ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 10 Homework 10 Statistical Physics for Communication and Computer Science May 13, 2015

Problem 1 (Statistics of AMP and IST un-threshoded estimates). Consider a sparse signal \underline{x}_0 with n iid components distributed as $(1 - \epsilon)\delta(x_0) + \frac{\epsilon}{2}\delta(x - 1) + \frac{\epsilon}{2}\delta(x + 1)$. Generate m noisy measurements $\underline{y} = \frac{1}{\sqrt{m}}\tilde{A}\underline{x} + \underline{z}$ where \tilde{A}_{ai} are iid uniform in $\{+1, -1\}$ and z_a are iid Gaussian zero mean and variance σ^2 .

Consider the AMP iterations

$$\begin{cases} \hat{x}_i^{(t+1)} = \eta(\hat{x}_i^{(t)} + \frac{1}{\sqrt{m}} \sum_{b=1}^m \tilde{A}_{bi} r_b^t; \theta^{(t)}), \\ r_a^{(t)} = y_a - \frac{1}{\sqrt{m}} \sum_{j=1}^n \tilde{A}_{aj} \hat{x}_j^{(t-1)} + r_a^{t-1} \frac{\|\hat{x}^{(t)}\|_0}{m}, \end{cases}$$

with the choice $\theta^{(t)} = \alpha \|\underline{r}^{(t)}\|_2 / \sqrt{m}$. In class we derived through heuristic means that the *i*-th component, given \underline{x}_0 , of the un-thresholded estimate

$$\hat{x}_i^{(t)} + \frac{1}{\sqrt{m}} \sum_{b=1}^m \tilde{A}_{bi} r_b^{(t)},$$

has Gaussian statistics. The mean is x_{0i} and the variance $\sigma^2 + (\tilde{\tau})^{(2)}$ where $(\tilde{\tau})^{(2)} = \|\underline{x}^{(t)} - \underline{x}_0\|_2^2/n$.

Perform an experiment to check this numerically. Compute also the statistics of the un-thresholded estimate for the IST iterations, i.e. when the Onsager term $r_a^{t-1} \frac{\|\hat{x}^{(t)}\|_0}{m}$ is removed. Compare the two histograms.

Indications: Fix a signal realization \underline{x}_0 . Try n=4000, m=2000, $\epsilon=0.125$ and 40 instances for A and \underline{z} . Try various values for σ and α . Look at the *i*-th components of the un-thresholded estimate for components such that say $x_{0i}=+1$ (or -1, or 0).