ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 17
Principles of Digital Communications
Midterm Solutions
Apr. 17, 2015

Solution 1.

(a) With the observation Y being Y_{2},

$$
f_{Y \mid X}(y \mid+1)=\frac{1}{\sqrt{2 \pi}} \exp \left(-(y-1)^{2} / 2\right) \quad \text { and } \quad f_{Y \mid X}(y \mid-1)=\frac{1}{\sqrt{2 \pi}} \exp \left(-(y+1)^{2} / 2\right)
$$

Thus the MAP rule will decide +1 or -1 according to $p \exp \left(-(y-1)^{2} / 2\right)$ or $(1-$ p) $\exp \left(-(y+1)^{2} / 2\right)$ being larger. This can be implemented simply by comparing y to the threshold $\frac{1}{2} \log [(1-p) / p]$ and deciding +1 if y is larger, and -1 otherwise.
(b) Observe that

$$
\begin{aligned}
& f_{Y_{1} Y_{2} \mid X}\left(y_{1}, y_{2} \mid+1\right)=\frac{1}{2} \mathbf{1}\left\{y_{1} \in[0,2]\right\} \frac{1}{\sqrt{2 \pi}} \exp \left(-\left(y_{2}-1\right)^{2} / 2\right) \\
& f_{Y_{1} Y_{2} \mid X}\left(y_{1}, y_{2} \mid-1\right)=\frac{1}{4} \mathbf{1}\left\{y_{1} \in[-3,1]\right\} \frac{1}{\sqrt{2 \pi}} \exp \left(-\left(y_{2}+1\right)^{2} / 2\right)
\end{aligned}
$$

With

$$
\begin{aligned}
g_{+1}\left(u, y_{2}\right) & =\frac{1}{2} \boldsymbol{1}\{u \geq 0\} \frac{1}{\sqrt{2 \pi}} \exp \left(-\left(y_{2}-1\right)^{2} / 2\right) \\
g_{-1}\left(u, y_{2}\right) & =\frac{1}{4} \boldsymbol{1}\{u \leq 0\} \frac{1}{\sqrt{2 \pi}} \exp \left(-\left(y_{2}+1\right)^{2} / 2\right) \\
h\left(y_{1}, y_{2}\right) & =\mathbf{1}\left\{-3 \leq y_{1} \leq 2\right\}
\end{aligned}
$$

we find $f_{Y_{1} Y_{2} \mid X}\left(y_{1}, y_{2} \mid x\right)=g_{x}\left(u, y_{2}\right) h\left(y_{1}, y_{2}\right)$ and the Fisher-Neyman theorem lets us conclude that $t=\left(u, y_{2}\right)$ is a sufficient statistic.
(c) The MAP rule minimizes the error probability and is given by the likelihood ratio test

$$
\Lambda\left(y_{1}, y_{2}\right)=\log \frac{f_{Y_{1} Y_{2} \mid X}\left(y_{1}, y_{2} \mid+1\right)}{f_{Y_{1} Y_{2} \mid X}\left(y_{1}, y_{2} \mid-1\right)} \sum_{-1}^{+1} \log \frac{1-p}{p}
$$

Note that

$$
\Lambda\left(y_{1}, y_{2}\right)= \begin{cases}+\infty & 1<y_{1} \leq 2 \\ 2 y_{2}+\log 2 & 0 \leq y_{1} \leq 1 \\ -\infty & -3 \leq y_{1}<0\end{cases}
$$

So the decision region looks as follows (with $\theta=\frac{1}{2} \log \frac{1-p}{2 p}$):

(d) When -1 is sent an error will happen either when $y_{1}>1$ or when $0 \leq y_{1} \leq 1$ and $y_{2} \geq \theta$. The first of these cannot happen, and the second happens with probability $\frac{1}{4} Q(1+\theta)$.
When +1 is sent an error will happen either when $y_{1}<0$ or when $0 \leq y_{1} \leq 1$ and $y_{2} \leq \theta$. The first of these cannot happen, and the second happens with probability $\frac{1}{2} Q(1-\theta)$.
So the error probability is given by

$$
\frac{1-p}{4} Q(\theta+1)+\frac{p}{2} Q(1-\theta)
$$

with $\theta=\frac{1}{2} \log \frac{1-p}{2 p}$.
Solution 2. Note that the decision statistic Y is given by

$$
Y= \begin{cases}(w * h)\left(t_{0}\right)+Z & 1 \text { is sent } \\ Z & 0 \text { is sent }\end{cases}
$$

where $Z=(N * h)\left(t_{0}\right)$ is $\mathcal{N}\left(0,\|h\|^{2}\right)$.
(a) With the given choice of $h(t)$ and t_{0} we see find $(w * h)\left(t_{0}\right)=1 / 6$ and $\|h\|^{2}=4 / 3$, so the decision statistic Y is given by

