpretations in terms of spin-glass concepts are analogous to the case of

coding. The posterior (3.36) can be though of as a random Gibbs distribution

and (3.37) as a partion function. This time the ”spin variables“ xi ∈ R belong

to a continuous alphabet, and one often speaks of “continuous spins”. The dis-

tribution is random because of the measurement matrix A and the observations

y. These are the quenched variables.

The MMSE estimator (3.33) is the average with respect to the Gibbs distribu-

tion and in statistical mechanics notation is written as the bracket 〈xi〉. One can

interpret it as a “magnetization” for the continuous spins. Note that in order to

compute it all we need in principle is the marginal p(xi|y) given by integrating

(3.36) over all spin variables except xi. To sum up we have,

x̂i(y) = 〈xi〉 =

∫
dnxxi p(x | y) =

∫
dxixi p(xi | y), (3.38)

We saw in Chapter 2 that Gibbs distributions are of the form e−βH/Z where

H is a Hamiltonian. What are the Hamiltonian and the inverse temperatrure

here? A natural answer to this question is to take β = 1 and

H(x) =
1

2σ2

m∑
a=1

(ya −ATa x)2 +

n∑
i=1

ln p0(xi) (3.39)

In coding where we discussed a ’finite temperature decoder“ and noticed that it

interpolates between the bit-MAP and block-MAP decoders. Once we have the

Hamiltonian view it is immediate to do something similar here. Let

pβ(x|y) =
1

Zβ
e−βH(x) =

1

Zβ

m∏
a=1

e−
β

2σ2 (ya−ATa x)2
n∏
i=1

(p0(xi))
β (3.40)

with Zβ the correct normalization factor given by the integral over all xi’s of the

numerator. We define a ”finite temperature estimator“ as the magnetization at

inverse temperature β,

x̂i,β(y) = 〈xi〉β =

∫
dxxi pβ(x | y) =

∫
dxixi pβ(xi | y). (3.41)

For β = 1 this simply the usual MMSE estimator. In the limit of zero temperature

3.5 Free energy and conditional entropy in compressive sensing 57

β → +∞ the integral is concentrated on the spin configurations that minimize

the Hamiltonian, in other words

lim
β→+∞

x̂β(y) = argminxH(x)

= argminx
(1

2σ2
‖y −Ax‖2 + λ

n∑
i=1

ln p0(xi)
)

(3.42)

This is analogous to the usual least square estimator but penalized by a term

ln p0(x) coming from the prior distribution.

Now we can see why the LASSO can be viewed as a zero temperature limit

of a finite temperature MMSE. When the prior is unknown but it is only known

that the signal is sparse the Laplacian prior p0(x) = e−
λ
σ2 |x| is a simple, and as it

turns out, tractable model for the ensemble of possible priors. This ensemble is

parametrized by a single parameter λ and its optimal value as a function of κ is

determined from the minimax principle. In a sense, this point of view naturally

leads to the AMP algorithm developed in Chapter ??.

3.5 Free energy and conditional entropy in compressive sensing

Assume that the prior is known and consider the Gibbs distribution associated

to the MMSE estimator. There is a relation between the average free energy and

conditionnal entropy that is perfectly analogous to the one for coding in section

3.3. Consider −EY [1
n lnZ] the average free energy where the average is only over

Y and the measurement matrix is fixed. We have

H(X|Y) = EY [lnZ(y] +H(X) +
n

2
(3.43)

It is pleasing to see that the free energy is directly related to the the mutual

information H(X)−H(X|Y). Note also that H(X) = nH(X) = κH(φ0(·)).
The derivation is easier than in coding and is a matter of simple algebra. By

definition

H(X | Y) = −EX,Y [ln p(X | Y)] (3.44)

The logarithm of the posterior distribution is equal to

− 1

2σ2
‖y −Ax‖22 +

n∑
i=1

ln p(xi)− lnZ(y) (3.45)

The last term contributes EY [lnZ] to the conditional entropy (3.43). The con-

tribution of the second term to (3.43) is also very easy to assess

−EX,Y
[n∑
i=1

ln p(Xi)

]
= −

n∑
i=1

EX [ln p(Xi)] = H(X) (3.46)

58 Formulation of Problems as Spin Glass Models

To derive the contribution of the first term it is convenient to write down ex-

plicitely the integrals,

1

2σ2

∫
dx

∫
dy p(x, y)‖y −Ax‖22

=
1

2σ2

∫ n∏
i=1

dxip0(xi)

∫
dy ‖y‖22

e−
1

2σ2 ‖y‖
2
2

(2πσ2)n/2

=
n

2
(3.47)

The second line is obtained by a shift y → y+Ax in the y-integral for each fixed

x.

3.6 K-SAT as a spin glass model

Recall the formulation of the random max-K-sat problem of Chapter 1. We take

a formula at random from the ensemble F(n,K,M). The formula corresponds

to a biparttite factor graph with dashed and full edges, see Fig. 1.6. As for

coding and compressed sensing we adopt the notation that letters i, j, k, . . . are

variable nodes and a, b, c, . . . are constraint nodes. In the max-K-sat problem

we consider the number of violated clauses for an assignment x, then we take

the best possible assignment that minimizes the number of violated clauses and

average over the random formulas,

e(α) = lim
m→+∞

1

m
E
[
min
x

m∑
a=1

(1− 1a(x))
]
. (3.48)

In Chapter ?? we study mathematical methods allowing the proof of existence

of this limit.

The problem here is not directly formulated in terms of a Gibbs distribution,

but a natural and fruitful idea is to one consider the Gibbs distribution associated

to the cost function

m∑
a=1

(1− 1a(x)). (3.49)

In particular, by studying the Gibbs distribution for very low temperatures we

can get hold of e(α) and much more also.

Hamiltonian formulation

We will work in the spin language, so we set si = (−1)xi . Furthermore if clause ca
contains the literal xi (resp. x̄i) we associate a weight Jai = +1 (resp.Jai = −1)

to the edge ai of the factor graph. Thus, for example on Fig. 1.6 full edges have

Jai = +1 and dashed edges have Jai = +1. Moreover the Jai are bernoulli 1/2

3.6 K-SAT as a spin glass model 59

random variables. With these convention we see that the i-th variable satisfies

clause a when si = −Jai and does not satisfy it when si = −Jai. Therefore

1a(x) =
∏
i∈∂a

(1− siJia
2

)
(3.50)

and the cost function, also called the Hamiltonian of K-sat, takes the form

H(s) =

m∑
a=1

∏
i∈∂a

(1 + siJia
2

)
(3.51)

By expanding the product in each term we see that this Hamiltonian involves

“multispin interactions” of the form (2.3). This Hamiltonian is random in the

sense that the underlying factor graph is random, and this randomness is frozen

because once the formula has been chosen from the ensemble it is fixed. This is

a spin-glass Hamiltonian. Of course we have

e(α) = lim
m→+∞

1

m
E
[
min
s
H(s)

]
. (3.52)

The spin assignments that minimize the Hamiltonian (3.51) are often called

“ground states” and one of the problems that will be discussed in later chapters

will be to understand their geometric organization in the “Hamming space”

{−1,+1}n. Ground states with zero energy (zero cost) are solutions of the K-sat

formula. An important problem is to count them. This amounts to evaluate

N0 =
∑
s

m∏
a=1

(1−
∏
i∈∂a

(1 + siJia
2

)
) (3.53)

We will also see that it is often useful to take a larger view and count the number

of spin assignment of energy (or cost) E,

NE =
∑
s

1(H(s) = E)

m∏
a=1

(1−
∏
i∈∂a

(1 + siJia
2

)
) (3.54)

Finite temperature formulation

The set of solutions of a K-sat formula, equivalently the set of ground states,

is not easy to determine. One way to approach this problem would be to sam-

pel from this space at random thanks to a simple distribution. The simplest

distribution one could imagine is the uniform one over solutions, so formally

1(H(s) = 0)/N0. We immediately face a proble here because some formulas

from F(n,K,M) will not have any solution (and for high enough α this happens

with overwhelming probability when n is large) so the uniform distribution is

not well defined.

From the point of view of statistical mechanics there is a very natural regu-

larisation of the uniform distribution. Namely one takes the Gibbs distribution

60 Formulation of Problems as Spin Glass Models

at finite inverse temperature β < +∞,

p(s) =
1

Z
e−βH(s) =

1

Z

m∏
a=1

e−β
∏
i∈∂a

(
1+siJia

2

)
(3.55)

with the partition function

Z =
∑
s

m∏
a=1

e−β
∏
i∈∂a

(
1+siJia

2

)
(3.56)

In the zero temperature limit limβ→+∞ Z = N0 and formally p(s) → 1(H(s) =

0)/N0.

From the average free energy F (β) = − 1
βE[lnZ] at finite temperature, we can

recover the average ground state energy per clause,

e(α) = lim
m→+∞

lim
β→+∞

1

m
E[F (β)]. (3.57)

To see this we simply note that 1
β | lnZ| ≤ C uniformly with respect to β, thus

by dominated convergence

lim
β→+∞

E[F (β)] = −E[lim
β→+∞

1

β
lnZ] (3.58)

= E[min
s
H(s)]

Recall also that from formula (??) we get the Gibbs entropy as a function of

the inverse temperature. Here we define a ”ground state entropy” per variable

by taking the zero temperature limit (assuming the limit exists)

s(α) = lim
n→+∞

lim
β→+∞

1

n
E[

d

d(1/β)
F (β)]. (3.59)

The ground state entropy is nothing else than the growth rate of the number of

solutions in the sat phase,

s(α) =

{
limn→+∞

1
nE[lnN0], α < αs(K),

0, α > αs(K).
(3.60)

3.7 Notes

The prototypical Gauge symmetry of physics is an invariance of the Maxwell

equations under a group of local transformations. Gauge symmetry is a funda-

mental principle underlying all known fundamental forces.

Problems

3.1 Nishimori identities for coding. Use the technique of gauge transfor-

mations to prove the identities [〈si〉2p−1] = [〈si〉2p] for all integers p ≥ 1.

3.7 Notes 61

3.2 Special identities for a Gaussian channel. In the case of a BAWGNC

identity (??) specializes to EY [hi〈si〉] = σ−2. We want to explore a proof that is

special to this channel.

(i) First check by explicit calculation that σ2c(h)h = − ∂
∂hc(h) + c(h).

(ii) Then use integration by parts and the Nishimori identity of the previous

exercise (for p = 1) to derive EY [hi〈si〉] = σ−2.

3.3 Derivation of the MMSE. Consider the MSE functional (3.32) and show

that it is minimized by the MMSE (3.33).

3.4 LASSO for the scalar case. Let y = x+ z where z is a Gaussian scalar

variable with zero mean and variance σ2. Compute explicitly the LASSO estima-

tor x̂(y) = argminx(1
2 (y− x)2 + λ|x|). The result is called the “soft thresholding

estimator”.

3.5 Crude upper bound on the sat-unsat threshold αs Below P and E
are with respect to the random ensemble F(n,K,M). Consider the partition

function Z of the microcanonical ensemble.

(i) Show the Markov inequality P[F satisfiable] ≤ E[Z].

(ii) Show that E[Z] = 2n(1− 2−K)M .

(iii) Deduce the upper bound αs < (ln 2)/ ln(1 − 2−K). For K = 3 this yields

αs(3) < 5.191. It is conjectured that αs(3) ≈ 4.26: this value is the prediction

of the highly sophisticated cavity method of spin glass theory. The asymptotic

behavior of this simple upper bound for K → +∞ is 2K ln 2, which is known to

be tight. However, the large K corrections obtained by this bound are not tight.

4 Curie-Weiss Model

Before we start analysing our three running examples, it is instructive to con-

sider a very simple model for which the analysis can be carried out explicitly

with fairly little effort. This way we will encounter many concepts in their sim-

plest incarnation. This separates the concepts and notions, and why they are

important, from the computational difficulties which we will encounter when we

carry out the same analysis for our problems.

We will consider the Curie-Weiss model. This is a specific version of the so-

called Ising model and it is defined on a complete graph. This model is admittedly

special, but it has two advantages. First, it has an explicit solution. Secondly,

and equally important, it still displays many of the interesting features of more

complicated models such as variational expressions for the free energy, fixed point

equations, and phase transitions.

A second exactly solvable model is the Ising model on a tree. This is the subject

of the problems. You will see that the solution of the Ising model on the tree

can be phrased in terms of message passing quantities, another of our favourite

themes.

Analogous, but more complicated solutions occur in coding, compressive sens-

ing and K-SAT. It is natural that the solutions of these models share common

features with the ones of the Curie-Weiss and Ising model on a tree, because

these models are defined on locally tree like graphs (coding and K-SAT) or com-

plete graphs (compressed sensing). However the situation is also considerably

more complicated and interesting. One of the reasons is that in coding and K-

SAT the graphs are locally tree like but have loops. One other reason is that the

Gibbs distributions are random, i.e. the models are non-trivial spin glasses.

We introduced the standard Ising model on a regular grid Zd in Chapter 2. This

model is not only of considerable historical value for the development of statistical

mechanics, but its study has led to many of the fundamental concepts in the

theory of phase transitions, and it is still the subject of fascinating mathematical

investigations. Models with a low dimensional regular underlying graph have

geometrical features that are absent in our three running examples, and their

solutions and the mathematical methods of analysis do not quite share similar

features (although some aspects are still similar). Nevertheless there is some

value in reviewing a few basic properties of the Ising model on Zd, and this is

briefly done in section for completeness in (??). One concept that turns out to be

4.1 Curie-Weiss model 63

s2

s1

s4

s3

Figure 4.1 A complete graph with 4 nodes.

quite important in more advanced topics such as the cavity method in Chapter

??, is the notion of pure state or extremal measure. Let us also point out that the

Ising model on Zd with d → +∞ becomes equivalent to the Curie-Weiss model

and also to the Ising model on a tree with “infinite” vertex degree.

4.1 Curie-Weiss model

The Curie-Weiss model is an Ising spin system defined on a complete graph. A

complete graph on a set V of n vertices, is a graph in which the set E of edges is

constituted by all n(n− 1)/2 pairs of nodes. An example is shown in Figure 4.1.

The Hamiltonian of the Curie-Weiss model is

H(s) = −J
n

∑
{i,j}∈E

sisj − h
∑
i∈V

si (4.1)

where J > 0 (ferromagnetic case) and h ∈ R. In the first sum 〈i, j〉 is an un-

ordered pair so each edge is counted only once. Note that the interaction constant

is scaled by n, i.e., we have the constant J/n in front of the first sum. With this

scaling both terms in the Hamiltonian scale linearly in the system size: this

necessary in order to have an interesting thermodynamic limit.

The Gibbs distribution has the form

p(s) =
1

Z
e
βJ
n

∑
〈i,j〉∈E sisj+βh

∑
i∈V si (4.2)

with the partition function given by the sum over all spin configurations s ∈
{−1,+1}n

Z =
∑
s

e
βJ
n

∑
〈i,j〉∈E sisj+βh

∑
i∈V si . (4.3)

Recall from Chapter 2, β = 1/kBT where T is the temperature and kB Boltz-

man’s constant, so the behaviour of the Gibbs distribution depends on the (di-

mensionless) ratios J/kBT and h/kBT . More precisely, what is important is

the ratio H(s)/kBT of the energy of a spin configuration compared to a “back-

ground” energy kBT . For example, if we take h = 0 for simplicity, at high

temperatures, kBT >> J , we get an almost uniform measure, whereas in the

low temperature case, kBT << J , only configurations of minimum energy count.

Not surprisingly, we will see that kBT ≈ J is a regime of great interest.

64 Curie-Weiss Model

We will first calculate the free energy and then the magnetization. This will

allow us to study the singularities of these functions, i.e. the phase transitions

displayed by the model.

4.2 Variational expression of the free energy

Recall that the free energy in the thermodynamic limit is given by

f(βJ, βh) = − lim
n→+∞

1

nβ
lnZ. (4.4)

On a complete graph we have the identity,∑
{i,j}∈E

sisj =
1

2

(∑
i∈V

si
)2 − 1

2
n. (4.5)

Introducing the “magnetisation of a spin configuration” mn(s) = 1
n

∑
i∈V si, we

can express the Hamiltonian as

H(s) = −n
(J

2
(mn(s))2 + hmn(s)

)
+
J

2
. (4.6)

Thus

Z = e−
βJ
2

∑
s

enβ
(
J
2mn(s)2+hmn(s)

)
. (4.7)

The partition function can be computed by first summing over all spin configu-

rations with a fixed magnetization mn and then by summing over all magneti-

zations mn = { jn |j = −n,−n+ 1, . . . , n− 1, n}. We get

Z = e−
βJ
2

∑
mn

N (mn) enβ
(
J
2m

2
n+hmn

)
. (4.8)

where N (mn) is the cardinality of the set {s :
∑n
i=1 si = nmn}. This is easily

computed (see Example 3 in Chapter 2 for an analogous calculation). Given mn,

let n+ and n− be the number of positive and negative spins respectively. Since

n+ + n− = n and n+ − n− = nmn we have n+ = 1+mn
2 n and therefore

N (mn) =

(
n

1+mn
2 n

)
≈ enh2(1+mn

2), (4.9)

where h2(p) = −p log2 p − (1 − p) log2(1 − p) the binary entropy function. The

last approximation is asymptotically exact for n → +∞ and is obtained using

Stirling’s formula. This leads to

Z ≈ e−
βJ
2

∑
mn

enβ
(
J
2m

2
n+hmn+β−1h2(1+mn

2)
)
. (4.10)

4.3 Average magnetization 65

Recall that mn = { jn |j = −n,−n + 1, . . . , n − 1, n}. So this is a Riemann sum

which tends for n→ +∞ to

Z ≈ e−
βJ
2 n

∫ +1

−1

dmenβ
(
J
2m

2+hm+β−1h2(1+m
2)
)
. (4.11)

The integrand has the form e−nβf(m) thus for n → +∞ the integral can be

evaluated by the Laplace method: the value is dominated by the contribution

of a small neighborhood of that value of m where f(m) takes on its minimum.

