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Solution 1.

(a) Notice that

‖w0(t)‖2 = ‖w1(t)‖2 =

∫ 2T

0

w2
0(t) dt = 2T.

We apply first the Gram-Schmidt algorithm. We get the first basis vector from the
first signal:

ψ0(t) =
w0(t)

‖w0(t)‖
=

{
1√
2T

t ∈ [0, 2T ]

0 otherwise.

It is clear that ψ0(t) and w1(t) are orthogonal. Thus the we obtain the second basis
vector by normalizing w1(t) :

ψ1(t) =
w1(t)

‖w1(t)‖
=


1√
2T

t ∈ [0, T ]

− 1√
2T

t ∈ [T, 2T ]

0 otherwise.

In the {ψ0(t), ψ1(t)} basis, it is straightforward to see that c0 = (
√

2T , 0)T and
c1 = (0,

√
2T )T.

The other basis is the following:

ψ′0(t) =

{
1√
T

t ∈ [0, T ]

0 otherwise,

ψ′1(t) =

{
1√
T

t ∈ [T, 2T ]

0 otherwise.

Observe that ψ′1(t) = ψ′0(t − T ) . Hence, one matched filter at the receiver sampled
twice suffices to project the received signal onto ψ′0(t) and ψ′1(t) .

In the {ψ′0(t), ψ′1(t)} basis, the codewords are c0 = (
√
T ,
√
T )T and c1 = (

√
T ,−
√
T )T.

(b) Here is the block diagram of the ML receiver:



R(t)
ψ′0(T − t)

t = T Y0

t = 2T Y1
Y1

Ĥ=0

≷
Ĥ=1

0
Ĥ

Notice that Y0 is not used. This is not surprising when we look at the signals: For
t ∈ [0, T ] , the two signals are identical.

(c) We calculate

‖w0(t)− w1(t)‖ = 2
√
T ,

hence

Pe = Q

( √
T√

N0/2

)
.

One can also use the vector representation of the two signals shown below to calculate
the probability of error.

0
√

2T

w0

√
2T w1

d

Pe = Q

(
d

2σ

)
= Q

( √
T√

N0/2

)
.

(d) Translating the signal points by any vector will not influence the error probabil-
ity. However, if the translation vector is the center of mass of the original signal
constellation, then the resulting signals will have minimum energy. We compute
v(t) = 1

2
w0(t) + 1

2
w1(t) , thus

w̃0(t) = w0(t)− v(t) =

{
1, for t ∈ [T, 2T ]

0, otherwise

w̃1(t) = w1(t)− v(t) =

{
−1, for t ∈ [T, 2T ]

0, otherwise.

The resulting signal waveforms are shown here:
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t

w̃0(t)

0 T 2T

1

−1

t

w̃1(t)

0 T 2T

1

−1

(e) The new signal constellation is antipodal. One can see that

w̃0(t) = w0(t)− v(t) =
1

2
w0(t)−

1

2
w1(t)

w̃1(t) = w1(t)− v(t) =
1

2
w1(t)−

1

2
w0(t) = −w̃0(t).

This shows that we obtain an antipodal signal constellation regardless of the initial
waveforms.

Solution 2.

(a) To find the minimum-energy signal set, we first compute the centroid of the signal
set:

a =
m−1∑
j=0

PH(j)wj(t) =
1

m

m−1∑
j=0

wj(t).

So

w̃j(t) = wj(t)− a = wj(t)−
1

m

m−1∑
i=0

wi(t)

=
m− 1

m
wj(t)−

1

m

∑
i 6=j

wi(t).

(b) If we write a codebook taking as basis the vectors in W after translation, then

the codeword corresponding to w̃j is
√
E m−1

m
at position j and −

√
E

m
at all other

positions. Clearly ‖w̃j(t)‖2 = (m−1) E
m2 + E

m2 (m−1)2 = E(1− 1
m

) . This is independent
of j so the average energy is also E(1− 1

m
) . Thus, the energy saving is

E − Ẽ =
1

m
E .

Alternatively, we could use that E − Ẽ = ‖a‖2 = 1
m
E .

(c) Notice that
∑m−1

j=0 w̃j(t) = 0 by the definition of w̃j(t), j = 0, 1, . . . ,m− 1 . Hence,
the m signals {w̃0(t), . . . , w̃m−1(t)} are linearly dependent. This means that their
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space has dimensionality less than m . We show that any collection of m − 1 or
less is linearly independent. That would prove that the dimensionality of the space
{w̃0(t), . . . , w̃m−1(t)} is m − 1 . Without loss of essential generality we consider
w̃0(t), . . . , w̃m−2(t) . Assume that

∑m−2
j=0 αjw̃j(t) = 0 . Using the definition of w̃j(t)

we may write
m−2∑
j=0

αj

(
wj(t)−

1

m

m−1∑
i=0

wi(t)

)
= 0,

(
m−2∑
j=0

αjwj(t)

)
−

(
1

m

m−2∑
j=0

αj

)
m−1∑
i=0

wi(t) = 0,

(
m−2∑
j=0

αjwj(t)

)
−

(
β

m−1∑
i=0

wi(t)

)
= 0,

where β = 1
m

∑m−2
j=0 αj . Therefore,

m−2∑
j=0

(αj − β)wj(t)− βwm−1(t) = 0.

But w0(t), w1(t), . . . , wm−1(t) is an orthogonal set and this implies β = 0 and αj =
β = 0, j = 0, 1, . . . ,m−2 . Hence w̃j(t), j = 0, 1, . . . ,m−2 are linearly independent.
We have proved that the new set spans a space of dimension m− 1 .

Solution 3.

(a) Clearly,

ECs (k) = 22k − 1.

(b)

a = Q−1
(

10−5

2

)
≈ 4.42.

(If we use the approximation Q(x) ≈ 1
2
e−

x2

2 , we get a ≈ 4.80 .)

(c) We have

EPs (k) =
a2(m2 − 1)

3
= a2

22k − 1

3
≈ 6.5(22k − 1).

For comparison, see the following table.

k EPs (k) ECs (k)
1 19.51 3
2 97.58 15
4 1658 255
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(d) We see that

ECs (k + 1)

ECs (k)
=
EPs (k + 1)

EPs (k)
=

22(k+1) − 1

22k − 1
,

thus

lim
k→∞

ECs (k + 1)

ECs (k)
= lim

k→∞

EPs (k + 1)

EPs (k)
= 4.

(e) If we send one bit per symbol, then coding allows us to significantly reduce the
required energy per symbol. For every additional bit per symbol we need to multiply
Es by roughly 4 (exactly 4 asymptotically) with or without coding. So as the number
of bits per symbol increases, there is essentially a constant gap (in dB ) between the
energy per symbol required by (uncoded) PAM and that required by the best possible
code.
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Notice that to keep the error probability at a constant level, we need to increase Es/σ2

exponentially with the number k of bits per symbol. In Example 4.3 we increase it
linearly with k (hence the error probability goes to 1).
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