ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 20
Principles of Digital Communications
Solutions to Problem Set 8
Apr. 28, 2015

Solution 1.

(a) In this case all components of Y except the first will contain only white Gaussian noise:

$$
\begin{aligned}
Y_{1} & =\sqrt{\mathcal{E}}+Z_{1} \\
\forall j=2, \ldots, m, Y_{j} & =Z_{j}, \quad Z_{j} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
\end{aligned}
$$

(b) This is the event that the receiver declares $\hat{H}=1$, since only Y_{1} is larger than the threshold.
(c)

$$
\begin{aligned}
P_{e}=\operatorname{Pr}\left\{\left(E_{1} \cap E_{2}^{c} \cap E_{3}^{c} \cap \ldots \cap E_{m}^{c}\right)^{c}\right\} & =\operatorname{Pr}\left\{E_{1}^{c} \cup E_{2} \cup E_{3} \cup \ldots \cup E_{m}\right\} \\
& \leq Q\left(\frac{(1-\alpha) \sqrt{\mathcal{E}}}{\sigma}\right)+(m-1) Q\left(\frac{\alpha \sqrt{\mathcal{E}}}{\sigma}\right),
\end{aligned}
$$

where the inequality follows from the union bound.
(d) Taking the hints given in the problem, the above expression can be written as:

$$
\begin{aligned}
P_{e} & \leq \frac{1}{2}\left(e^{-\frac{(1-\alpha)^{2} \varepsilon}{2 \sigma^{2}}}+e^{\ln m} e^{-\frac{\alpha^{2} \varepsilon}{2 \sigma^{2}}}\right) \\
& =\frac{1}{2}\left(e^{-\frac{(1-\alpha)^{2} \varepsilon}{2 \sigma^{2}}}+e^{\ln m\left(1-\frac{\varepsilon_{b}}{2 \sigma^{2}} \alpha^{2} \log _{2} e\right)}\right) .
\end{aligned}
$$

The first term in the sum goes to zero as \mathcal{E} grows, but the second term only diminishes if $1-\frac{\mathcal{E}_{b}}{2 \sigma^{2}} \alpha^{2} \log _{2} e<0$, i.e., if

$$
\frac{\mathcal{E}_{b}}{\sigma^{2}}>\frac{2 \ln 2}{\alpha^{2}} .
$$

Solution 2. First we compute T_{s}, which is the duration of one bit:

$$
T_{s}=\frac{1}{1 \mathrm{Mbps}}=10^{-6} \mathrm{~s} .
$$

Now, we can calculate the energy of the signal (i.e., the energy per bit), which is the same for every j :

$$
\mathcal{E}_{b}=b^{2} T_{s}
$$

The bit error probability is given by $Q\left(\frac{\sqrt{\mathcal{E}_{b}}}{\sigma}\right)$. In our case $\sigma=\sqrt{N_{0} / 2}=10^{-1}$, thus we need to solve

$$
10^{-5}=Q\left(\frac{b 10^{-3}}{10^{-1}}\right)=Q\left(b 10^{-2}\right)
$$

hence $b=Q^{-1}\left(10^{-5}\right) \times 10^{2} \approx 426.5$.

Solution 3.

(a) There are various possibilities to choose an orthogonal basis. One is $\phi_{1}(t)=\frac{w_{0}(t)}{\left\|w_{0}\right\|}=$ $\sqrt{\frac{1}{T_{s}}} w_{0}(t)$ and $\phi_{2}(t)=\frac{w_{2}(t)}{\left\|w_{2}\right\|!}=\sqrt{\frac{1}{T_{s}}} w_{2}(t)$. Another choice, that we prefer and will be our choice in this solution is

$$
\begin{aligned}
& \psi_{1}(t)=\sqrt{\frac{2}{T_{s}}} \mathbb{1}_{\left[0, \frac{T_{s}}{2}\right]}(t) \\
& \psi_{2}(t)=\sqrt{\frac{2}{T_{s}}} \mathbb{1}_{\left[\frac{T_{s}}{2}, T_{s}\right]}(t) .
\end{aligned}
$$