Since for the free-energy computation we take the logarithm of Z, divide by n,

and take the thermodynamic limit, we only need to determine the exponential

behavior of the integral, and this is trivially given by the maximum value the

exponent takes on. This gives us

f(βJ, βh) = min
−1≤m≤1

{
−
(J

2
m2 + hm

)
− β−1h2(

1 +m

2
)
}

≡ min
−1≤m≤1

f(m). (4.12)

With a little bit more effort this formula can be converted into a theorem.

This formula is very important. It says that the free energy is given by the

solution of a variational problem, i.e., as the solution of a minimization problem.

The function f(m) which is minimized has various names in the literature. Here

we will call it the free energy function. We will see in this course that the free

energies of the coding, compressive sensing and K-SAT problems are all given by

such variational expressions involving (often complicated) free energy functions

or functionals.

4.3 Average magnetization

We saw in Chapter 2 that the magnetisation in the thermodynamic limit is

defined by the Gibbs average

m(βJ, βh) = lim
n→+∞

〈 1
n

∑
i∈V

si〉 (4.13)

Note that by linearity of the Gibbs bracket and the symmetry of the model

m(βJ, βh) = 〈si〉 for all i ∈ V .

We can compute the magnetisation by repeating the calculations of the pre-

vious section. Indeed, first note by definition of the Gibbs bracket

〈 1
n

∑
i∈V

si〉 =

∑
smn(s)e−βH(s)∑

s e
−βH(s)

(4.14)

We have already found the asymptotic behaviour of the denominator as n→ +∞,

namely formula (4.11). It is quite clear that the same arguments applied to the

66 Curie-Weiss Model

numerator lead to the asymptotics

〈 1
n

∑
i∈V

si〉 ≈
∫ +1

−1
dmme−nβf(m)∫ +1

−1
dme−nβf(m)

(4.15)

Now assume that the free energy function f(m) has a unique global minimum.

Then applying the Laplace method to the numerator and denominator one finds

m(βJ, βh) = argmin−1≤m≤1f(m). (4.16)

In section 4.5 we will show that unicity of the global minimiser always holds

for all h 6= 0. So in this case the magnetisation is unambiguously given by the

minimiser of the free energy function.

On the other hand, for h = 0 the analysis in section 4.5 shows that, the

global minimum is unique and given by m(βJ, βh) = 0 when βJ < 1, but is

doubly degenerate when βJ > 1. In this second case if we would blindly apply

the Laplace method with h = 0 we would find a weighted average over the two

minimisers. However this does not yield the “physically correct” magnetization.

In the present case, because f(m) = f(−m) when h = 0, this weighted aver-

age vanishes, but we will now see that the physically correct result is far more

interesting!

The correct definition of the magnetization for h = 0 is

m±(βJ) = lim
h→0±

m(βJ, βh) = lim
h→0±

lim
n→+∞

〈 1
n

∑
i∈V

si〉 (4.17)

In other words the correct way to proceed is to take the limit h→ 0± after the

thermodynamic limit n→ +∞. In that case when we apply the Laplace method

in the calculation above, only one global minimum is selected. We will show in

section 4.5 that for βJ < 1 both limits vanish, but that for βJ > 1 they do

not vanish and are opposite (note that when the limits dont vanish they must

be opposite because for h = 0 the free energy function is even f(m) = f(−m)).

Thus m(βJ, βh) has a jump discontinuity on the line (βJ > 1, h = 0). This is

our first encounter of a phase transition, a theme on which we elaborate in the

next section.

There is a good physical reason for the order of the limits in 4.17. In a macro-

scopic system there always remains a residual infinitesimal magnetic field h = 0±.

When the magnetisation is discontinuous for h = 0± (here this happens at low

temperatures βJ > 1) we call it a spontaneous magnetization and say that there

is a spontaneous symmetry breaking. The magnetization and symmetry breaking

are called “spontaneous” because physically we do not get to choose the orien-

tation of the magnetization: the infinitesimal perturbations in the environment

select an orientation.

We conclude this section with a very useful relationship between the free energy

f(βJ, βh) and the magnetization m(βJ, βh). As we mentioned in Chapter 2,

4.4 Phase diagram and phase transitions 67

0.5

1.0

1.5

-1

0

1

-1.0

-0.5

0.0

0.5

1.0

Figure 4.2 The behavior of m(βJ, βh) as a function of (1/(βJ), βh), where
1/(βJ) ∈ [0, 1.5] and βh ∈ [−1.5, 1.5].

Gibbs averages can be obtained by differentiating the free energy, i.e., we have

〈 1
n

n∑
i=1

si〉 =
∂

∂h

1

nβ
lnZn. (4.18)

Taking the limit n→ +∞ one finds the important relation

m(βJ, βh) = − ∂

∂h
f(βJ, βh). (4.19)

The careful reader will notice that we have interchanged the limit n→ +∞ and

the partial derivative. We do not prove it here, but this is permitted except at

phase transition points, i.e. except on the line (βJ ≥ 1, h = 0).

4.4 Phase diagram and phase transitions

Consider the free energy function f(m) and look at the minimiser m(βJ, βh). As

already mentioned in the previous section for h 6= 0 this minimizer is unique and

there is no ambiguity, so we think of this case. Instead of plotting m(βJ, βh) as

a function of βJ > 0 and βh, we will plot m(βJ, βh) as a function of 1/(βJ) =

kBT/J (on the T -axis) and βh = h/kBT (on the h-axis).

Figure 4.2 shows the resulting plot. Why are we interested in this figure?

As we discussed in the previous section this function represents the average

magnetization, i.e., it represents a quantity describing the global behavior of

the system as a function of the parameters. For some values of the parameters

68 Curie-Weiss Model

(βJ, βh), the system behaves smoothly when we perturb the parameters. But for

some other parameters the system behavior changes abruptly. These are so-called

phase transitions.

A look at the figure already reveals two different forms of behavior. For pa-

rameters on the line segment (0 < 1/(βJ) < 1, h = 0), when we move along

the h-axis, the magnetization m(βJ, βh) jumps. At the tip of this line segment

(1/(βJ) = 1, h = 0) the magnetization is continuous but not differentiable.

For example if we move along the T -axis or along the h-axis across the point

(1/(βJ) = 1, h = 0), m(βJ, βh) changes in a continuous fashion, but its deriva-

tive (wrt to T or h) jumps. Finally, for all other points, m(βJ, βh) changes

smoothly and is in fact analytic (i.e., infinitely differentiable with an absolutely

convergent Taylor expansion).

We call the first behavior a phase transition of first order and the second

behaviour a phase transition of second order. To understand the terminology

here, recall Equ. (4.19). At a first order transition the magnetization jumps and

equivalently the first derivative of the free energy is discontinuous. At a second

order phase transition the magnetization is continuous but its first derivative is

discontinuous and equivalently the second derivative of the free nergy is discon-

tinuous.

For a sligthly different perspective, let us replot Figure 4.2 but this time let us

consider the picture “from the top,” i.e., we only show the 1/(βJ) and βh axis.

This is shown in Figure 4.3. The different ways to change parameters leading to

the various phase transitions are indicated. The segment indicated in blue, given

by (0 < 1/(βJ) < 1, h = 0) is called the co-existence line. This name is easily

explained. If we approach this line from the top or the bottom, i.e., we consider

the limit h → 0±, then we get two opposite values ±m±(βJ). So “on the line”

we can think of having two possible “co-existing” phases. This line terminates

terminates at the critical point (βJ = 1, h = 0) where the magnetization is

continuous but not differentiable.

Going down one further dimension by fixing a value of 1/(βJ) < 1 and only

varying h, or by fixing h = 0 and varying 1/(βJ) across βJ = 1, Figure 4.4

explicitly shows phase transitions of first and second order.

Let us sum up with a few general remarks about phase transitions.

The variational expression (4.12) of the free energy implies that it is a continu-

ous and concave function of βJ and βh. In particular this means that the function

itself does not jump, only its derivatives might. Here we have seen that two types

of singularities occur in the phase diagram. The first derivative is discontinuous

when the coexistence line is crossed, this is a first order phase transition. The

second derivative is discontinuous when the critical point is crossed, this is a

second order phase transition.

Continuity and concavity of the free energy is a general requirement in thermo-

dynamics, and a general property of well behaved statistical mechanical models.

Only the derivatives may have jumps. If the n-th derivative is discontinuous one

speaks of a phase transition of order n. We point out there exist models with

4.4 Phase diagram and phase transitions 69

Kc = 1

second order

second order

first order

no transition

K−1 or T

h

Figure 4.3 The blue line is called coexistence line because two thermodynamic phases
(e.g. water/ice) coexist for parameters on it. Crossing the thick line is a first order
phase transition. This line is terminated by the critical point. Crossing the critical
point is a second order phase transition. There are many ways to cross it.

h

m(K,h)

(a) First order

(1/K)critical

1/K

|m(K;h)|

(b) Second order

Figure 4.4 A phase transition of first and second order.

phase transitions of ”infinite order” where the free energy is non-analytic but

all its derivatives are continuous are known to exist. This classification of phase

transitions due to Ehrenfest is not the only one. The more modern view point is

to distinguish between continuous and discontinuous transitions and to classify

them according to the type of symmetry change. These issues will not concern

us in this course and ehrenfest’s classification is good enough for our purposes.

Phase transitions related to singularities of the free energy are sometimes

called ”static” or ”thermodynamic” phase transitions. We will encounter also

other types of phase transitions that are called ”dynamical” in the sense that

they are related to a sudden change of the behaviour of algorithms but the free

energy stays perfectly analytic.

70 Curie-Weiss Model

4.5 Analysis of the fixed point equation

We have plotted the three-dimensional picture of m(βJ, βh) and from this we

can in principle see all phase transitions. But there is value in rederiving our

conclusions in a more classical way by using calculus. By doing so, not only will

we be able to add details to our picture, but we will also encounter some notions

which will reappear throughout the course.

Curie-Weiss fixed point equation

Let us solve the variational problem (4.12) by differentiating the free energy

function

f(m) ≡ −(
J

2
m2 + hm)− β−1h2(

1 +m

2
). (4.20)

Explicitly f ′(m) = 0 yields,

β(Jm+ h) +
1

2
ln

(

1−m
1 +m) = 0. (4.21)

Using the identity

tanh(
1

2
ln{1 +m

1−m
}) = m, (4.22)

we obtain the Curie-Weiss fixed point equation

m = tanh(β(Jm+ h)). (4.23)

Of course this equation may have many solutions, and one has to select the ones

which minimizes f(m). If no solution is present then the minimum is attained

at m = ±1. However this case does not concern us too much because it happens

only for β = +∞ (T = 0).

Equ. (4.23) is also called the mean field equation. Let us explain teh termi-

nology here. Equation (4.23) expresses the magnetization as the one of an hypo-

thetical single spin submitted to a magnetic field Jm + h. Indeed Hamiltonian

of this single spin would be −(Jm+ h)s and its magnetization

m = 〈s〉 =

∑
s=±1 se

−β(Jm+h)s∑
s=±1 e

−β(Jm+h)s
= tanh(β(Jm+ h)) (4.24)

One can think of Jm + h as the effective average magnetic field felt by a each

single spin on the complete graph.

This way of thinking is at the basis of the “mean field theory” of magnetism

pioneered by Curie-Weiss and also at the basis of the generic “mean field approx-

imations” for Ising spin systems. In the Curie-Weiss model it turns out that the

mean field equation is exact. For Ising models on low dimensional regular grids

such equations are not exact but often give a valuable first insight. However as

briefly explained in section ?? they can also lead to qualitatively wrong predic-

tions and care must be exercised. Even when mean field equations are “good”

4.5 Analysis of the fixed point equation 71

−1

1
tanh (Km)

K < 1

K > 1

m

m

Figure 4.5 Curie-Weiss fixed points, h = 0

or exact it must not be thought that they are easy to derive. We will see that

the solutions of our problems are intimately related to mean field equations but

these are considerably more subtle to derive, let alone assess wheter they are

exact or not.

Analysis of the Curie-Weiss equation and of the phase transitions

Now our task is to find solutions of the Curie-Weiss equation and select the ones

that minimize f(m). The solutions of (4.23) can be determined graphically. In

the discussion below we distinghuish the cases h = 0, h > 0 and h < 0.

Case h = 0. The fixed points and free energy function f(m) are shown in Fig-

ure 4.5 and Figure 4.6. In the ”high temperature phase” βJ < 1 there is a unique

fixed point m(βJ, 0) = 0 and βf(βJ, 0) = ln 2. In the ”low temperature phase”

βJ > 1 there are three fixed points {m−, 0,m+} with m± the global minimizers

of f(m) and m = 0 a local maximum. As explained before, the magnetisation

of a physical system will choose between two possible values m− or m+ because

there is always an infinitesimal h = 0± in the environnement. This is called

“spontaneous symmetry breaking”.

Let us look more closely at the behaviour of the magnetization for h = 0 as a

function of 1/(βJ) is shown in Figure 4.4. For βJ close to βJ = 1 we can expand

the Curie-Weiss equation around m = 0,

m = tanhβJm ≈ βJm− (βJ)3

3
m3

Besides m = 0 we have two other solutions

m± ∼ ±3(βJ − 1)1/2

The exponent 1/2 is called a critical exponent. Remarkably the critical exponent

72 Curie-Weiss Model

ln 2

-1 +1

m

u(m)− s(m)

(a) K > 1

m

ln 2

-1 +1
m

u(m)− s(m)

(b) K < 1

Figure 4.6 Free energy functional

often does not depend on the details of the Hamiltonian but only on the dimen-

sionality of the system (here d = +∞), and the underlying symmetries of the

Hamiltonian (here the Hamiltonian is invariant under si → −si for h = 0). For

example in the exercises you will see that the ising model on a tree has the same

critical exponent (in some sense the tree is an infinite dimensional graph). The

magnetisation remains continuous but its derivative jumps. This means that the

free energy has discontinuous second derivative and according to the Ehrenfest

classification the transition is called second order. One also refers to such tran-

sitions as continuous transition because of the continuity of the magnetisation.

Cases h > 0 and h < 0. Fixed points and free energy function f(m) are shown

in Figures 4.7 and 4.8 for h > 0 (h not too large), βJ > 1 and for h > 0, βJ < 1.

Note that there is always a unique global minimizer m > 0. The situation for

h < 0 is symmetric with a global minimizer m < 0.

It is of interest to discuss what happens when h is infinitesimal, h→ 0±. For

βJ < 1, m(βJ, βh) is continuous and differentiable (even analytic) and there is

no phase transition. For βJ > 1, m(βJ, βh) is discontinuous at h = 0. This is

called a discontinuous phase transition or a first order phase transition (because

the first derivative of the free energy jumps). See figure (4.4). At the critical

point (βJ = 1, h = 0) the jump disappears and

m(βJ = 1, h) ∼ ±|h| 13 , h→ 0± (4.25)

This is again an example of second order phase transition thsi time with critical

exponent 1
3 (exercise: show this by expanding the Curie-Weiss equation for small

h when βJ = 1.)

4.6 Ising model on a tree 73

−1

1
tanh (Km + h)

m

m

(a) Fixed points

ln 2

m

u(m)− s(m)

(b) Free energy

Figure 4.7 Curie-Weiss fixed points, h > 0,K > 1

−1

1
tanh (Km + h)

m

m

(a) Fixed points

m

u(m)− s(m)

(b) Free energy

Figure 4.8 Curie-Weiss fixed points, h > 0,K < 1

4.6 Ising model on a tree

TO DO (transfer from exercises)

4.7 Phase transitions in the Ising model on Zd

This section is not needed for the main development of these notes and can

be skipped in a first reading.

TO COMPLETE

74 Curie-Weiss Model

4.8 Notes

Problems

4.1 Definition of the Ising model on a tree.

In problems of Chapter 2 you proved that the Ising model in one dimension

(d = 1) does not have a phase transition for any T > 0. On the grid Zd there

is a non trivial phase diagram with first and second order phase transitions

for any d ≥ 2. This is also the case on the complete graph (as shown in the

lectures) which morally corresponds to d = +∞. Another graph that in a sense,

corresponds to d = +∞, is the q-ary tree for q ≥ 3. Indeed on Zd the number

of lattice sites at distance less than n from the origin scales as nd. On the q-ary

tree it scales as (q − 1)n which grows faster than nd for any finite d (for q ≥ 3).

Of course q = 2 corresponds to Z+.

The goal of the three exercises below is to solve for the Ising model on a q-ary

tree and show that it displays first and second order phase transitions (with

similar qualitative properties than on a complete graph).

Consider a finite rooted tree and call the root vertex o. All vertices have degree

q, except for the leaf nodes that have degree 1. We suppose that the tree has

n levels (the root being “level 0“). The thermodynamic limit corresponds to

n→ +∞. The Hamiltonian (multiplied by β) is

Hn = −J
∑

(i,j)∈En

sisj − h
∑
i∈Vn

si (4.26)

were J > 0, h ∈ R, Vn is the set of vertices and En the set of edges for the

tree with n levels. We are interested in the magnetization of the root node in the

thermodynamic limit:

m(J, h) = lim
n→+∞

< so >n=

∑
{sk,k∈Vn} so e

−βHn

Zn
(4.27)

The formula atanh y = 1
2 ln (

1+y1− y) might be useful.