$$
Y= \begin{cases}1 / 6+Z & 1 \text { is sent } \\ Z & 0 \text { is sent }\end{cases}
$$

and the ML rule will compare Y to the threshold $1 / 12$. The resulting error probability is then $Q(1 /(12\|h\|))=Q(\sqrt{3} / 24)$.
(b) Yes. With the choice $t_{0}=4$ we would be implementing the matched filter which we know to be optimal. Indeed the decision statistic will be

$$
Y= \begin{cases}4 / 3+Z & 1 \text { is sent } \\ Z & 0 \text { is sent }\end{cases}
$$

with Z as above, and the error probability will be $Q((2 / 3) /\|h\|)=Q(1 / \sqrt{3})$.
(c) With this new choice of $h(t)$ and t_{0} we find $(w * h)\left(t_{0}\right)=1$ and $\|h\|^{2}=2$. The ML rule will then compare Y to the threshold $1 / 2$ and the resulting error probability will be $Q(1 /(2\|h\|))=Q(1 / \sqrt{8})$.
(d) Similar to the idea in Homework 6 Problem 1, we can sample the filter output at instants $t_{0}=2$ and $t_{1}=4$ and subtract them from each other. The resulting decision statistic will be

$$
Y= \begin{cases}2+Z & 1 \text { is sent } \\ Z & 0 \text { is sent }\end{cases}
$$

with Z being $\mathcal{N}(0,4)$. The resulting error probability will be $Q(1 / 2)$.

Solution 3.

(a) On this basis the representations of the signals are $c_{1}=\left[\begin{array}{llll}2 & 0 & 0 & 2\end{array}\right], c_{2}=\left[\begin{array}{llll}0 & 2 & 2 & 0\end{array}\right]$, $c_{3}=\left[\begin{array}{llll}2 & 0 & 2 & 0\end{array}\right], c_{4}=\left[\begin{array}{llll}0 & 2 & 0 & 2\end{array}\right]$.
(b) (2 pts) The union bound is expressed in terms of the pairwise distances $d_{i j}$ between the signals as

$$
P(\text { error } \mid i) \leq \sum_{j \neq i} Q\left(d_{i j} / 2 \sigma\right) .
$$

From (a) we observe that $d_{12}^{2}=d_{34}^{2}=16, d_{13}^{2}=d_{14}^{2}=d_{23}^{2}=d_{24}^{2}=8$ as we obtain

$$
P(\operatorname{error} \mid i) \leq 2 Q\left(2 / \sqrt{N_{0}}\right)+Q\left(2 \sqrt{2} / \sqrt{N_{0}}\right)
$$

Since the right hand side is the same for each i it also bounds the average error probability.
(c) To obtain the minimum energy constellation we need to subtract from each signal $\left[w_{1}(t)+w_{2}(t)+w_{3}(t)+w_{4}(t)\right] / 4=\mathbf{1}\{0 \leq t \leq 4\}$. The resulting signals look exactly as the original ones except for being shifted down by 1 unit.
(d) Note that in the new signal set $\tilde{w}_{2}(t)=-\tilde{w}_{1}(t)$ and $\tilde{w}_{4}(t)=-\tilde{w}_{3}(t)$. Furthermore the signals $\tilde{w}_{1}(t)$ and $\tilde{w}_{3}(t)$ are orthogonal. Thus the new signal space is two dimensional, and the Gram-Schmidt procedure will produce the orthonormal basis $\tilde{\psi}_{1}(t)=\frac{\tilde{w}_{1}(t)}{\left\|\tilde{w}_{1}\right\|}=$ $\frac{1}{2} \tilde{w}_{1}(t)$ and $\tilde{\psi}_{2}(t)=\frac{\tilde{w}_{3}(t)}{\left\|\tilde{w}_{3}\right\|}=\frac{1}{2} \tilde{w}_{3}(t)$.
(e) The new signal set in the new basis is represented by $\tilde{c}_{1}=[+20], \tilde{c}_{2}=[-20]$, $\tilde{c}_{3}=[0+2], \tilde{c}_{4}=[0-2]$ and thus is the 4-QAM signal set (rotated by 45 degrees). The error probability of this set is

$$
P(\text { error })=1-\left[1-Q\left(2 / \sqrt{N_{0}}\right)\right]^{2}=2 Q\left(2 / \sqrt{N_{0}}\right)-Q\left(2 / \sqrt{N_{0}}\right)^{2}
$$

(f) Since translations of a signal set do not change the probability of error, the probability of error of the receiver in (b) is equal to the result we found in (e).