With the latter choice the signal space (shown in the figure below) is

$$
\begin{array}{ll}
w_{0}=\sqrt{\frac{T_{s}}{2}}(1,1)^{\top} & w_{2}=\sqrt{\frac{T_{s}}{2}}(1,-1)^{\top} \\
w_{1}=\sqrt{\frac{T_{s}}{2}}(-1,-1)^{\top} & w_{3}=\sqrt{\frac{T_{s}}{2}}(-1,1)^{\top}
\end{array}
$$

(b) $U_{0} \in\{ \pm 1\}$ and $U_{1} \in\{ \pm 1\}$ are mapped into

$$
U_{0} \sqrt{\frac{T_{s}}{2}} \psi_{1}(t)+U_{1} \sqrt{\frac{T_{s}}{2}} \psi_{2}(t)
$$

The mapping is shown here:

The mapping is such that neighboring points differ by one bit. This minimizes the biterror probability since when we make an error chances are that we choose a neighbor of the correct symbol. Notice that we may decode each bit independently. In fact the first bit is decoded to a 1 iff the observation is to the right of the vertical axis and the second bit is 1 iff it is above the horizontal axis. The bit error probability is therefore

$$
P_{b}=Q\left(\frac{\sqrt{T_{s} / 2}}{\sqrt{N_{0} / 2}}\right)=Q\left(\sqrt{\frac{T_{s}}{N_{0}}}\right) .
$$

(c) Notice that $\psi_{2}(t)=\psi_{1}\left(t-\frac{T_{s}}{2}\right)$. Hence one matched filter is enough. The receiver block diagram is as follows:

(d) $\mathcal{E}_{b}=\frac{\mathcal{E}_{s}}{2}=\frac{T_{s}}{2}$ and the power is $\frac{\mathcal{E}_{s}}{T_{s}}=1$.

Solution 4.
(a) The average energy is

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|w_{i}(t)\right|^{2} d t & =\frac{2 \mathcal{E}}{T} \int_{0}^{T} \cos ^{2}\left(2 \pi\left(f_{c}+i \Delta f\right) t\right) d t \\
& =\frac{2 \mathcal{E}}{T}\left[\frac{t}{2}+\frac{\sin \left(2 \pi\left(f_{c}+i \Delta f\right) t\right) \cos \left(2 \pi\left(f_{c}+i \Delta f\right) t\right)}{4 \pi\left(f_{c}+i \Delta f\right)}\right]_{0}^{T}=\mathcal{E}
\end{aligned}
$$

(b) Orthogonality requires

$$
\mathcal{E} \frac{2}{T} \int_{0}^{T} \cos \left(2 \pi\left(f_{c}+i \Delta f\right) t\right) \cos \left(2 \pi\left(f_{c}+j \Delta f\right) t\right) d t=0
$$

for every $i \neq j$. Using the trigonometric identity $\cos (\alpha) \cos (\beta)=\frac{1}{2} \cos (\alpha+\beta)+$ $\frac{1}{2} \cos (\alpha-\beta)$, an equivalent condition is

$$
\frac{\mathcal{E}}{T} \int_{0}^{T}\left[\cos (2 \pi(i-j) \Delta f t)+\cos \left(2 \pi\left(2 f_{c}+(i+j) \Delta f\right) t\right)\right] d t=0 .
$$

Integrating we obtain

$$
\frac{\mathcal{E}}{T}\left[\frac{\sin (2 \pi(i-j) \Delta f T)}{2 \pi(i-j) \Delta f}+\frac{\sin \left(2 \pi\left(2 f_{c}+(i+j) \Delta f\right) T\right)}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right)}\right]=0 .
$$

As $f_{c} T$ is assumed to be an integer, the result can be simplified to

$$
\frac{\mathcal{E}}{T}\left[\frac{\sin (2 \pi(i-j) \Delta f T)}{2 \pi(i-j) \Delta f}+\frac{\sin (2 \pi(i+j) \Delta f T)}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right)}\right]=0 .
$$