4.2 Recursive equations. Perform the sums over the spins attached at the

leaf nodes and show that

< so >n=

∑
{sk,k∈Vn−1} so e

−βH′n−1

Z ′n−1

(4.28)

where En−1 and Vn−1 are the edge and vertex sets of a tree with with n − 1

levels and the new Hamiltonian is

βH′n = −J
∑

(i,j)∈En−1

sisj−h
∑

i∈Vn−1

si−(q−1) tanh−1(tanhβJ tanhβh)
∑

i∈level n−1

si

(4.29)

Iterate this calculation and deduce

< so >n= tanh(βh+ q tanh−1(tanhβh tanhun)) (4.30)

4.8 Notes 75

where

uk+1 = βh+ (q − 1) tanh−1(tanhβJ tanhuk), u1 = βh (4.31)

Check that for q = 2 you get back the recursion found in one dimension in Chap-

ter 2.

4.3 Analysis of the recursion. We want to analyze the fixed point equation

obtained in the preceding question for q ≥ 3,

u = βh+ (q − 1) tanh−1(tanhβJ tanhu) (4.32)

Plot the curves u → u − h and u → (q − 1) tanh−1(tanhβJ tanhu) and show

that:

• for βJ ≤ 1
2 ln(q

q−2), (4.32) has a unique solution, and that the iterations (4.31)

converge to this unique solution.

• for βJ > 1
2 ln(q

q−2):

– for |h| ≥ hs, (4.32) has a unique solution (you do not need to compute

hs explicitly although it is possible to find its analytical expression)

and that the iterations (4.31) converge to this unique solution.

– for |h| < hs, (4.32) has three solutions u−(h) < u0(h) < u+(h). Check

graphically that for h > 0 the iterations (4.31) with initial condition

u1 = h converge to u+(h). Similarly for h < 0 they converge to u−(h).

Check also graphically that the fixed point u0(h) is unstable whereas

u±(h) are stable.

4.3 Phase transitions. Now we want to discuss the consequences of the results

in the previous problem for the phase diagram. On a tree the magnetization is

defined as the average spin of the root. More precisely for h 6= 0

m(βJ, βh) = lim
n→+∞

〈so〉n, (4.33)

and we define the ”spontaneous magnetization” asm±(βJ) = limh→0± m(βJ, βh).

You will show that in the ((βJ)−1, h) plane there is a first order phase transi-

tion line ((βJ)−1 ∈ [0, (1
2 ln(q

q−2))−1[, h = 0) terminated by a critical point

(atanh(q − 1)−1)−1. Outside of this line m(βJ, βhh) is an analytic function of

each variable.

• Deduce from the analysis in problem 2 that for βJ ≤ 1
2 ln(q

q−2), m+(βJ) =

m−(βJ) = 0.

• Deduce that for βJ > 1
2 ln(q

q−2), m+(βJ) 6= m−(βJ) (jump discontinuity or

first order phase transition) and that for β → +∞ m± → ±1.

• Show that for βJ → 1
2 ln(q

q−2) from above, m±(βJ) ∼ (βJ − 1
2 ln(q

q−2))1/2.

So on the line h = 0, as a function of βJ , the spontaneous magnetiza-

tion is continuous but not differentiable at 1
2 ln(q

q−2) (second order phase

transition).

76 Curie-Weiss Model

• Now fix βJ = 1
2 ln(q

q−2) and show that m(1
2 ln(q

q−2), βh) ∼ |βh|1/3. As a func-

tion of h the spontaneous magnetization is continuous but not differentiable

at teh critical point (second order phase transition).

Hint: for the last two questions you can expand the fixed point equation to order

u3.

Remark 1: Note that the exponents 1/2 and 1/3 are the same than for the

model on a complete graph. This is also the case for all d ≥ 4 and is not the case

for d = 2, 3.

Remark 2: On a tree the definition of the magnetization above is not equiva-

lent to minus the derivative of the free energy with respect to h. In fact there

is a fine point: − 1
n lnZn is dominated by the contributions of leaf nodes and

is not the ”physically meaningful” definition of free energy. Rather the ”phys-

ically meaningful” definition is given by an integral, with respect to h, of the

magnetization at the root.

Part II

Analysis of Message Passing
Algorithms

5 Marginalization and Belief
Propagation

We have seen that computing the marginals of the Gibbs distributions is a central

problem. For example in coding and compressed sensing the tasks of decoding

and signal estimation can both be reduced to the determination of a “magnetiza-

tion” which in turn is easy to obtain once we know the marginals. Unfortunately,

for general Gibbs distributions this is an intractable problem. Nevertheless all is

not lost, much to the contrary. Indeed, we have seen in Chapter 1 that the factor

graphs of our models are always either locally tree like (coding and K-SAT) or

complete (compressive sensing); and in Chapter 4 we have learned how to ex-

actly solve two simple models, on the tree and the complete graph, which are

toy versions of our more ambitious models.

In this chapter we will concentrate on an efficient calculation of marginals

for the case where the factor graph is a tree. The emphasis here is on the word

“efficient”. We will see that this question has a natural answer in the form of a

message-passing algorithm. The message-passing paradigm is the basis for the

low-complexity algorithms which we will apply to our problems even when the

factor graph is not a tree. There is a price to pay on non-tree graphs because

marginalization is a priori not exact. Therefore our low complexity message pass-

ing algorithms are suboptimal in the sense that they do not give correct solutions

up to the so-called static thresholds. For example message passing decoders do

not work up to the MAP threshold of the code ensemble; K-SAT solvers based on

message passing find solutions only for densities α quite smaller than the SAT-

UNSAT threshold αs. In the analysis of message passing we will find algorithmic

thresholds which are smaller (i.e. worse) than the static thresholds.

There is a surprise. Message-passing algorithms are also the key for the analysis

of the static thresholds and phase transitions of our three examples. A priori it

is not obvious that there should be any connection between static thresholds

and low-complexity algorithms. For example as we will see static thresholds are

non-differentiability points of the free energy (just as for the Curie-Weiss model)

but algorithmic thresholds are not visible on the free energy (since away from

static thresholds it is analytic). Nevertheless these two worlds are connected as

we will see in the third part of our lectures. Quite remarkably one can also go

one step further. In Chapter ?? we will consider a class of ensembles - called

spatially coupled ensembles - for which the static and dynamical thresholds may

80 Marginalization and Belief Propagation

even be equal. For these ensembles the low complexity message passing methods

work all the way up to the static thresholds and allow optimal solutions!

So far we have associated a factor graph to the Hamiltonians or cost functions.

In the next section this idea is taken a little bit further by associating the factor

graph to the Gibbs distribution itself. We then use this representation to help

organize the marginalization on trees and derive the message passing algorithm.

As we will see on trees marginalization ultimately boils down to an application

of a distributive law of multiplication and addition. Finally we illustrate through

simple examples how the formalism is applied to our three problems.

5.1 Factor graph representation of Gibbs distributions

One important characteristic of the Gibbs distributions of our three problems is

its factorized form. Generically

p(x) =
1

Z

∏
c

fc(x∂c), Z =
∑
x∈Xn

m∏
c=1

fc(x∂c) (5.1)

where x∂c is the set of variables xi entering as arguments of the factors fc.

The simplest incarnation of this factorization occurs in K-SAT (see (3.55))

where in spin language the alphabet X = {−1,+1}, xi → si and the factors are

fa(s∂a) = exp
{
−β
∏
i∈∂a

(
1+siJia

2

)}
. For coding (see (3.9)) we have two types of

factors fi(si) = ehisi and fa(s∂a) = 1
2 (1+

∏
i∈∂a si). For compressed sensing (see

(3.40)) the alphabet is continuous X = R so in (5.1) the sums must be interpreted

as integrals
∫
dnx and there are two types of factors fi(xi) = (p0(xi))

β and

fa(x∂a) = e−
β

2σ2 (ya−ATa x)2

. Analogous identifications for general Ising models of

Chapter 2 and also for the Curie-Weiss model are left as an exercise. Note that

the factorization is not unique, but usually it is pretty clear how to find a natural

one.

From now on we will focus on a generic factorization (5.1) and come back to

specific illustrations in sections 5.4-5.6. We associate with this factorization a

factor graph which is mildly different from the ones introduced in Chapter 1.

For each variable xi draw a variable node (circle) and for each factor fc draw a

factor node (square). Connect a variable node to a factor node by an edge if and

only if the corresponding variable appears in this factor.

example 5 (Simple Example) Let’s start with an example. Consider a distri-

bution with factorization

p(x1, x2, x3, x4, x5, x6) =
1

Z
f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5). (5.2)

The resulting graph for this distribution is shown on the Figure 5.1. ♦

The factor graph is bipartite. This means that the set of vertices is partitioned

into two groups (the set of nodes corresponding to variables and the set of nodes

5.2 Marginalization on trees 81

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

Figure 5.1 Factor graph of f given in Example 5.

corresponding to factors) and that an edge always connects a variable node to

a factor node. For our particular example the factor graph is a (bipartite) tree.

This means that there are no cycles in the graph; i.e., there is one and only one

path between each pair of nodes.

As we will show in the next section, for factor graphs that are trees marginals

can be computed efficiently by message-passing algorithms. This remains true in

the slightly more general scenario where the factor graph forms a forest; i.e., the

factor graph is disconnected and it is composed of a collection of trees. In order

to keep things simple we will assume a single tree and ignore this straightforward

generalization.

5.2 Marginalization on trees

We first remark that in order to carry out the marginalization in practice one can

first ignore the partition function Z. Indeed suppose that we want to compute

the marginal ν1(x1) (recall definition (2.24)) for (5.1). Let us first compute the

“marginal” of the numerator only

µ1(x1) =
∑
∼x1

∏
c

fc(x∂c) (5.3)

Clearly ν1(x1) = µ(x1)/Z so the only difference between ν1(x1) and µ1(x1) is a

proportionality factor which serves to normalize the marginal. Thus, assuming

that we are able to compute µ(x1), we simply get the marginal by normalizing

ν1(x1) =
µ1(x1)∑

x1∈X µ1(x1)
, (5.4)

This last step is an easy task that involves only one sum or an integral.

In the sequel and in practice we just deal with the “marginalization” of the

numerator and normalize the result in the very last step.

82 Marginalization and Belief Propagation

Distributive Law

On trees marginalization can be achieved by a careful application of the distribu-

tive law. Let F be a field (think of F = R) and let a, b, c ∈ F. The distributive

law states

ab+ ac = a(b+ c). (5.5)

This simple law, properly applied, can significantly reduce computational com-

plexity: consider, e.g., the evaluation of
∑
i,j aibj as (

∑
i ai)(

∑
j bj). Factor graphs

provide an appropriate framework to systematically take advantage of the dis-

tributive law.

Let’s start with Example 5. The numerator of p is a function f with factor-

ization

f(x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5). (5.6)

We are interested in computing the marginal of f with respect to x1

µ1(x1) =
∑
∼x1

f(x1, x2, x3, x4, x5, x6).

What is the complexity of a brute force computation? Assume that all variables

take values in a finite alphabet, call it X . Determining ν(x1) for all values of x1

by brute force requires Θ
(
|X |6

)
operations, where we assume a naive computa-

tional model in which all operations (addition, multiplication, function evalua-

tions, etc.) have the same cost. But we can do better: taking advantage of the

factorization, we can rewrite ν(x1) as

µ(x1) =
[∑
x2,x3

f1(x1, x2, x3)
][∑

x4

f3(x4)
(∑
x6

f2(x1, x4, x6)
)(∑

x5

f4(x4, x5)
)]
.

Fix x1. The evaluation of the first factor can be accomplished with Θ
(
|X |2

)
operations. The second factor depends only on x4, x5, and x6. It can be eval-

uated efficiently in the following manner. For each value of x4 (and x1 fixed),

determine
∑
x5
f4(x4, x5) and

∑
x6
f2(x1, x4, x6). Multiply by f3(x4) and sum

over x4. Therefore, the evaluation of the second factor requires Θ
(
|X |2

)
opera-

tions as well. Since there are |X | values for x1, the overall task has complexity

Θ
(
|X |3

)
. This compares favorably to the complexity Θ

(
|X |6

)
of the brute force

approach.

Recursive Determination of Marginals

Consider the factorization of a generic function g (e.g. the numerator of a Gibbs

distribution (5.1)) and suppose that the associated factor graph is a tree (by

definition it is always bipartite). Suppose that we are interested in marginalizing

g with respect to the variable z; i.e., we are interested in computing µ(z) =

5.2 Marginalization on trees 83

∑
∼z g(z, . . .). Since the factor graph of g is a bipartite tree, g has a generic

factorization of the form

g(z, . . .) =

K∏
k=1

[gk(z, . . .)]

for some integer K with the following crucial property: z appears in each of the

factors gk, but all other variables appear in only one factor. To see this assume to

the contrary that another variable is contained in two of the factors. This implies

that besides the path that connects these two factors via variable z another path

exists. But this contradicts the assumption that the factor graph is a tree.

For the function f of Example 5 this factorization is

f(x1, . . .) = [f1(x1, x2, x3)] [f2(x1, x4, x6)f3(x4)f4(x4, x5)] ,

so that K = 2. The generic factorization and the particular instance for our run-

ning example f are shown in Figure 5.2. Taking into account that the individual

z
g

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5

f

[g1] [gk] [gK] [f1]

[f2f3f4]

Figure 5.2 Generic factorization and the particular instance.

factors gk(z, . . .) only share the variable z, an application of the distributive law

leads to

µ(z) =
∑
∼z

g(z, . . .) =
∑
∼z

K∏
k=1

[gk(z, . . .)]︸ ︷︷ ︸
marginal of product

=

K∏
k=1

[∑
∼z

gk(z, . . .)
]

︸ ︷︷ ︸
product of marginals

. (5.7)

In words, the marginal
∑
∼z g(z, . . .) is the product of the individual marginals∑

∼z gk(z, . . .). In terms of our running example we have

ν(x1) =
[∑
∼x1

f1(x1, x2, x3)
][∑
∼x1

f2(x1, x4, x6)f3(x4)f4(x4, x5)
]
.

This single application of the distributive law leads, in general, to a non-negligible

reduction in complexity. But we can go further and apply the same idea recur-

sively to each of the terms gk(z, . . .).

84 Marginalization and Belief Propagation

In general, each gk is itself a product of factors. In Figure 5.2 these are the

factors of g that are grouped together in one of the ellipsoids. Since the factor

graph is a bipartite tree, gk must in turn have a generic factorization of the form

gk(z, . . .) = h(z, z1, . . . , zJ)︸ ︷︷ ︸
kernel

J∏
j=1

[hj(zj , . . .)]︸ ︷︷ ︸
factors

,

where z appears only in the “kernel” h(z, z1, . . . , zJ) and each of the zj appears

at most twice, possibly in the kernel and in at most one of the factors hj(zj , . . .).

All other variables are again unique to a single factor. For our running example

we have

f2(x1, x4, x6)f3(x4)f4(x4, x5) = f2(x1, x4, x6)︸ ︷︷ ︸
kernel

[f3(x4)f4(x4, x5)]︸ ︷︷ ︸
x4

[1]︸︷︷︸
x6

.

The generic factorization and the particular instance for our running example f

are shown in Figure 5.3. Another application of the distributive law gives

z

kernel h

z1 zj zJ

[h1] [hj] [hJ] f3
f4

x5

x1

f2kernel

x4 x6

[f3f4]

[1]

[f2f3f4][gk]

Figure 5.3 Generic factorization of gk and the particular instance.

∑
∼z

gk(z, . . .) =
∑
∼z

h(z, z1, . . . , zJ)

J∏
j=1

[hj(zj , . . .)]

=
∑
∼z

h(z, z1, . . . , zJ)

J∏
j=1

[∑
∼zj

hj(zj , . . .)
]

︸ ︷︷ ︸
product of marginals

. (5.8)

In words, the desired marginal
∑
∼z gk(z, . . .) can be computed by multiplying

the kernel h(z, z1, . . . , zJ) with the individual marginals
∑
∼zj hj(zj , . . .) and

summing out all remaining variables other than z.

We are back to where we started. Each factor hj(zj , . . .) has the same generic

form as the original function g(z, . . .), so that we can continue to break down the

5.3 Marginalization via Message Passing 85

marginalization task into smaller pieces. This recursive process continues until

we have reached the leaves of the tree. The calculation of the marginal then

follows the recursive splitting in reverse. In general, nodes in the graph compute

marginals, which are functions over X , and pass these on to the next level. In the

next section we will elaborate on this method of computation, known as message

passing: the marginal functions are messages. The message combining rules at

function nodes is explicit in (5.8). And at a variable node we simply perform

pointwise multiplication.

Let us consider the initialization of the process. At the leaf nodes the task is

simple. A function leaf node has the generic form gk(z), so that
∑
∼z gk(z) =

gk(z): this means that the initial message sent by a function leaf node is the func-

tion itself. To find out the correct initialization at a variable leaf node consider the

simple example of computing
∑
∼x1

f(x1, x2). Here, x2 is the variable leaf node.

By the message-passing rule (5.8) the marginal is equal to
∑
∼x1

f(x1, x2)·µ(x2),

where µ(x2) is the initial message that we send from the leaf variable node x2

towards the kernel f(x1, x2). We see that to get the correct result this initial

message should be the constant function 1.

5.3 Marginalization via Message Passing

In the previous section we have seen that, in the case where the factor graph is a

tree, the marginalization problem can be broken down into smaller and smaller

tasks according to the structure of the tree.

This gives rise to the following efficient message-passing algorithm. The al-

gorithm proceeds by sending messages along the edges of the tree. Messages

are functions on X , or, equivalently, vectors of length |X |. The messages signify

marginals of parts of the function and these parts are combined to form the

marginal of the whole function. Message passing originates at the leaf nodes.

Messages are passed up the tree and as soon as a node has received messages

from all its children, the incoming messages are processed and the result is passed

up to the parent node.

example 6 (Message-Passing Algorithm for f of Example 5) Consider this

procedure in detail for the case of our running example as shown in Figure 5.4.

The top leftmost graph is the factor graph. Message passing starts at the leaf

nodes as shown in the middle graph on the top. The variable leaf nodes x2, x3,

x5, and x6 send the constant function 1 as discussed at the end of the previous

section. The factor leaf node f3 sends the function f3 up to its parent node.

In the next time step the factor node f1 has received messages from both its

children and can therefore proceed. According to (5.8), the message it sends

up to its parent node x1 is the product of the incoming messages times the

“kernel” f1, after summing out all variable nodes except x1; i.e., the message is∑
∼x1

f1(x1, x2, x3). In the same manner factor node f4 forwards to its parent

86 Marginalization and Belief Propagation

node x4 the message
∑
∼x4

f4(x4, x5). This is shown in the rightmost figure in

the top row. Now, variable node x4 has received messages from all its children. It

forwards to its parent node f2 the product of its incoming messages, in agreement

with (5.7), which says that the marginal of a product is the product of the

marginals. This message, which is a function of x4, is f3(x4)
∑
∼x4

f(x4, x5) =∑
∼x4

f3(x4)f4(x4, x5). Next, function node f2 can forward its message, and,

finally, the marginalization is achieved by multiplying all incoming messages at

the root node x1. ♦

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3

1

1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4

f4

1

1

∑
∼x1

f1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4

f4

1

1

∑
∼x1

f1

∑
∼x4

f3f4

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4

f4

1

1

∑
∼x1

f1

∑
∼x4

f3f4

∑
∼x1

f2f3f4

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4

f4

1

1

∑
∼x1

f1

∑
∼x4

f3f4

∑
∼x1

f2f3f4

∑
∼x1

f1f2f3f4

Figure 5.4 Marginalization of function f from Example 5 via message passing.
Message passing starts at the leaf nodes. A node that has received messages from all
its children processes the messages and forwards the result to its parent node. Bold
edges indicate edges along which messages have already been sent.

Complexity of message passing

Before stating the message-passing rules formally, consider the following impor-

tant generalization. Whereas so far we have considered the marginalization of

a function f with respect to a single variable x1 we are actually interested in

marginalizing for all variables. We have seen that a single marginalization can

be performed efficiently if the factor graph of f is a tree, and that the complexity

of the computation essentially depends on the largest degree of the factor graph

and the size of the underlying alphabet. Consider now the problem of computing

all marginals. We can draw for each variable a tree rooted in this variable and

execute the single marginal message-passing algorithm on each rooted tree. It is

easy to see, however, that the algorithm does not depend on which node is the

root of the tree and that in fact all the computations can be performed simulta-

5.3 Marginalization via Message Passing 87

neously on a single tree. Simply start at all leaf nodes and for every edge compute

the outgoing message along this edge as soon as you have received the incoming

messages along all other edges that connect to the given node. Continue in this

fashion until a message has been sent in both directions along every edge. This

computes all marginals so it is more complex than computing a single marginal

but only by a factor roughly equal to the average degree of the nodes. We now

summarize this discussion.

Belief propagation equations

Messages flow on edges in both directions. Messages from variables nodes (cir-

cles) to function nodes (squares) are denoted µi→c, and messages from function

nodes to variable nodes µ̂c→i. As before the letters a, b, c, . . . are reserved for

function nodes and i, j, k, . . . for variable nodes. Although this may sometimes

be redundant notation, in order to avoid confusions it is convenient to reserve

µ for messages from variable nodes (circles) to factor nodes (squares) and µ̂

for messages from factor nodes to variable nodes. Marginals, once normalized,

will be denoted by ν. Messages and marginals are functions on X and for finite

alphabets it is sometimes useful to think of them as vectors with |X | components.

Message passing starts at leaf nodes. Consider a node and one of its adjacent

edges, call it e. As soon as the incoming messages to the node along all other

adjacent edges have been received these messages are processed and the result is

sent out along e. This process continues until messages along all edges in the tree

have been processed. In the final step the marginals are computed by combining

all messages which enter a particular variable node. The initial conditions and

processing rules are summarized in Figure 5.5. Since the messages represent

(unormalized) probabilities or beliefs, the algorithm is also known as the belief

propagation (BP) algorithm. From now on we will mostly refer to it under this

name.

We sumarize the BP relations here for further reference

µi→a (xi) =
∏

b∈∂ira
µ̂b→i (xi) (5.9)

µ̂a→i (xi) =
∑
∼xi

fa (x∂a)
∏

j∈∂ari
µj→a (xj) (5.10)

At leaf nodes these are interpreted as µi→c(xi) = 1 and µ̂c→i(xi) = fc(x∂c). The

marginals are obtained as

νi (xi) =

∏
a∈∂i µ̂a→i (xi)∑

xi

∏
a∈∂i µ̂a→i (xi)

(5.11)

νa (x∂a) =
fa (x∂a)

∏
i∈∂a µi→a (xi)∑

x∂a
fa (x∂a)

∏
i∈∂a µi→a (xi)

. (5.12)

When we compute the marginals it is not important how the messages are nor-

malized. Indeed in (5.11)-(5.12) the normalizations cancel out. We will often

88 Marginalization and Belief Propagation

fc

xi

µ̂c→i(xi) = fc(xi)
initialization at

leaf nodes
xi

fc

µ(xi) = 1

fc

xi

variable/function
node processing

µi→c(xi) = µ̂d→i(xi)µ̂e→i(xi)µ̂f→i(xi)

µ̂d→i µ̂e→iµ̂f→i

fd
fe

ff

xi

fc

µ̂(xi) =
∑
∼xi

fc(xi, xj , xk, xl)µj→c(xj)µk→c(xk)µl→c(xl)

µj→c µk→cµl→c

xj
xk

xl

ximarginalization ν(xi) = µ̂a→i(xi)µ̂b→i(xi)µ̂c→i(xi)µ̂d→i(xi)

µ̂a→i µ̂b→iµ̂c→i

fa
fb

fc

fd

µd→i

Figure 5.5 Message-passing rules. The top row shows the initialization of the messages
at the leaf nodes. The middle row corresponds to the processing rules at the variable
and function nodes, respectively. The bottom row explains the final marginalization
step.

exploit this fact and write (5.9)-(5.10) as proportionality relations. This often

simplifies many calculations.

Algorithmic versus static point of view

As explained in this chapter the BP relations allow to compute exact marginals

on trees. By starting the process at leaf nodes we are sure that it converges in a

finite number of steps to the exact marginals. On non-tree graphs the situation

is not as simple because this process does not yield exact marginals. There, the

BP relations form the basis of an algorithm which outputs BP marginals which

are used to make decisions about the decoded bit, signal estimate, etc. To run

the algorithm we have to decide on a schedule to compute the messages. The

so-called “flooding schedule” is popular. At each time step t one sends in parallel

messages µ
(t)
i→c (xi) from variable nodes to function nodes, and from these one

computes messages µ̂
(t)
c→i (xi) which are sent back in parallel again. One runs

these iterations for times t = 0, . . . , T until some reasonable stopping time, and

the BP marginals are estimated thanks to the messages at time T .

In the third part of these notes the BP equations will be used in a “statistical

mechanics” non-algorithmic way, namely as fixed point equations. We will see

that they also arise when one minimizes the so-called “Bethe free energy” much as

5.4 Decoding via Message Passing 89

the Curie-Weiss fixed point equation appeared in Chapter 4 when we minimized

the free energy function. This point of view will be become key when we relate

low complexity algorithms to static thresholds.

5.4 Decoding via Message Passing

Assume we transmit over a binary-input memoryless channel using a linear code.

Recall the formulation in Chapter 3: the rule (3.11) for the bit-wise maximum a

posteriori (MAP) decoder reads ŝi(h) = argmaxsi∈{±1}p(si | h) = sign〈si〉 which

is immediate to compute once we have p(si | h) the marginal of distribution (3.9).

So we have to marginalise the numerator of

p(s | h) =
1

Z

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi . (5.13)

and eventually normalize the resulting function of si ∈ {−1,+1}. This numerator

has a factorized form with two types of factors, fi(si) = ehisi and fa({si, i ∈
∂a}) = 1

2 (1+
∏
i∈∂a si), which are associated to square nodes in the factor graph

representation of (5.13). The first factor is attached in the factor graph to a

single bit and describes the influence of the channel. The second one is attached

to several bits and describes the parity-check constraints.

example 7 (Bit-wise MAP Decoding) Consider the code defined by its parity-

check matrix with Tanner graph shown on the left of Fig. 5.6.

x1
x2
x3
x4
x5
x6
x7

x1 + x2 + x4 = 0

x3 + x4 + x6 = 0

x4 + x5 + x7 = 0

eh1s1

eh2s2

eh3s3

eh4s4

eh5s5

eh6s6

eh7s7

1
2
(1 + s1s2s4)

1
2
(1 + s3s4s6)

1
2
(1 + s4s5s7)

Figure 5.6 Left: graphical representation of the parity check code. Right: factor graph
associated to the distribution (5.13) of our running example.

The factor graph corresponding to the distribution (5.13) is shown on the

right of this figure. It includes the (Tanner) graph of parity check code, but

additionally contains factor nodes which represent the effect of the channel. For

this particular case the resulting graph is a tree. We can therefore apply the

message-passing algorithm to this example to perform bit-wise MAP decoding.

♦

In principle the messages are uniquely specified by the general message-passing

rules and we could simply move on to the next example. Indeed, the real power

of the factor graph approach lies in the fact that, once the graph and the factor

90 Marginalization and Belief Propagation

nodes are specified, no thought is required to work out the messages. For the

current example perhaps the result is quite intuitive and this might seem as no

big deal. But in “real” systems substantially more complicated factor graphs are

encountered and in such cases without the message passing rules it might be

quite difficult to figure out how to correctly combine messages. Despite the fact

that we could just blindly follow the rules, it is instructive to explicitly work out

a few steps of the belief propagation algorithm for this example.

example 8 (Message passing algorithm for decoding) We give the first three

steps of belief propagation for the tree in Figure 5.6. In the first step the initial

messages are sent from leaf nodes. Here all leaf nodes are factor nodes whose fac-

tor is the prior, thus the initial messages are µ̂k→k(sk) = ehksk for k = 1, . . . , 7.

At the second step six variable nodes send messages to factor nodes, namely

the variable nodes that participate in only a single parity-check constraints:

µ1→1(s1) = eh1s1 , µ2→1(s2) = eh2s2 , µ3→2(s3) = eh3s3 , µ5→1(s5) = eh5s5 ,

µ7→1(s7) = eh7s7 . At the third step the three factor nodes have received all

their input, except the input from variable node 4. Hence, they can send their

messages in direction of node 4. These are

µ̂1→4(s4) =
∑
s1,s2

1

2
(1 + s1s2s4)eh1s1eh2s2 ,

µ̂2→4(s4) =
∑
s3,s6

1

2
(1 + s3s4s6)eh3s3eh6s6 ,

µ̂3→4(s4) =
∑
s5,s7

1

2
(1 + s4s5s7)eh5s5eh7s7 .

The sums involved in the messages are easy to compute. For example using

ehisi = coshhi + si sinhhi the first one is equal to

µ̂1→4(s4) = (2 coshh1 coshh2)(1 + s4 tanhh1 tanhh2)

Looking at one more step, note that at this point all incoming messages to

variable node 4 are known and so we can compute the ”marginal” µ4(s4) (of the

numerator) by multiplying all messages incoming into variable node 4. Explicitly,

µ(s4) =(2 coshh4)(1 + s4 tanhh4)(2 coshh1 coshh2)(1 + s4 tanhh1 tanhh2)

× (2 coshh3 coshh6)(1 + s4 tanhh3 tanhh6)

× (2 coshh5 coshh7)(1 + s4 tanhh5 tanhh7)

To get the true marginal ν4(s4) = p(s4 | h) one has to normalize µ(s4),

p(s4 | h) =
µ(s4)

µ4(1) + µ4(−1)

To compute the other marginals one continues in this fashion with further steps

of belief propagation. As a final remark, note that (in the binary case) messages

can equivalently be considered as vectors with two components or as Bernoulli

distributions. ♦

5.5 Message Passing in Compressed Sensing 91

5.5 Message Passing in Compressed Sensing

Recall the spin glass setting for compressed sensing in Section 3.4. From the

marginals p(xi|y) of the posterior distribution (3.40)

pβ(x | y) =
1

Zβ

r∏
a=1

e−
β

2σ2 (ya−ATa x)2
n∏
i=1

(p0(xi))
β , (5.14)

we can compute the Gibbs average x̂i,β(y) = 〈xi〉β . To get the MMSE estimate

(when the prior is known) we set β = 1; to get the LASSO estimate (when we

only know that the prior is in the sparse class Fκ) we take p0(x) = e−
λ
σ2 |x|

and send β → +∞. For compressive sensing marginalization involves integrals

instead of discrete sums. Formally, the distributive law (5.5) is replaced by∫
dx a(x)b(x)+

∫
dx a(x)c(x) =

∫
dx a(x)(b(x)+c(x)) but otherwise the marginal-

ization proceeds exactly in the same way as in the discrete case if we simply

replace sums by integrals in the message-passing rules (note that in our applica-

tions all integrals will remain finite).

To obtain p(xi | y), it is sufficient to marginalize the numerator in (5.14) and

eventually normalize the resulting function of xi. As in the coding case, this

numerator has a factorized form with two types of factors fi(xi) = (p0(xi))
β

and fa(x∂a) = e−
1

2σ2 (ya−ATa x)2

. We already associated a ”Tanner graph” to the

measurement matrix A in Chapter 2. Here we go one step further. In the factor

graph representation for the distribution (5.14) we add extra square nodes corre-

sponding to the factors (p0(xi))
β and attach them to variable nodes. The other

square nodes already present in the representation of the measurement matrix

are associated to the factors fa(x∂a). Let us discuss a concrete illustration.

example 9 (Factor graph for compressive sensing) Figure 5.7 shows a factor

graph associated to (5.14). Edges are present if and only if Aai 6= 0. One may

think of Aai 6= 0 as the “strength” of an edge. This factor graph contains the

graph representing A itself, and has also additional factor nodes which represent

the prior for the signal ♦

p(x1)
p(x2)
p(x3)
p(x4)
p(x5)
p(x6)
p(x7)

e
− 1

2σ2 (y1−A11x1−A12x2−A14x4)
2

e
− 1

2σ2 (y2−A23x3−A24x2−A26x6)
2

e
− 1

2σ2 (y3−A34x4−A35x5−A37x7)
2

Figure 5.7 Factor graph for compressive sensing. The edges represent the non-zero
elements of the measurement matrix. The signal has seven components and there are
three measurements.

A few comments are in order. In this example we take a factor graph that is a

tree for the purpose of illustration of the message passing rules below. However in

92 Marginalization and Belief Propagation

compressive sensing the graph is far from being a tree; it typically is a complete

graph. Indeed we assume that the entries of the measurement matrix are iid

Gaussian, so the matrix is dense. This is one important difference between the

compressive sensing and coding models In coding our analysis will rely heavily

on the fact that the graph is sparse and that when we look at very large instances

the Tanner graph will “locally” be a tree. At first glance it therefore appears that

message-passing techniques which explicitly rely on the Tanner graph being a

tree are of no use in the compressive sensing context. But perhaps surprisingly,

as we will see, we will still be able to analyze this situation. The key in this case

is that despite the fact that we will not face a tree, the influence of each edge

vanishes in the limit of large graphs. This relies heavily on the 1/m scaling of

the variance of the matrix elements Aai.

Let us now discuss belief propagation for the example.

example 10 (Message passing algorithm for compressive sensing) We give

the first three steps of belief propagation for the tree in Figure 5.7. As re-

marked above, the messages are continuous distributions and instead of per-

forming binary sums one has compute integrals; this is the main difference with

the coding case. In the first step, the initial messages are sent from leaf nodes:

µ̂k→k(xk) = (p0(xk))β for k = 1, . . . , 7. At the second step six variables (namely

the ones that participate in only one measurement) send messages to factor

nodes: µ1→1(x1) = (p0(x1))β , µ2→1(x2) = (p0(x2))β , µ3→2(x3) = (p0(x3))β ,

µ5→1(x5) = (p0(x5))β , µ6→1(x6) = (p0(x6))β µ7→1(x7) = (p0(x7))β . At the

third step the three factor nodes send messages to variable node 4. These are

µ̂1→4(x4) =

∫ ∫
dx1dx2 (p0(x1))β(p0(x2))βe−

β

2σ2 (y1−A11x1−A12x2−A14x4)2

,

µ̂2→4(x4) =

∫ ∫
dx3dx6 (p0(x3))β(p0(x6))βe−

β

2σ2 (y2−A22x2−A23x3−A26x6)2

,

µ̂3→4(x4) =

∫ ∫
dx5dx7 (p0(x5))β(p0(x7))βe−

β

2σ2 (y3−A34x4−A35x5−A37x7)2

.