As i and j are integer, this is satisfied for $i \neq j$ if and only if $2 \pi \Delta f T$ is an integer multiple of π. Hence, we obtain the minimum value of Δf if $2 \pi \Delta f T=\pi$ which gives $\Delta f=\frac{1}{2 T}$.
(c) Proceeding similarly, we will have orthogonality if and only if

$$
\begin{aligned}
\frac{\mathcal{E}}{T}\left[\frac{\sin \left(2 \pi(i-j) \Delta f T+\theta_{i}-\theta_{j}\right)-\sin \left(\theta_{i}-\theta_{j}\right)}{2 \pi(i-j) \Delta f}\right. & \\
& \left.+\frac{\sin \left(2 \pi(i+j) \Delta f T+\theta_{i}+\theta_{j}\right)-\sin \left(\theta_{i}+\theta_{j}\right)}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right)}\right]=0 .
\end{aligned}
$$

In this case we see that both parts become zero if and only if $2 \pi \Delta f T$ is an even multiple of π, meaning that the smallest Δf is $\Delta f=\frac{1}{T}$ which is twice the minimum frequency separation needed in the previous part. Hence, the cost of phase uncertainty is a bandwidth expansion by a factor of 2 .
(d) The condition for essential orthogonality is that

$$
\frac{\mathcal{E}}{T}\left[\frac{\sin \left(2 \pi(i-j) \Delta f T+\theta_{i}-\theta_{j}\right)-\sin \left(\theta_{i}-\theta_{j}\right)}{2 \pi(i-j) \Delta f}\right] \quad\left[\begin{array}{l}
+\frac{\mathcal{E}}{T}\left[\frac{\sin \left(2 \pi\left(2 f_{c}(i+j) \Delta f T\right)+\theta_{i}+\theta_{j}\right)-\sin \left(\theta_{i}+\theta_{j}\right)}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right)}\right]
\end{array}\right.
$$

is small compared to the signal's energy \mathcal{E}. The first term vanishes if $\Delta f=\frac{1}{T}$. The second term is very small compared to \mathcal{E} if $f_{c} T \gg 1$.
(e) We have m signals separated by Δf. The approximate bandwidth is $m \Delta f$. This means bandwidth $\frac{2^{k}}{2 T}$ without random phase, and bandwidth $\frac{2^{k}}{T}$ with random phase. We see that in both cases, $W T$ is proportional to 2^{k}, i.e. it grows exponentially with k.

Solution 5.
(a) The block diagram is shown below.

(b) Given $A=a$, the distance of signals is $2 a \sqrt{\mathcal{E}_{b}}$, hence

$$
P_{e}(a)=Q\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)
$$

(c)

$$
P_{f}=\mathbb{E}\left[P_{e}(A)\right]=\int_{0}^{\infty} Q\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right) 2 a e^{-a^{2}} d a
$$

We integrate by parts, noting that $\int 2 a e^{-a^{2}} d a=-e^{-a^{2}}$:

$$
P_{f}=-\left.Q\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right) e^{-a^{2}}\right|_{0} ^{\infty}+\int_{0}^{\infty} Q^{\prime}\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right) e^{-a^{2}} d a
$$

Taking the derivative of an integral with respect to the lower boundary gives the negative of the value of the integrand evaluated at the lower boundary, i.e.

$$
Q^{\prime}(x)=-\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

Thus, for the derivative of $Q\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)$ with respect to a, we can write

$$
\frac{d}{d a} Q\left(a \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)=-\frac{1}{\sqrt{2 \pi}} e^{-\frac{a^{2} \mathcal{E}_{b}}{N_{0}}} \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}
$$