Note that all integrals are certainly convergent as long as the prior p0(·) is in-

tegrable. This time, contrary to the coding example where binary sums could

easily be computed, in general the integrals cannot be performed analytically

but have to be evaluated numerically. One exception where a complete analyt-

ical calculation is easy, is the case where the priors are Gaussians. This leads

to messages that are Gaussians throughout the whole belief propagation algo-

rithm. A mixture of Bernoulli and Gaussian priors also leads to explicit although

rather complicated formulas. This last case is sometimes considered as a model

of a sparse prior in the context of compressive sensing. Note however, that the

Laplacian prior ce−
λ
σ2 |xk| does not lead to completely analytically tractable in-

tegrals because of the absolute value.

At this point we can compute the marginal µ4(x4). Indeed all messages in-

5.5 Message Passing in Compressed Sensing 93

coming into variable node 4 are known, so

µ4(x4) = p0(x4)µ̂1→4(x4)µ̂2→4(x4)µ̂3→4(x4)

To get the marginal p(x4 | y) we normalize µ4(x4),

p(x4 | y) =
µ(x4)∫
dx4 µ(x4)

.

Finally, the computation of other marginals requires further steps of belief prop-

agation. ♦

LASSO estimate and min-sum rules

We remarked in 3.4 that the LASSO estimate can be obtained by taking the

prior p0(xi) = e−
λ
σ2 |xi|, and letting β → +∞. Taking the β → +∞ limit of the

message passing rules developed here leads to the so-called min-sum rules. It is

instructive to work this out in detail for the current example. To obtain a well

defined limit for the message passing rules it is convenient to define

êa→i = − 1

β
ln µ̂a→i, and ei→a = − 1

β
lnµi→a.

Then the initial messages from leaf square nodes to variables are ε̂k→k(xk) =
λ
σ2 |xk| for k = 1, . . . , 7. At the second step the six variables k = 1, 2, 3, 5, 7

participating in a single measurement send messages to factor nodes: εk→k(x1) =
λ
σ2 |xk|. At the third step the three factor nodes send messages to variable node

4. These are deduced from the finite β messages by applying the Laplace method

to the integrals,

ê1→4(x4) = min{ λ
σ2
|x1|+

λ

σ2
|x2|+

1

2σ2
(y1 −A11x1 −A12x2 −A14x4)2}

ê2→4(x4) = min{ λ
σ2
|x3|+

λ

σ2
|x6|+

1

2σ2
(y2 −A22x2 −A23x3 −A26x6)2},

ê3→4(x4) = min{ λ
σ2
|x3|+

λ

σ2
|x6|+

1

2σ2
(y3 −A34x4 −A35x5 −A37x7)2}.

The ”marginal” for node 4 is

e4(x4) =
λ

σ2
|x4|+ ê1→4(x4) + ê2→4(x4) + ê3→4(x4)

and the LASSO estimate for variable node 4 is simply x̂4 = argmin e4(x4). These

relations constitute the min-sum algorithm.

There is also an alternative route how to derive the min-sum relations. The

belief-propagation equations (sometimes also called sum-product algorithm) were

derived from the distributed law once we applied it to a factor graph which is a

tree. It led to the marginalization of a function. But instead of using the oper-

ations of summing and multiplying (leading to the sum-product algorithm) we

94 Marginalization and Belief Propagation

can use as basic operations the minimization and summing. The corresponding

distributive law for this case reads

min(a+ b, a+ c) = a+ min(b, c). (5.15)

We can now formaly proceed just as in the previous case. A quick way to see this is

to use the correspondence (+,×)→ (min,+) which transforms ab+ac = a(b+c)

to min(a+ b, a+ c) = a+min(b, c). You will derive the min-sum message passing

rules from the distributive law in an exercise.

5.6 Message passing in K-SAT

We illustrate message passing for K-SAT with two applications. In the first

one we count solutions of a K-SAT formula and in the second we discuss the

determination of minimum energy assignments.

Counting solutions through message passing

Recall in the K-SAT model we introduced in Section 3.6 the number of solutions

of a K − SAT formula,

N0 =
∑
s

m∏
a=1

(1−
∏
i∈∂a

(
1 + siJai

2
)). (5.16)

We illustrate here how one could attempt to compute it by message passing

methods. Suppose we can count the number of solutions having a fixed value for

the i-th variable, namely

Ni(si) =
∑
∼si

m∏
a=1

(1−
∏
i∈∂a

(
1 + siJai

2
)). (5.17)

where the sum carries over all variables except si. The total number of solutions

is simply obtained as N0 = Ni(+1) + Ni(−1). The task of computing (5.17) is

nothing else than our marginalization problem. The factor graph associated to

(5.16) has only one type of factor (1−
∏
i∈∂a(1+siJai

2)) associated to the square

nodes. Again, message passing provides an exact solution on a tree-graph. When

the graph is not a tree it forms the basis of a solution finding message passing

algorithm, called Belief Propagation Guided Decimation (BPGD), which we will

study in Chapter ??. Let us for now illustrate how the marginalization proceeds

on our simple tree graph example.

example 11 (Counting solutions in 3-SAT) Consider the 3-SAT formula

shown on Fig. 5.8. Here we keep the signs Jai = ±1 associated to the edges

open in order to see more clearly the structure of the messages (so we have a

set of 29 formulas here). The factors associated to each square are the indicator

5.6 Message passing in K-SAT 95

functions of the clause. For example clause number 1 is not satisfied by the as-

signment s1 = J11, s2 = J12, s4 = J14 and is satisfied by teh 7 other assignments.

Note that contraty to coding and compressed sensing there is are no “priors“, so

no degree-one square nodes with factors attached to variable nodes. Here message

1
2
3
4
5
6
7

1− 1
8
(1 + J11s1)(1 + J12s2)(1 + J14s4)

1− 1
8
(1 + J23s3)(1 + J24s4)(1 + J26s6)

1− 1
8
(1 + J34s4)(1 + J35s5)(1 + J37s7)

Figure 5.8 Factor graph for the K-SAT counting problem. The graph represents the
formula and the factors associated to teh square nodes are the indicator functions of
each constraint written in spin language.

passing starts at leaf nodes, namely the variable nodes 1, 2, 3, 5, 6, 7 which send

the trivial initial messages µi→1(si) = µi→2(si) = µi→3(si) = 1, i = 1, 2, 3, 5, 6, 7.

In teh second step all clauses can compute one outgoing message towrads vari-

able node 4 by taking into account their factor and two incomimg messages. In

detail,

µ̂1→4(s4) =
∑
s1,s2

(
1− 1

8
(1 + J11s1)(1 + J12s2)(1 + J14s4)

)
× 1× 1,

µ̂2→4(s4) =
∑
s3,s6

(
1− 1

8
(1 + J23s3)(1 + J24s4)(1 + J26s6)

)
× 1× 1,

µ̂3→4(s4) =
∑
s5,s7

(
1− 1

8
(1 + J34s4)(1 + J35s5)(1 + J37s7)

)
× 1× 1

The binary sums are easily performed and yield µ̂a→4(s4) = 4− 1
2 (1 +Ja4s4) for

a = 1, 2, 3. In the next step we can compute the ”marginal“ for variable node 4

from the three incoming messages,

N4(s4) = µ4(s4) = (4− 1

2
(1 + J14s4))(4− 1

2
(1 + J24s4))(4− 1

2
(1 + J34s4))

(5.18)

For example if the formula has J14 = 1, J24 = 1 and J34 = −1 the number

of solutions with s4 = +1 equals N4(1) = 3 × 3 × 4 = 36 and the number of

solutions with s4 = −1 equals N4(−1) = 4 × 4 × 3 = 48. The total number

of solutions is N0 = 36 + 48 = 84. Note that we obtained this result without

going through the remaining marginalization steps. This calculation also teaches

us something about the uniform distribution over solutions. Indeed if we sample

uniformly among solutions the probabilities that a solution has s4 = ±1 are

96 Marginalization and Belief Propagation

N4(±1)/N0 = 3/7 and 4/7. We obtain this result from anaother point of view

in the next paragraph. To calculate all such probabilities one has to go through

the other marginalization steps. ♦

Message passing at positive and zero temperatures

Recall the Gibbs distribution in the finite temperature formulation of K-SAT

p(s) =
1

Z

∑
s

m∏
a=1

exp
{
−β

∏
i∈∂a

(1 + siJai
2

)}
. (5.19)

Again we associate a factor graph to this distribution with one type of factor at-

tached to the clauses, namely fa(s∂a) = exp
{
−β
∏
i∈∂a

(
1+siJai

2

)}
. We illustrate

message passing on the same tree-like example as before.

example 12 (Belief propagation at positive temperature for 3-SAT) Con-

sider again the 3-SAT formula shown on Fig. 5.8. The factors associated to the

square notes are now teh β dependent weights entering in (5.19). Message pass-

ing originates at leaf nodes 1, 2, 3, 5, 6, 7 which send the trivial initial messages

µi→1(si) = µi→2(si) = µi→3(si) = 1, i = 1, 2, 3, 5, 6, 7. In the second step all

clauses send their message to variable node 4,

µ̂1→4(s4) =
∑
s1,s2

exp
{
−β

8
(1 + J11s1)(1 + J12s2)(1 + J14s4)

}
× 1× 1,

µ̂2→4(s4) =
∑
s3,s6

exp
{
−β

8
(1 + J23s3)(1 + J24s4)(1 + J26s6)

}
× 1× 1,

µ̂3→4(s4) =
∑
s5,s7

exp
{
−β

8
(1 + J34s4)(1 + J35s5)(1 + J37s7)

}
× 1× 1

Using e−βn = 1 + (e−β − 1)n for n ∈ {0, 1} we can easily calculate the binary

sums. For example

µ̂1→4(s4) =
∑
s1,s2

(
1 + (e−β − 1)(

1 + J11s1

2
)(

1 + J12s2

2
)(

1 + J14s4

2
)

)
= 4 + (e−β − 1)(

1 + J14s4

2
). (5.20)

At this step we can already calculate the ”marginal“ µ4(s4) by multiplying all

messages incoming into variable node 4

µ4(s4) =(4 + (e−β − 1)(
1 + J14s4

2
))(4 + (e−β − 1)(

1 + J24s4

2
))

× (4 + (e−β − 1)(
1 + J34s4

2
)) (5.21)

and the true marginal is obtained as usual by normalization ν(s4) = µ4(s4)/(µ4(1)+

µ4(−1)). For the remaining marginals one has to perform extra message passing

steps. ♦

5.6 Message passing in K-SAT 97

Given a formula and given that solutions exist for this formula, when we take

β → +∞ the Gibbs distribution tends to the uniform distribution over solutions.

Therefore in the limit we have

lim
β→+∞

νi(si) =
Ni(si)
N0

(5.22)

This is easily checked explicitely in the example above: using e−β → 0 in (5.21))

we find ν4(±1) = 3/7 and 4/7.

We now turn to the zero temperature case in more detail. Suppose we want to

determine the assigments s that minimize the K-SAT Hamiltonian H(s) (??).

When the graph associated to the formula is a tree message passing methods yield

an exact solution; while in the non-tree case they form the basis of algorithms for

finding solutions that we study at the end of this course (Survey Propagation).

As for the LASSO estimator, we can take two alternative routes. We can directly

set up the min-sum message passing rules by a proper use of the distributive law

(5.15), or we can look at the β → +∞ limit of the BP rules. The second method

is somehow more convenient for us since we have allready developped all the

finite β formalism. This is illustrated with our running example.

example 13 (Zero temperature limit: min-sum for 3-SAT) We take the same

3-SAT formula as in Fig. 5.8. The correct limiting behavior of messages is cap-

tured by the definition (as for LASSO)

êa→i = − 1

β
ln µ̂a→i, and ei→a = − 1

β
lnµi→a.

The initial messages from leaf nodes 1, 2, 3, 5, 6, 7 are ei→1(si) = ei→2(si) =

ei→3(si) = 0, i = 1, 2, 3, 5, 6, 7. Next, all clauses send a message to variable node

4,

ê1→4(s4) = min
s1,s2

((
1 + J11s1

2
)(

1 + J12s2

2
)(

1 + J14s4

2
) + 0 + 0),

ê2→4(s4) = min
s3,s6

((
1 + J23s3

2
)(

1 + J24s4

2
)(

1 + J26s6

2
) + 0 + 0),

ê3→4(s4) = min
s3,s6

((
1 + J34s4

2
)(

1 + J35s5

2
)(

1 + J37s7

2
) + 0 + 0).

The minima are easily calculated directly from these expressions. For example

testing all four possibilities (s1, s2) = (±J11,±J12) yields ê1→4(s4) = 0. This can

also be obtained directly from (5.20). Similarly we have ê2→4(s4) = ê3→4(s4) = 0.

The resulting ”marginal“ for variable node 4 vanishes for both values of s4 = ±1,

namely

e4(s4) = ê1→4(s4) + ê2→4(s4) + ê3→4(s4) = 0 (5.23)

Since e4(s4) = min∼s4 H(s) we deduce that any there exist zero energy assign-

ments (so assignments that satisfy the formula) with both values s4 = ±1.

♦

98 Marginalization and Belief Propagation

Problems

5.1 Min-Sum Message Passing rules. In class we discussed how to compute

the marginal of a multivariate function f(x1, . . . , xn) efficiently, assuming that

the function can be factorized into factors involving only few variables and that

the corresponding factor graph is a tree. We accomplished this by formulating

a message-passing algorithm. The messages are functions over the underlying

alphabet. Functions are passed on edges. The algorithm starts at the leaf nodes

and we discussed how messages are computed at variable and at function nodes.

Recall from the derivation that the main property we used was the distributive

law. Consider now the following generalization. Consider the so-called commu-

tative semiring of extended real numbers (including ∞) with the two operations

min and + (instead of the usual operations + and ∗).
(i) Show that both operations are commutative.

(ii)Show that the identity element under min is ∞ and that the identity element

under + is 0.

(iii)Show that the distributive law holds.

(iv)If we formally exchange in our original marginalization + with min and ∗ with

+, what corresponds to the marginalization of a function?

(v)What are the message passing rules and what is the initialization?

5.2 Application to the Lasso estimate. The goal of this problem is to show

that in case the factor graph associated to the measurement matrix is a tree

we can solve the Lasso minimization problem by using the min-sum algorithm.

Recall that the Lasso estimate is

x̂lasso(y) = argminx

{
1

2
‖y −Ax‖22 − λ‖x‖1

}
.

Consider first the minimum cost given that xi is fixed.

Ei(xi) = min∼xi

{
1

2
‖y −Ax‖22 − λ‖x‖1

}
.

where min∼xi denotes minimization of the expression in the bracket with respect

to all variables, except xi which is held fixed. Ei(xi) is a function of a single real

variable whose minimizer yields the i-th component of x̂lasso(y).

Consider the Tanner graph in Figure 6.7 in the notes and write down the

factors associated to factor nodes. Pick your favourite variable, say variable 4,

and describe the steps of the min-sum algorithm for the computation of E4(x4).

6 Coding: Belief Propagation

Message passing methods have been very successful in providing efficient and

analyzable algorithms for the coding problem. In this and the next chapter we

provide an introduction to this analysis. In the last lecture we learned how to

marginalize a Gibbs distribution whose factor graph is a tree, by emloying by

employing message passing rules. We saw that on trees message passing starts at

the leaf nodes and that a node which has received messages from all its children

processes the messages and forwards the result to its parent node. On a tree this

messsage-passing algorithm is equivalent to MAP decoding since we are com-

puting without any approximation the marginals of the posterior distribution.

From now on we will refer to this algorithm as BP and leave the term “message-

passing” as a generic term to encompass all local algorithms which follow the

basic message-passing paradigm, i.e., where an outgoing message along an edge

is only a function of the messages incoming at the same time along all other

edges incident to the node.

If the graph is not a tree then we can still use BP, but we need to define a

schedule which determines when to update what messages. It is not clear how well

such an algorithm will perform. It is the aim of the present and the subequent

chapter to clarify these issues. We will carry out the analysis in detail for the

BEC and then explain how the general case can be treated. The BEC has the

advantage that its analysis can be done by pen and paper. The general case is

conceptually not much harder, but there are a signficant number of details which

one has to take care of. This makes the analysis more difficult.

6.1 Message-Passing Rules for Bit-wise MAP Decoding

We illustrated the message passing rules for coding on a small coding example

in Section 5.4. Recall that the Gibbs distribution has two type of factors: ehisi

and 1
2 (1 +

∏
j∈∂a sj). The first kind of factor is associated to a square nodes î of

degree one attached to variable nodes i and generates a message µî→i(si) = ehisi .

The other relevant messages flow from the usual parity checks to variable nodes

µ̂a→i(si) and from variable nodes to usual parity checks µi→a(si). Thus for coding

100 Coding: Belief Propagation

the general BP equations (5.9), (5.10) read

µi→a (si) = ehisi
∏

b∈∂ira
µ̂b→i (si) (6.1)

µ̂a→i (si) =
∑
∼si

1

2
(1 +

∏
j∈∂a

sj)
∏

j∈∂ari
µj→a (sj) (6.2)

In the binary case of interest here these equations can be simplified by adopting a

convenient parametrization of the messages. Indeed we already remarked at the

end of Section 5.3 that their normalizations cancel out in the final computation

of “marginals”. So all that should matter are the half-loglikelyhood ratios

li→a =
1

2
ln

{
µi→a(+1)

µi→a(−1)

}
, l̂a→i =

1

2
ln

{
µ̂a→i(+1)

µ̂a→i(−1)

}
(6.3)

which do not involve the normalization. To see the form that the first BP equation

(6.1) takes with this parametrization, we write this equation for each value si =

±1, take the ratio

µi→a (+1)

µi→a (−1)
= e2hi

∏
b∈∂ira

µ̂b→i (+1)

µ̂b→i (−1)
, (6.4)

and then take the logarithm to obtain

li→a = hi +
∑

b∈∂ira
l̂b→i. (6.5)

Reducing the second BP equation (6.2) to a form involving only the loglikelihood

ratios (6.3) involves a little more algebra. First we write (6.2) for each spin value

si = ±1 and take the ratio,

µ̂a→i (+1)

µ̂a→i (−1)
=

∑
∼si(1 +

∏
j∈∂a\i sj)

∏
j∈∂ari µj→a (sj)∑

∼si(1−
∏
j∈∂a\i sj)

∏
j∈∂ari µj→a (sj)

. (6.6)

Next we divide the numerator and denominator by
∏
j∈∂ari µj→a (−1) and use

the identity

µj→a (sj)

µj→a (−1)
= elj→a(sj+1) = (cosh lj→a)(1 + sj tanh lj→a) (6.7)

to obtain

µ̂a→i (+1)

µ̂a→i (−1)
=

∑
∼si(1 +

∏
j∈∂a\i sj)

∏
j∈∂ari(1 + sj tanh lj→a)∑

∼si(1−
∏
j∈∂a\i sj)

∏
j∈∂ari(1 + sj tanh lj→a)

. (6.8)

6.1 Message-Passing Rules for Bit-wise MAP Decoding 101

In order to perform the summations in the numerator and denominator we first

expand the products into a sum of monomials of the spin variables

(1±
∏

j∈∂a\i

sj)
∏

j∈∂ari
(1 + sj tanh lj→a)

= (1±
∏

j∈∂a\i

sj)
∑

J⊂∂a\i

∏
j∈J

sj
∏
j∈J

tanh lj→a

=
∑

J⊂∂a\i

∏
j∈J

sj
∏
j∈J

tanh lj→a ±
∑

J⊂∂a\i

∏
j∈Jc

sj
∏
j∈J

tanh lj→a (6.9)

When we sum this expression over spin assignments the only monomials that

survive correspond to the subsets J = ∅ in the first sum and Jc = ∅ in the

second sum. Therefore the ratio (6.4) reduces to the simple form

µ̂a→i (+1)

µ̂a→i (−1)
=

1 +
∏
j∈∂a\i tanh lj→a

1−
∏
j∈∂a\i tanh lj→a

(6.10)

Finally taking the logarithm and using 1
2 ln 1+x

1−x = atanhx we arrive at

l̂a→i = atanh

{ ∏
j∈∂a\i

tanh lj→a

}
(6.11)

Let us now look at the “marginals” computed from the BP equations. We will

call them BP marginals and denote them by νBP
i (si) to distinguish them from

the true marginals νi(si) of the Gibbs distribution. As repeatedly pointed out

on a tree the BP marginals and true marginals are the same. Adapting (5.11) to

the present setting,

νBP
i (si) =

ehisi
∏
a∈i µ̂a→i(si)

ehi
∏
a∈i µ̂a→i(+1) + e−hi

∏
a∈i µ̂a→i(−1)

(6.12)

In order to express the BP marginals in terms of the loglikehood ratios we divide

the numerator and denominator by ehi
∏
a∈i m̂ua→i(+1) and use (6.3) to deduce

νBP
i (si) =

e(hi+
∑
a∈∂i l̂a→i)(si+1)

1 + e2(hi+
∑
a∈∂i l̂a→i)

= 1 + si tanh(hi +
∑
a∈∂i

l̂a→i) (6.13)

From this marginal one can compute the BP magnetization of the i-th bit (to be

distinguished from the true magnetization)

mBP
i =

∑
si=0,1

siν
BP
i (si) = tanh(hi +

∑
a∈∂i

l̂a→i) (6.14)

The BP estimate for bit i is then

ŝBP
i = sign(mBP

i) (6.15)

102 Coding: Belief Propagation

There is a nice interpretation of (6.14). The BP magnetization is the same as

that of a system constituted by a single spin with Gibbs distribution (at β = 1)

e−lisi

2 cosh li
, li = hi +

∑
a∈∂i

l̂a→i (6.16)

In the context of statistical mechanics the estimate li, for the total likelihood

ratio associated to bit i, is called a local mean magnetic field or simply local mean

field.

Summary of BP equations for coding

To summarize, in the case of transmission over a binary channel the messages

can be compressed into a single real quantity. In particular, if we choose this

quantity to be the half-loglikelihood ratio (6.3) then the processing rules take on

a particularly simple formli→a = hi +
∑
b∈∂ira l̂b→i

l̂a→i = atanh

{∏
j∈∂a\i tanh lj→a

}
(6.17)

The BP estimate of a bit is given by

ŝBP
i = sign(tanh(hi +

∑
a∈∂i

l̂a→i)) (6.18)

For the special case of the BEC one can make further simplifications as dicussed

in Section 6.3.

6.2 Scheduling on general Tanner graphs

If the Tanner graph is a tree, then message-passing starts from the leaf nodes

and messages propagate through the graph until a message has been sent on each

edge in both directions. However, cycle-free parity-check codes do not perform

well. This is true even if we allowed optimal decoding. Hence we have to use

codes whose Tanner graph has cycles.

Given a factor graph with cycles, the order in which messages are computed

has to be defined explicitly and in principle different schedules might result in

different performance. We call such an order a schedule. A naive scheduling which

is convenient for analysis of belief propagation is the flooding or parallel schedule.

In this schedule at each step every outgoing message is updated according to the

incoming messages in the previous step.

In more details. Every iteration consists of two steps. In the first step we

compute the outgoing messages along each edge at variable nodes and we forward

them to the check node side. In the second step we then process the incoming

messages at check nodes, and compute for every edge at check nodes the outgoing

6.3 Message Passing and Scheduling for the BEC 103

messsage and send it back to variable nodes. What about the initial condition?

At the very beginning, none of the messages except the ones coming from the

channel are defined. So in order to get started, we set all “internal” messages to

be “neutral” messages. E.g., if we represent messages as log-likelihood ratios, this

means that we set all internal messages to 0. One can check that for a tree this

prescription reduces to the initial conditions dictated by the theory developped

in Chapter ??.

Let us formalize the above discussion. Iterations are indexed by “time”, a

discrete integer t ≥ 1. At iteration t in the first step we have messages flowing

(in parallel) from variable to check nodes, l
(t)
i→a, and in the second step we have

messages flowing from check to variable nodes, l̂
(t)
a→i. They satisfyl

(t)
i→a = hi +

∑
b∈∂ira l̂

(t−1)
b→i

l̂
(t)
a→i = atanh

{∏
j∈∂a\i tanh l

(t)
j→a

}
(6.19)

The iterative process is initialized with l
(0)
i→a = l̂

(0)
a→i = 0. The total estimated

likelihood ratio for bit i at time t is

l
(t)
i = hi +

∑
a∈∂i

l̂
(t)
a→i (6.20)

and the BP estimate at time t for the bit is

ŝBP,t
i = sign(tanh l

(t)
i) (6.21)

6.3 Message Passing and Scheduling for the BEC

The BEC is a very special binary input memoryless channel. As depicted in

Fig. 1.2, the transmitted bit is either correctly received at the channel output

with probability 1 − ε or erased by the channel with probability ε and thus,

nothing is received at the channel output.1 The erased bits are denoted by “?”.

For example, if si = 1 (resp. si = −1) is transmitted in the BEC, then the set

of possible channel observations is {1, ?} (resp.{−1, ?}). The loglikelihood ratios

corresponding to the various channel observations are

hi = log(
p(yi | si = 1)

p(y | si = −1)
) =

1
2 log(1−ε

0) = +∞ y = 1,
1
2 log(εε) = 0, y = ?,
1
2 log(0

1−ε) = −∞, y = −1.

Now, since the initial condition for the internal messages is l
(0)
i→a = 0, l̂

(0)
a→i = 0

the BP equations (6.19) imply that at later times l
(t)
i→a = 0, l̂

(t)
a→i{±∞, 0}. This

allows to further simplify the BP equations.

According to the variable-node rule the outgoing message from a variable node

1 But note that the position of the erased bit is known.

104 Coding: Belief Propagation

is +∞ (or −∞) if at least one incoming message from one of its neighbors is +∞
(or −∞), otherwise it is equal to 0. Note that it is not possible that a variable

node receives both +∞ and −∞ simultaneously. This is due to the fact that by

assumption the transmitted word is a valid codeword and that the channel never

introduced mistakes.

Since tanh li→a ∈ {±1, 0}, we can use tanh li→a = sign(li→a) to simplify the

updating rule of check nodes to the following equation,

sign(l̂a→i) =
∏

j∈∂a\i

sign(lj→a). (6.22)

This discussion shows that on the BEC, knowing the sign of all incoming

messages is sufficient to compute outgoing messages, thus we can assume that

the set of messages is {±1, 0} instead of {±∞, 0}. At check nodes the operation

is then simple multiplication. At variable nodes, if at least one of the incoming

edges is non-zero, then all non-zero incoming messages must in fact be the same

and the outgoing message is this common value. Otherwise, when all incoming

messages are 0, the outgoing message is also 0.

For the BEC, but only for the BEC, we can implement the parallel schedule in a

more efficient manner. For this channel, some thought shows that the messages

emitted along a particular edge can only jump once, namely from 0 to either

the value +1 or −1. After the value has jumped it stays constant thereafter.

Further, the message can only jump if at least one of the incoming messages

jumped. Therefore, rather than recomputing every message along every edge in

each iteration, we can just follow changes in the messages and see if they have

consequences. As a consequence, we have to “touch” every edge only once and

so the complexity of this algorithm scales linearly in the number of edges.

6.4 Two Basic Simplifications

To analyze the performance of the (l, r)-regular LDPC ensemble over a channel,

we pick a code C uniformly at random from the ensemble of graphs and run

the message passing algorithm. For a given code C and channel parameter ε, let

PBP,b(C, sin, ε, t) denote the average bit error probability of the message passing

decoder for codeword sin at iteration t. Explicitely,

PBP,b(C, sin, ε, t) =
1

n

n∑
i=1

1

2
(1 + Eh|sin [sin

i ŝ
BP,(t)
i]) (6.23)

where we recall that Eh|sin is the expectation with respect to channel out-

puts given the input word (see Chapter 3). We will study the behavior of

PBP,b(C, sin, ε, t) in terms of ε and t as a measure of performance of the code

C.
For the binary erasure channel, we either can decode a bit correctly, or the

bit is still erased at the end of the decoding process. Therefore, in this case

6.4 Two Basic Simplifications 105

we typically compute the bit erasure probability. If we want to convert this

into an error probability, then we can imagine that for all erased bits we flip

a coin uniformly at random. With probability one-half we will guess the bit

correctly and with probability one-half we will make a mistake. Therefore, the

bit erasure and the bit error probability are the same up to a factor of one-half.

In our calculations we will always compute the erasure probability for the erasure

channel. But our language will sometimes reflect the general case and so we will

talk about error probabilities.

Restriction To The All-One Codeword

In Chapter 3 we showed that the bit-wise MAP error probability is independent

of the transmitted codeword as long as the channel is symmetric. Something

similar holds for the BP decoder. Therefore we can analyze the error probality

of the BP decoder assuming that the all-one codeword was transmitted (i.e., the

codeword, all of its components are 1, in the spin language where the components

are from the set {±1}). In formulae, we claim that (recall Eh = Eh|1)

PBP,b(C, sin, ε, t) = PBP,b(C, ε, t)

=
1

n

n∑
i=1

1

2
(1− Eh[ŝ

BP,(t)
i]) (6.24)

This is true in a more general setting than the present one. In general, for the

statement to hold we need two kinds of symmetry to hold: channel symmetry

and decoder symmetry. Decoder symmetry here means that at check nodes the

magnitude of the outgoing message is only a function of the magnitude of the

incoming messages, and that the sign of the outgoing message is the product

of the signs of the incoming messages. At variable nodes, we require that if

the signs of all the incoming messages are reversed then the outgoing message

also just changes by a reversal of the sign. This is obviously the case for the

BP decoder. But often one often implements simplified versions for which the

symmetry conditions also hold.

For the BEC and BP decoding it is particularly easy to see why (6.24) is

true. If you go back to the message-passing rules for this case, you will see

that both at check nodes as well as at variable nodes we can determine if the

outgoing message is an erasure or not by only looking how many of the incoming

messages are erasures, but we do not need to know the values of the incoming

messages. Therefore, the final erasue probability only depends on the erasure

pattern created by the channel, but is independent of the transmitted codeword.

The general case is proved by using the two symmetry conditions stated above.

The proof is not very difficult and we leave it to the reader.

106 Coding: Belief Propagation

Concentration

The second major simplification stems from the fact that, rather than analyzing

individual codes, it suffices to assess the ensemble average performance. When

this is true the individual behavior of elements of an ensemble is with high

probability close to the ensemble average. More precisely one can prove the

following statement [?].

Let C, chosen uniformly at random from the Gallager ensemble LDPC(dv, dc, n),

be used for transmission over a BMS channel. Then, for any given δ > 0, there

exists an α > 0, α = α(dv, dc, δ), such that

P{|PBP,b(C, ε, t)− E [PBP,b(C, ε, t)] | > δ} ≤ ε−αn. (6.25)

where here P and E refer to the code ensemble.

In words, all except an exponentially (in the blocklength) small fraction of

codes behave within an arbitrarily small δ from the ensemble average. Therefore,

assuming sufficiently large blocklengths, the ensemble average is a good indicator

for the individual behavior and it seems a reasonable route to focus one’s effort on

the design and construction of ensembles whose average performance approaches

the Shannon theoretic limit.

6.5 Concept of Computation Graph

Message passing takes place on the local neighborhood of a node. At each it-

eration, variable nodes send their beliefs along their edges toward check nodes

and, then, the check nodes compute the outgoing message for each of their edges

according to the beliefs of incoming edges and send it back to the variable nodes.

Afterwards, each variable node updates the outgoing messages along its edges

according to beliefs returned back on its edges.

Therefore, after t iterations, the belief of a variable node depends on its initial

belief and the beliefs of all the nodes placed within (graph) distance 2t or less.

The graph consisting of these nodes is called the computation graph of that

variable node of height t. For example, the factor graph of a (2, 4, 6)-regular

LDPC code is shown in Fig. 6.1(a) and the computation graph of node 1 with

height 1 is also depicted in Fig. 6.1(b).

If a computation graph is tree, then no node is used more than once in the

graph. Therefore the incoming messages of each node are independent. But note

that by increasing the number of iterations, the number of nodes in a compu-

tation graph grows exponentially and thus in at most c log n steps, where c is

some suitable constant, some node will necessarily be reused. It is clear that

small computation graphs are more likely to be tree-like than large ones and

that the chance of having a tree-like computation tree increase if we increase the

blocklength.

Let us discuss this last point in more detail. Let Tt denote the computation

6.5 Concept of Computation Graph 107

(a) (b)

Figure 6.1 (a) The Tanner graph of a (2, 4)-regular LDPC code with 6 variable nodes;
(b) The corresponding computation graph of node 1 for the first iteration.

graph of a variable node chosen uniformly at random from the set of variable

nodes of height t in the (dv, dc, n)-regular LDPC ensemble. If the height t is kept

fixed then

lim
n→∞

P (Tt is a tree) = 1. (6.26)

We only give a sketch of the proof. We are given the randomly chosen variable

node and we construct its computation graph of height t by growing out its “tree”

one node at a time, breath first. We use the principle of deferred decisions. This

means that rather than first constructing a particular code, then checking if the

correspoding computation graph is a tree and then averaging over all codes we

perform the averaging over all codes at the same time as we grow the tree, i.e.,

we defer the decision of how edges are connected until we look at a particular

edge and reveal its endpoints. Note that a computation graph of a fixed height

has at most at certain number of nodes and edges in there. At each step when

we reveal how a particular edge is connected there are two possible events. The

newly inspected edge is either connected to a node which is already contained in

the computation graph. In this case we terminate the procedure since we know

that the computation graph is not a tree. Or the edge is connected to a new

node, maintaining the tree structure. Since not yet revealed edges are connected

uniformly at random to any not yet filled slot, the probability of reconnecting

to an already visited node vanishes like 1/n, where n is the blocklength. By

the union bound, and since we only perform a fixed number of steps, it follows

that the probability that the computation graph is indeed a tree behaves like

1−O(1/n), which proves the claim.

108 Coding: Belief Propagation

6.6 Density Evolution

We will now show how to compute the bit error probability under BP decoding.

Expression (6.24) shows that in principle, given a code C from the ensemble,

and a variable node i selected uniformly at random, we should compute the

expectation of ŝ
BP,(t)
i . According to (6.21) we should determine the probability

distribution of l
(t)
i . A priori the difficulty here is that this depends on messages

that are not independent. But, fortunately the results in sections ?? and 6.5

allow to by-pass this problem at least in the limit where n grows large and t is

fixed (but arbitrarily large).