Plugging this in, we find

$$
P_{f}=\frac{1}{2}-\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}} e^{-a^{2}\left(\frac{\mathcal{E}_{b}}{N_{0}}+1\right)} d a
$$

which we now reshape to make it an integral over a Gaussian density, as follows:

$$
P_{f}=\frac{1}{2}-\sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}} \frac{1}{\sqrt{2\left(\frac{\mathcal{E}_{b}}{N_{0}}+1\right)}} \int_{0}^{\infty} \frac{1}{\sqrt{\left(\frac{\pi}{N_{b}}+1\right)}} \exp \left(-\frac{a^{2}}{2 \frac{1}{2\left(\frac{\varepsilon_{b}}{N_{0}}+1\right)}}\right) d a
$$

Now, it is clear that the integral evaluates to one half (since the integral is only over half of the real line), and we find

$$
P_{f}=\frac{1}{2}-\frac{1}{2} \sqrt{\frac{\mathcal{E}_{b} / N_{0}}{1+\mathcal{E}_{b} / N_{0}}}=\frac{1}{2}\left(1-\sqrt{\frac{\mathcal{E}_{b} / N_{0}}{1+\mathcal{E}_{b} / N_{0}}}\right) .
$$

(d) Let $\sigma=\frac{1}{\sqrt{2}}$, then

$$
m=\mathbb{E}[A]=\int_{0}^{\infty} 2 a^{2} e^{-a^{2}} d a=2 \sqrt{\pi} \int_{0}^{\infty} a^{2} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{a^{2}}{2 \sigma^{2}}} d a=\sqrt{\pi} \sigma^{2}=\frac{\sqrt{\pi}}{2} .
$$

Thus, using the formula from part (b):

$$
P_{e}(m)=Q\left(m \sqrt{\frac{2 \mathcal{E}_{b}}{N_{0}}}\right)=Q\left(\sqrt{\frac{\pi}{2}} \sqrt{\frac{\mathcal{E}_{b}}{N_{0}}}\right) .
$$

For the given example we get

$$
\frac{\mathcal{E}_{b}}{N_{0}}=\frac{2\left(Q^{-1}\left(10^{-5}\right)\right)^{2}}{\pi} \approx 10.6 \mathrm{~dB} .
$$

For the fading we use the result of part (c) to get

$$
\frac{\mathcal{E}_{b}}{N_{0}}=\frac{\left(1-2 \cdot 10^{-5}\right)^{2}}{1-\left(1-2 \cdot 10^{-5}\right)^{2}} \approx 44 \mathrm{~dB}
$$

The difference is quite significant! It is clear that this behavior is fundamentally different from the non-fading case.

Solution 6.

(a) We pass $R(t)$ through a whitening filter $h(t)$ such that the output $R^{\prime}(t)$ looks like the output of an AWGN channel. After this step we are facing a familiar situation and can implement a matched filter receiver. The receiver architecture is shown below:

Let $N^{\prime}(t)=\int N(\alpha) h(t-\alpha) d \alpha$ be the noise at the output of the whitening filter. We want to select the filter $h(t)$ such that $\frac{N_{0}}{2}=G(f)\left|h_{\mathcal{F}}(f)\right|^{2}$, i.e.,

$$
\left|h_{\mathcal{F}}(f)\right|^{2}=\frac{N_{0}}{2 G(f)} .
$$

The output of the filter is

$$
\begin{aligned}
R^{\prime}(t) & =\int R(\alpha) h(t-\alpha) d \alpha=\int w_{i}(\alpha) h(t-\alpha) d \alpha+\int N(\alpha) h(t-\alpha) d \alpha \\
& =w_{i}^{\prime}(t)+N^{\prime}(t)
\end{aligned}
$$

where $N^{\prime}(t)$ is white Gaussian noise and $w_{i}^{\prime}(t)=\int w_{i}(\alpha) h(t-\alpha) d \alpha$. We need to design the matched filter for the signals $w_{i}^{\prime}(t)$.
(b) To minimize both the noise and the energy of the signal, we need to select an antipodal signal pair that is frequency-limited to $[a, b]$ and has energy \mathcal{E}.