From the concentration of the error probability (6.25) in the large block-length

limit it suffices to compute the average over the code ensemble of the error

probability,

PBP,b(dv, dc, ε, t) = lim
n→+∞

E[PBP,b(C, ε, t)] (6.27)

Since the computation graph Tt of a random vertex of fixed height t is a tree

with probability 1−O(1/n) we get

PBP,b(dv, dc, ε, t) = lim
n→+∞

E[PBP,b(C, ε, t)|Tt is a tree] (6.28)

Our task is therefore reduced to the computation of the probability distribution

of l
(t)
i on a tree. This problem can handled quite easily, at least in principle,

because the incoming messages to each node of this tree graph are independent.

It is common to refer to the iterative equations governing the probability dis-

tributions on the tree as the Density Evolution (DE) equations. For the BEC

these are a simple set of algebraic (polynomial) equations and we first give their

derivation in this simple case. For general BMS channels these are integral equa-

tions, but as we will see conceptually their derivation is not much more difficult.

DE equations for the BEC

Consider a computation tree Tt with height t. We divide this computation graph

to t + 1 levels, from 0 to t. Level 0 contains the leaf nodes and the 1st level

contains the parent check nodes and the grandparent variable nodes of the leaf

nodes (Fig. 6.2).

Every variable node at the `-th level is the root of a computation tree with

height `. However, its root has degree dv − 1. Consider {0,+1,−1} the outgoing

message emitted by a variable nodes towards its parent check node in the `+1-th

level. It is equal to either 0 (erasure message) with probability x` or a known

value (±1) with probability 1− x`.
Now consider level `+1. Each variable node is connected to dv−1 check nodes

and each check node is connected to dc− 1 variable nodes of `-th level. Consider

{0,+1,−1} the outgoing message emitted by a check node towards its parent

6.6 Density Evolution 109

Level t

Level t− 1

Level t− 2

Level 1

Level 0

. . .

· · ·

...

Figure 6.2 A computation graph of (2, 3)-regular LDPC code with height t. The graph
is split to t+ 1 levels.

variable node in the same level. We call y` the probability that this message is

an erasure.

The outgoing message of a check node is an erasure message, if at least one of

its incoming messages is 0. Since the incoming messages are independent, then

the probability that a check node at level `+ 1 sends an erasure message to its

parent variable node is

y` = 1− (1− x`)dc−1 (6.29)

The outgoing message from a variable node of `+ 1-th level, i.e. x`+1, is erasure

message if its initial message from the channel is erasure message and all of its

children (check nodes) at level ` + 1 also send erasure messages. Moreover the

incoming messages are independent, hence

x`+1 = εydc−1
` (6.30)

These are the two DE equations for the BEC, and of course they can be merged

into a single one

x`+1 = ε(1− (1− x`)dc−1)dv−1 (6.31)

By definition, the outgoing message at level 0 is an erasure with probability

x0 = ε. Therefore, the erasure probability of the root of T which is connected to

dv check nodes of level t is

PBP,b(dv, dc, ε, t) = ε(1− (1− xt−1)dc−1)dv . (6.32)

In section 6.7 we will analyze the DE equation and draw conclusions for the

error probability of the BP decoder.

110 Coding: Belief Propagation

DE equations for general BMS channels

Luckily it turns out that exactly the same type of analysis works for general

BMS channels. The DE equations for the BEC (6.29), (6.30) are “polynomial

equations” relating probabilities x`, y` of the erasure messages. They also in-

volve the channel erasure probability ε For the general case, the DE equations

are “integral equations” relating two probability distributions for the messages

of type li→a and l̂a→i after a certain number of iterations. Besides they involve

the channel distribution c(h). we will pretend that all distributions have densi-

ties. This is not really true and it is important to take into account probability

distributions which are convex combinations of densities and point masses. How-

ever, practically, this makes no difference in the formalism except for introducing

technicalities that only serve to obscure the picture.

Not very surprisingly, the DE equations will involve two types of “convolution”

operations over probability distributions. The first one is the standard convolu-

tion. Let l1 and l2 be two independent random variables with distributions a1(l)

and a2(l); then their sum l = l1 + l2 is distributed as

(a1 ⊗ a2)(l) =

∫
R2

dl1a(l1)dl2a(l2)δ(l − (l1 + l2)) (6.33)

The second type of convolution is denoted by � and is given by the distribution

of l = atanh(tanh l1 tanh l2),

(a1 � a2)(l) =

∫
R2

dl1a(l1)dl2a(l2)δ(l − atanh(tanh l1 tanh l2)) (6.34)

It is clear that ⊗ convolution is commutative and associative and that the neutral

element is a(l) = δ(l). We leave it as an exercise to the reader to show that � is

also commutative, associative and that the neutral element is a(l) = ∆∞(l) the

unit mass at infinity. However the two operations do not “mix” well together in

the sense that (a1⊗ a2)� a3 6= a1⊗ (a2 � a3). Finally let us point out that if we

are willing to bring all the random variables into a different domain, then again

we can write the � operation as a usual convolution. We will not pursue this

further here. For our purpose it sufficies to know that there are computationally

efficient ways of computing these convolutions.

We are ready to derive the DE equations. Consider again the computation

tree Tt with height t, with the division into t + 1 levels, from 0 to t as before

(Fig. 6.2). Look at level ` + 1. At a variable node, the incoming messages are

independent (real valued) random variables sent by the dv − 1 children check

nodes. Let these messages be l̂1, . . . , l̂dv−1 and their common distribution y`(l̂).

The BP equations tell us that the outgoing message from the variable node to

the check node (both at level `+ 1) is

l = h+ l̂1 + · · ·+ l̂dv−1

Let x`+1(l) denote the probability distribution of the outgoing message. Since the

outgoing random variable is the sum of a fixed number of independent random

6.7 Analysis of DE Equations for the BEC 111

variables, the density of the outgoing random variable is the convolution of the

densities of the incoming random variables, i.e.,

x`+1 = c⊗ y⊗dv−1
` (6.35)

Here we use the notation y⊗dv−1
` for yl ⊗ · · · ⊗ yl convolved dv − 1 times. This

equation is the analog of (6.30). Now we seek an equation for y` in terms of x`. At

check nodes of level `+ 1 the incoming messages are dc− 1 independent random

variables coming from the children variable nodes of level `. Call the random

messages l1, · · · , ldc−1 and denote their probability distribution by x`(l). From

the BP equations the outgoing message from check nodes to the variable node

(both at level `+ 1) is

l̂ = atanh

(
dc−1∏
i=1

tanh li)

)
and we have for the probability densities

y` = x�dc−1
` (6.36)

As above, we use the notation x�dc−1
` for xl � · · · � xl convolved dc − 1 times.

This equation is the analog of (6.29).

Equations (6.35) and (6.36) are the DE equations for general BMS channel.

Combining them into a single equation yields the so-called density evolution

equation

xl+1 = c⊗ (x�dc−1
`)⊗dv−1 (6.37)

We can now compute the bit-wise probability of error of the BP decoder. In

the final step the BP algorithm computes teh loglikehood ratio associated to the

root node as a sum of all messages incoming from dv children check nodes plus

the one coming from the channel

l = h+ l1 + · · · ldv
Since all messages are independent on the computation tree the distribution of

l is equal to c⊗ (yt−1)⊗dv , or

c⊗ (x�dc−1
t−1)⊗dv (6.38)

From (6.24) and (6.21) we see that the errors come from the events sign(tanh l) =

−1, in other words l < 0. Thus

PBP,b(dv, dc, ε, t) =

∫ 0

−∞
dl (c⊗ (x�dc−1

t−1)⊗dv)(l) (6.39)

6.7 Analysis of DE Equations for the BEC

We have seen that the bit probability of error of the BP decoder (6.32) can be

computed from the DE recursions (6.31). We will show here that a threshold

112 Coding: Belief Propagation

phenomenon appears. Namely there is a noise threshold εBP, called the BP-

threshold, such that for ε < εBP the limit of PBP,b(dv, dc, ε, t) when the number

of iterations t → +∞ vanishes, while for ε > εBP this limit remains strictly

positive.

In order to compute limt→+∞ PBP,b(dv, dc, ε, t) we have to analyze the recur-

sion xt = f(ε, xt−1) where

f(ε, x) = ε(1− (1− x)dc−1)dv−1 (6.40)

and the initial condition is x0 = 1 (or equivalently x0 = ε). We ask whether the

sequence {xt} converges to 0 or not. In case it does, the decoding is successful,

otherwise it is not.

Note that the function f(ε, x) is increasing in ε and x for x, ε ∈ [0, 1]. This is

key to prove the following.

lemma 6.1 Let 2 ≤ dv ≤ dc and 0 ≤ ε ≤ 1. Let x0 = 1 and xt = f(ε, xt−1),

t ≥ 1. Then (a) The sequence {xt} is decreasing in t; (b) If ε ≤ ε′ then xt(ε) ≤
xt(ε

′).

Proof Let us first show thaat the sequence {xt} is decreasing. We use induction.

The first two elements of the sequence are x0 = 1 and x1 = f(ε, x0) = ε,

so x0 ≥ x1. Therefore, for t ≥ 2, we assume xt−1 ≤ xt−2 as the induction

hypothesis. Since f(ε, x) is increasing in x, we obtain f(ε, xt−1) ≤ f(ε, xt−2).

The left hand side is equal to xt, and the right hand side to xt−1, and we deduce

that xt ≤ xt−1. To prove the second claim, we use induction once more. Assume

that ε ≤ ε′. Then x1(ε) = ε ≤ ε′ = x1(ε). The general statement is deduced as

follows:

xt(ε) = f(ε, xt−1(ε)) ≤ f(ε′, xt−1(ε)) ≤ f(ε′, xt−1(ε′)) = xt(ε
′), (6.41)

where the first inequality follows from the fact that f(ε, x) is increasing in ε, and

the second inequality follows from it being increasing in x, together with the

induction hypothesis.

From the first part of the previous lemma, it follows that xt(ε) converges to a

limit in [0, 1], limt→+∞ xt(ε) = x∞(ε). From teh continuity of the function (6.40)

we conclude that the limit of the density eveolution iterations is a solution of

the fixed point equation

x∞(ε) = f(ε, x∞(ε)). (6.42)

From the second part of the lemma, it follows that if xt(ε) → 0 for some ε,

then xt(ε
′)→ 0 for all ε′ < ε. Let x∞(ε) = limt→∞ xt(ε). Then x∞(ε), as well as

the error probability

lim
t→+∞

PBP,b(dv, dc, ε, t) = ε(1− (1− x∞(ε))dv−1)dc , (6.43)

are increasing in ε as shown in Figure 6.3. Hence we can define the quantity

εBP = sup{ε : x∞(ε) = 0}

6.8 Analysis of DE equations for general BMS channels 113

Figure 6.3 Left: Monotonicity of x∞ as a function of ε. For dv ≥ 3, dc > dv, x∞ jumps
at the threshold. For dv = 2, dc > dv x∞ changes continuously at the threshold.
Right:The threshold εBP is the largest channel parameter so that f(ε, x)− x < 0 for
the whole range x ∈ [0, 1].

which we call the BP threshold.

There is a graphical way to characterize this threshold. Note that x∞(ε) is a

solution of the fixed point equation x = f(ε, x). Thus, if f(ε, x) − x < 0 for all

x ∈ [0, ε], then x∞(ε) = 0. For the converse, as soon as there is a fixed point

f(ε, x) = x in the interval]0, ε], we have that x∞ > 0. In fact it is easy to check

that this condition can be further simplified since there never can be a fixed

point in]ε, 1] as f(ε, x) < ε. Therefore, if f(ε, x) − x < 0 for all x ∈ [0, 1], then

x∞ = 0. For the converse, as soon as there is a fixed point f(ε, x) = x in the

interval]0, 1], we have that x∞(ε) > 0. This condition is graphically depicted in

Figure 6.3.

example 14 For the (3, 6)-regular ensemble, we get εBP ≈ 0.4294. Note that

the rate of this ensemble is R = 1 − dv
dc

= 1
2 . Therefore, the fraction 0.4294 has

to be compared to the erasure probability that an optimum code (say, a random

linear code) could tolerate, which is εShannon = 1 − R = 1
2 . We conclude that

already this very simple code, together with this very simple decoding procedure

can decode up to a good fraction of Shannon capacity.

6.8 Analysis of DE equations for general BMS channels

This section is not needed for the main development of these notes and can

be skipped in a first reading.

The elementary analysis for the BEC can be extended to the class of general

symmetric channels. Although the main ideas are the same, the functional nature

114 Coding: Belief Propagation

of the DE equation (6.37)

xt+1 = c⊗ f(c, xt), f(c, x) = c⊗ (x�dc−1)⊗dv−1 (6.44)

makes the analysis technically more challenging. Here we give a brief version of

the theory, and refer to ?? for a thorough development.

Ordering by degradation of symmetric distributions

The analysis for the BEC rests on the monotonicity in ε and x of the function

f(ε, x). We will need analogous properties for the functional on the right hand

side of the DE recursion (6.37). The key is to introduce a partial order relation

between distributions.

We already noted that the DE equations preserve the symmetry property of the

initial channel distribution. In other words when we initialize the DE recursion

with x0(l) = c(l), which satisfies the symmetry condition c(l) = e−2lc(−l), we

have for all t ≥ 1, xt+1(l) = e−2lxt(−l). For this reason, we may restrict ourselves

to the space of “symmetric distributions” satisfying a(l) = e−2la(−l).
Let Mk(a) =

∫
dla(l)(tanh l)k. It is not difficult to see that the symmetry

condition for a implies∫
dla(l)(tanh l)2k−1 =

∫
dla(l)(tanh l)2k (6.45)

for all integers k ≥ 1. Symmetric distributions can be entirely characterized by

their even moments: if two symmetric distributions a and b have the sam set

of even moments, M2k(a) = M2k(b), then they must be equal. Indeed, by the

symmetry condition their odd moments are also equal, and since all moments are

less than 1, Carleman’s criterion is satisfied; thus one can reconstruct a unique

measure from the set of even moments and a = b.

Let us now define ordering by degradation. We say that a2 is degraded with

respect to a1, and write a2 � a1 if an only if M2k(a2) ≤M2k(a1) for all k ∈ N∗.
The following example gives the intuitive meaning of this concept.

example 15 Consider the likelihood distribution of the BEC channel cε(h) =

εδ(h)+(1−ε)∆∞(h). Note that it is symmetric and that the moments are M2k =

M2k−1 = 1−ε for k ≥ 1. Take two channels cε1 and cε2 with ε2 > ε1. According to

our definition we have cε2 � cε1 because 1− ε2 < 1− ε1; in other words “cepsilon2

is degraded with respect to cε1” means that “cepsilon2
is more noisy than cε1”.

We leave it as an exercise to the reader to show that the same interpretation

applies to our other basic symmteric channels, the BSC and BAWGNC.

As a side remark note that we can associate a “symmetric channel” to any

symmetric distribution a. The idea is to think of the distribution as a the “likeli-

hood distribution” of some channel. Explicitely, The transition probability of the

channel can be explicitely calculated through the identities p(y|+ 1)dy = a(l)dl

and p(y|−1)dy = a(−l)dl where l = 1
2 ln p(y|+1)

p(y|+1) . There is a nice characterization

6.8 Analysis of DE equations for general BMS channels 115

of the relation a2 � a1 in terms of the associated channels p2(y|x) and p1(y|x).

Namely there exists a channel q(y|x) such that p2(z|x) =
∑
y q(z|y)p1(y|x). In

other words the channel associated to a2 is more noisy than the one associated

to a1.

Ordering by degradation is preserved under the two convolutions operations

⊗ and �. More precisely if a1 � a2 and b are symmetric distributions we have:

a2⊗ b � a1⊗ b, b⊗a2 � b⊗a1 and b�a2 � b�a1. The proof of these assertions

is the subject of an exercise.

Entropy distance, entropy functional and moment expansions

For the BEC, besides monotonicity of f(ε, x), an important ingredient was the

continuity of the function with respect to ε and x. Here we introduce a suitable

distance in the space of symmetric distributions that allows to prove analogous

statements. We do not wish to introduce sophisticated topological language here

and we proceed in a pedestrian way that will be sufficient for our purposes.

For any two symmetric distributions a and b define

d(a, b) =
∑
k≥1

|M2k(a)−M2k(b)|
2k(2k − 1)

(6.46)

It is easy to see that this is a well defined distance, i.e. it is symmetric, satisfies

the triangle inequality and vanishes if and only if a = b. We call it the entropy

distance because there is a natural relation with an entropy functional.

This entropy functional is defined as

H[x] =

∫
dl x(l) ln(1 + e−2l) (6.47)

This is precisely the Shannon entropy H(Y |X) corresponding to a symmetric

channel whose likelihood distribution is x(l). Using ln(1 + e−2l) = ln 2− ln(1 +

tanh l), expanding the logarithm in powers of tanhh, and using the equality of

even and odd moments we get the moment expansion

H[x] = ln 2−
+∞∑
k=1

M2k(x)

2k(2k − 1)
(6.48)

We now collect a few useful tricks that will allow to efficiently use these quan-

tities in the analysis of the DE recursion. By linearity of this entropy functional

H[a− b] = −
+∞∑
k=1

M2k(a)−M2k(b)

2k(2k − 1)
(6.49)

In particular when a � b we have M2k(a) < M2k(b) and therefore

d(a, b) = H[a− b], if a � b. (6.50)

116 Coding: Belief Propagation

The following inequalities are handy; for a � b and any x symmetric

H[x⊗ (a− b)] ≤ H[a− b], H[x� (a− b)] ≤ H[a− b] (6.51)

To prove the second inequality we use the moment expansion and the fact that

moments are multiplicative for the � operation, M2k(a� b) = M2k(a)M2k(b),

H[x� (a− b)] = −
+∞∑
k=1

M2k(x⊗ a)−M2k(x⊗ b)
2k(2k − 1)

=

+∞∑
k=1

M2k(x)
M2k(b)−M2k(a)

2k(2k − 1)

≤
+∞∑
k=1

M2k(b)−M2k(a)

2k(2k − 1)

= H[a− b]

The first inequality is less strightforward because the moments are not muti-

plicative for the usual convolution ⊗. But we can use the duality rule H((a −
b)⊗ (a′ − b′)) = −H((a− b) � (a′ − b′)) (see exercises) as follows

H[x⊗ (a− b)] = −H((x−∆∞)⊗ (a− b)] (6.52)

=

+∞∑
k=1

M2k(∆∞ − x)
M2k(b)−M2k(a)

2k(2k − 1)
(6.53)

=

+∞∑
k=1

(M2k(∆∞)−M2k(x))
M2k(b)−M2k(a)

2k(2k − 1)
(6.54)

≤
+∞∑
k=1

M2k(b)−M2k(a)

2k(2k − 1)
(6.55)

= H[a− b] (6.56)

Analysis of DE recursion and the BP threshold

Let us first prove that the functional f(c, x) on the right hand side of the DE

recursions (6.37), is “increasing” with respect to the distributions c and x. Since

ordering by degradation is preserved by convolution we obviously have f(c2, x) �
f(c1, x) when c2 � c1. Now, notice that if a2 � a1 and b2 � b1 then a2 ⊗ b2 �
a1 ⊗ b2 and a1 ⊗ b2 � a1 ⊗ b1, so also � a2 ⊗ b2 � a1 ⊗ b1. Generalizing, for

ai � bi, i = 1, . . . , n we have a1 ⊗ · · · ⊗ an � b1 ⊗ · · · ⊗ bn. The same statements

are true if we replace ⊗ by �. Thus for x2 � x1 we get x�dc−1
2 � x�dc−1

2 , and

then (x�dc−1
2)⊕dv−1 � (x�dc−1

2)⊕dv−1, and finaly f(c, x2) � f(c, x1).

Consider a family of channels cε parametrized by ε (for example a noise level).

We say that the family of channels is ordered by degradation when cε ≺ c′ε for

ε < ε′. The BEC, BEC or BAWGNC are three such families.

We are now ready to prove the analog of Lemma 6.1

6.8 Analysis of DE equations for general BMS channels 117

lemma 6.2 Let 2 ≤ dv ≤ dc and cε be family of channels ordered by degra-

dation. Let x0 = δ()̇ and xt = f(cε, xt−1), t ≥ 1. Then (a) The sequence of

distributions {xt} is decreasing in t in the sense xt+1 ≺ xt; (b) If cε ≺ cε′ then

xt(cε) ≺ xt(cε′).

Proof We first show the claims by induction. We have x0 = δ()̇ and x1 =

f(c, x0) = c, so x0 � x1. Therefore, for t ≥ 2, we assume xt−1 ≺ xt−2 as the

induction hypothesis. Since f(c, x) is increasing in x, we obtain f(c, xt−1) ≺
f(c, xt−2) and we deduce that xt ≺ xt−1. To prove the second claim assume that

cε ≺ cε′ . Then x1(cε) = cε ≺ cε′ = x1(cε′). The general statement is deduced

similarly to the case of the BEC: xt(cε) = f(cε, xt−1(cε)) ≺ f(cε′ , xt−1(cε)) ≺
f(cε′ , xt−1(cε′)) = xt(cε′).

From statement (a) of the Lemma of the Lemma says that DE iterations give

a ”decreasing” sequence of probability distributions x0 = δ()̇ � x1 = c � x2 �
· · · � xt � This means that for each k ≥ 1 we have an increasing sequence

of moments M2k(x0) = 0 < M2k(x1) = M2k(c) < M2k(x2) < . . .M2k(xt) < . . . ,

and since this sequence is bounded by 1, it converges to a real number in [0, 1].

Let m∞2k be the limits for each k ≥ 1. Since even and odd moments are equal, odd

moments also converge towards the same set of numbers m∞2k−1 = m∞2k. Since

|m∞k |−1/k ≥ 1 Carleman’s criterion, namely that
∑
k ≥ 1|m∞k |−1/k = +∞, is

satisfied thus the set of numbers {m∞k } are the moments of some probability

distribution x∞ with moments M2k−1(x∞) = M2k(x∞) = m∞2k−1 = m∞2k. To

summarize, we have xt → x∞ in the sense d(xt, x∞)→ 0.

lemma 6.3 The limiting distribution x∞ is a solution of the DE fixed point

equation x∞ = f(c, x∞).

Proof In the case of the BEC this statement was quite trivially obtained directly

from the continuity of f(ε, x). For general channels we use the tools introduced

in the previous paragraph. It is sufficient to show d(x∞, f(c, x∞)) = 0 because

then all moments of x∞ and f(c, x∞ are equal and by Carleman’s criterion the

two distributios must be equal. By the triangle inequality for any t,

d(x∞, f(c, x∞)) ≤ d(x∞, xt+1) + d(xt+1, f(c, xt)) + d(f(c, xt), f(c, x∞)) (6.57)

The second term vanishes because xt+1 = f(c, xt). We now argue that the lim-

its of the first and third terms when t → +∞ vanish. By construction of x∞,

limt→+∞M2k(xt) = Mx∞), which implies limt→+∞ d(x∞, xt+1) = 0 by domi-

nated convergence. To compute the limit of the third term we recall that xt � x∞

118 Coding: Belief Propagation

so

d(f(c, xt), f(c, x∞)) = H(f(c, xt)− f(c, x∞)

= H(c⊗ ((x�dc−1
t)⊗dv−1 − (x�dc−1

∞)⊗dv−1))

≤ H((x�dc−1
t)⊗dv−1 − (x�dc−1

∞)⊗dv−1)

= H((x�dc−1
t − x�dc−1

∞ + x�dc−1
∞)⊗dv−1 − (x�dc−1

∞)⊗dv−1)

=

dv−1∑
p=1

(
dv − 1

p

)
H((x�dc−1

t − x�dc−1
∞)⊗p ⊗ (x�dc−1

∞)⊗dv−1−p)

≤
dv−1∑
p=1

(
dv − 1

p

)
H(x�dc−1

t − x�dc−1
∞)

= (2dv−1 − 1)H(x�dc−1
t − x�dc−1

∞)

Each term of the last sum is estimated thanks to similar tricks,

H(x�dc−1
t − x�dc−1

∞) = H((xt − x∞ + x∞)�dc−1 − x�dc−1
∞)

=

dc−1∑
q=1

(
dc − 1

q

)
H((xt − x∞)�q � x�dc−1−q

∞)

≤ (2dc−1 − 1)H((xt − x∞))

Putting these results together we obtain the simple inequality

d(f(c, xt), f(c, x∞)) ≤ (2dv−1 − 1)(2dc−1 − 1)H((xt − x∞))

= (2dv−1 − 1)(2dc−1 − 1)d(xt, x∞)

which implies (by an argument above) limt→+∞ d(f(c, xt), f(c, x∞)) = 0.

From statement (b) of the lemma, it follows that if xt(cε)→ ∆∞ (in the sense

that d(xt,∆∞)→ 0) for a channel cε, then xt(cε′)→ ∆∞ for a less noisy channel

cε′ ≺ cε. Hence we can define a BP threshold as

εBP = sup{ε : x∞(ε) = ∆∞}

Not surprisingly (with a bit more work) one can show that the DE fixed point

allows to calculate the probability of error

lim
t→+∞

PBP,b(dv, dc, ε, t) =

∫ 0

−∞
dl (cε ⊗ (x�dc−1

∞)dv)(l), (6.58)

For ε < εBP we have x∞ = ∆∞ which yields a vanishing probability of error. It

is also possible to show that above εBP this is an increasing function of ε.

Examples

In your homework you will implement DE for the (3, 6)-ensemble and the AWGNC.

You will then be able to compare your prediction to the predictions which

6.9 Exchange of limits 119

you previously derived by running simulations of the BP algorithm and the

BAWGNC.

If we consider e.g., the BSC, then DE predicts a threshold for the (3, 6)-

ensemble of εBP = 0.084. This means that as long as the channel introduces

fewer than 8.4 percent errors, the BP decoder will with high probability be able

to recover the correct codeword from the received word. Note that for rate one-

half the maximum number of errors which a capacity-achieving code can tolerate

is around 11 percent. So we see that, as for the BEC, the simple (3, 6)-regular

ensemble achieves a good fraction of capacity under BP decoding.

6.9 Exchange of limits

At this point you might be slightly worried. We have defined density evolution

by looking at the erasure fraction which remains after ` iterations when we take

the blocklength to infinity. Subsequently we have analyzed DE by looking what

happens if we take more and more iterations. In short, we have looked at the

limit lim`→∞ limn→∞.

This is certainly a valid limit, but if the implication is sensitive to the order in

which we take the limit then one might worry how well experiments for “prac-

tical length” of lets say thousands of bits to hundreds of thousands of bits and

“practical number of iterations” lets say dozens to hundreds of iterations might

fit the theory. At least for the BEC there is a fairly simple and straightforward

analytic answer – the limit is the same regardless of the order and can also be

taken jointly as long as both quantities tend to infinity!

We will not prove this result here. The key is to consider the converse limit

limn→∞ lim`→∞ and to prove that it gives the same result. Note that due to

the special nature of the BEC, the performance is monotonically decreasing in

the number of iterations (things only can get better if we perform further itera-

tions). From this basic observation we can deduce the following: Let `(n) be any

increasing function so that `(n) tends to infinity if n tends to infinity. Then, for

any channel parameter ε, the error probability under the limit limn→∞ lim`→∞
is no larger than the error probability under the joint limit when ` = `(n), which

in turn is no larger than the error probability under the limit lim`→∞ limn→∞.

If now we can show that the two extreme cases have the same limit, then any

joint limit also has this same limit.

For the BEC the limit limn→∞ lim`→∞ can in fact be analyzed and this is

what was done in [?]. The technique is to use the so-called Wormald method, a

method which we will encounter soon when we will analyze simple algorithms to

solve the K-SAT problem.

For the general case the situation is more complicated. Experiments and “com-

putations” show that also in the general case the limit does not depend on the

order. But in order to show this rigorously one currently has to impose some

further constraints on the ensemble, see ??.

120 Coding: Belief Propagation

6.10 BP versus MAP thresholds

This is a good point to make a small digression on issues that are treated in

detail in part III. In the language of statistical mechanics the BP threshold

corresponds to a dynamical phase transition in the sense that we have here a

sharp change in behavior of the algorithm. The MAP probability of error also

displays a threshold behavior (in the limit of infinite block length), i.e it vanishes

for ε < εMAP and is strictly positive for ε > εMAP. Clearly we always have εBP <

εrmMAP since the MAP decoder is the one among all decoders that minimizes

the error probability. There is an important conceptual difference between the

two thresholds. The MAP threshold can also be shown to be a singularity of

the (infinite block-length) Shannon conditional entropy limn→+∞
1
nE[H(X|Y)]

(or in view of (??)) of the free energy in thermodynamic limit. This entropy is

a continuous convex function of ε which vanishes for ε ≤ εMAP and is strictly

positive for ε > εMAP. In this sense, this threshold coresponds to a static phase

transition in teh sense introduced in Chapters ?? and ??. We stress here that

the infinite block-length Shannon conditionnal entropy has no singularity at the

BP threshold: dynamical thresholds related to algorithms are not visible on free

energies. Very interestingly, and perhaps surprisingly from the point of view of

coding at least, although the MAP and BP phase transitions are of a different

conceptual nature, they are deeply related. In particular we will see in Part III

that one can also compute the MAP threshold and probability of error from the

DE equations!

Problems

6.1 Belief Propagation for (3, 6) Ensemble and AWGN Channel. In the

first homework you have implemented a program which can generate random

elements from a regular Gallager ensemble. We will now use this, together with

the message-passing algorithm discussed in class, to simulate transmission over

a BAWGN channel.

We will use elements from the (3, 6)-ensemble of length n = 1024. For every

codeword we send we generate a new code. This way we get the so called en-

semble average. As discussed in class last week, when transmitting with a binary

linear code over a symmetric channel, we can in fact assume that the all-zero

(in 0/1 notation) codeword was sent since the error probability is independent

of the transmitted codeword. This simplifies our life since we do not need to im-

plement an encoder. We assume that we send the codeword over a binary-input

additive white Gaussian noise channel. More precisely, the input is ±1 (with

the usual mapping). The channel adds to each component of the codeword an

independent Gaussian random variable with zero mean and variance σ2. At the

receiver implement the message-passing decoder discussed in class. It is typically

easiest to do the computations with likelihoods. Since a random element from

the (3, 6) ensemble typically does not have a tree-like factor graph the scheduling

of the messages is important. To be explicit, assume that we use a parallel sched-

6.10 BP versus MAP thresholds 121

ule. This means, we start by sending all initial messages from variable nodes to

check nodes. We then process these messages and send messages back from check

nodes to all variable nodes. This is one iteration. For each codeword perform 100

iterations and then make the final decision for each bit.

Plot the negative logarithm (base 10) of the resulting bit error probability as a

function of the capacity of the BAWGN channel with variance σ2. This capacity

does not have a closed form but can be computed by means of the numerical

integral

C(σ2) =

∫ 1

−1

σ√
2π(1− y2)

e−
(1−σ2 tanh−1(y))2

2σ2 log2(1 + y)dy.

If the code and the decoder where optimal and the length of the code were infi-

nite, where should you see the phase transition (rapid decay of error probability)?

6.2 Gallager Algorithm A. In class we discussed the BP algorithm which

is the “locally optimal” message-passing algorithm. One of its downsides in a

practical application is that it requires the exchange of real numbers. Hence,

in any implementation messages are quantized to a fixed number of bits. One

way to think of such a quantized algorithm is that the message represents an

“approximation” of the underlying message that BP would have sent.

Assume that we are limited to exchange messages consisting of a single bit.

Recall that for BP a positive message means that our current estimate of the

associated bit is +1, whereas a negative message means that our current estimate

is −1 (the magnitude of the BP message conveys our certainty). So we can think

of a message-passing algorithm which is limited to exchange messages consisting

of a single bit, as exchanging only the sign of their estimate.

The best known such algorithm (and historically also the oldest) is Gallager’s

algorithm A. It has the following message passing rules.

We assume that the codewords and the received word have components in

{0, 1}.
(i) Initialization: In the first iteration send out the received bits along all edges

incident to a variable node.

(ii)Check Node Rule: At a check node send out along edge e the XOR of the

incoming messages (not counting the incoming message along edge e).

(iii)Variable Node Rule: At a variable node. Send out the received value along

edge e unless all incoming messages (not counting the incoming message

on edge e) all agree in their value. Then send this value.

Assume that transmission takes place over the BSC(p) and that we are using

a (3, 6)-regular Gallager ensemble. Write down the density evolution equations

for the Gallager algorithm A.

6.3 Density Evolution via Population Dynamics. In class we have seen

the density evolution (DE) for transmission over the BEC. This was relatively

easy since in this case the “densities” are in fact numbers (erasure probabilities).

122 Coding: Belief Propagation

For general channels, DE is more involved since it really involves the evolution of

densities. These are the densities of messages which you would see at the various

iterations if you implemented the BP message-passing decoder on an infinite

ensemble for a fixed number of iterations.

An quick and dirty way of implementing DE for general channels is by means of

a population dynamics approach. Here is how this works. Assume that transmis-

sion takes place over a given BMS channel and that we are using the (l, r)-regular

Gallager ensemble. Pick a population size N . The larger N the more accurate

will be your result but the slower it will be.

(i) Pick an initial population, call it V0. This set consists of N iid log-likelihoods

associated to the given BMS channel, assuming that the transmitted bit is

1 (we are using spin notation here). More precisely, each sample is created

in the following way. Sample Y according to p(y | x = 1). Compute the

corresponding log-likelihood value, call it L.

(ii)Starting with ` = 1, where ` denotes the iteration number, compute now the

densities corresponding to the `-th iteration in the following way.

(iii)To compute C` proceed as follows. Create N samples iid in the following way.

For each sample, call it Y , pick r−1 samples from C`−1 with repetitions. Let

these samples be namedX1, . . . , Xr−1. Compute Y = 2 tanh−1(
∏r−1
i=1 tanh(Xi/2)).

Note, these are exactly the message-passing rules at a check node.

(iv)To compute V` proceed as follows. Create N samples iid in the following way.

For each sample, call it Y , pick l − 1 samples from C` with repetitions.

Let these samples be named X1, . . . , Xl−1. Further, pick a sample from

V0, call it C. Compute Y = C +
∑l−1
i=1Xi. Note, these are exactly the

message-passing rules at a variable node.

We think now of each set V` and C` as a sample of the corresponding distribu-

tion. E.g., in order to construct this distribution approximately we might use a

histogram applied to the set. Recall, that we assume here the all-zero codeword

assumption. Hence, in order to see whether this experiments corresponds to a

successful decoding, we need to check whether in V` all samples have positive

sign and magnitude which converges (in `) to infinity.

Implement the population dynamics approach for transmission over the BAWGNC(σ)

channel using the (3, 6)-regular Gallager ensemble. Estimate the threshold using

this method. Plot the threshold on the same plot as the simulation results which

you performed for your last homework. Hopefully this vertical line, indicating

the threshold, is somewhere around where the error probability curves show a

sharp drop-off.

