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SOLUTION 1.

(a) Let the two hypotheses be H = 0 and H = 1 when ¢y and ¢; are transmitted,
respectively. The ML decision rule is

H=1

fY1Y2|H(y17 y2|1) z fY1Y2|H(y17 y2|0>
H=0

Because Z; and Z; are independent, we can write

H=1

Lol w1 = L ] e

2 2 = 2 2 ’
H=0

and, after taking the logarithm,

A=1

i+ 1+ g+ 1] 2 o — 1+ — 1.
H=0

(b) Because the hypotheses are equally likely and Z; and Z; have the same distribution,
the decision region for H = 0 contains the points closer to (—1, —1) and the decision
region for H = 1 contains the points closer to (1,1). For this problem, the distance
between the points (yi1,y12) and (ya1,ye2) is the Manhattan distance, |y11 — yo1| +
|y12 — y22|, and not the Euclidean distance.

Let us first consider the points above the line y, = —y;. It is easy to notice that
the points in the positive quadrant are closer to (1,1) than to (—1,—1), therefore
they belong to Ry (H = 1). This is also true if {(z > 0) N (2 € (=1,0))}, or if
{(y2 2 0) N (g1 € (=1,0))}.
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Similar reasoning can be applied to the points below the diagonal to determine Ry .
The points for which {(y1 < —=1)N(y2 > 1)} or {(y1 > 1) N (y2 < —1)} are equally
distanced to (—1,—1) and (1, 1), therefore they can belong to either Ry or Ry with
the same probability. This region is named R-.

(c) The two hypotheses are equally probable for the region R,. Therefore, we can
split this region in any way between the decision regions and have the same error
probability. Because R; is included in the region for which yo > —y; and Ry does
not intersect the region for which y, > —y;, the error probability is minimized by

deciding H =1 if (y; +1y3) > 0.
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By symmetry, and considering that the messages are equally likely, P.(0) = P.(1) =

P,.



SOLUTION 2. We start by normalizing [ :

||51|| =V <51,51> = \/5

b1 1 1 1
=—=(—7,0,—,—).
L RV RVl
We get the next basis vectors as follows:
(1, B2) = V3
¢2 = 52 - \/gwl = (17 17 _170)
@2l = V3
_ % L 11
¢2— ||¢2|| _( 37 37 37())
We compute
(¥1,B3) =0
(tha, B3) = 0.

Thus,

$3 = B3 — 01y — O0hy = (1,0,1, —2)
sl = V1I+1+4=6

o3 1 1 2
= =\ 0> Ty T =)
Y el ~ V8 VR
We proceed similarly to obtain ¢,
<¢1>54> - \/§
<¢2754> =0
(3, B1) = V6

b1 = B1 — V3hy — Ohy — V6ib3 = (0,0,0,0).

As can be seen, the last vector is zero. This shows that the dimensionality of the space
spanned by Bi,---, 84 is only 3, not 4. So the other benefit of Gram-Schmidt orthogo-
nalization is that it gives us the dimension of the space spanned by the initial vectors.

SOLUTION 3.

(a) We use the Gram-Schmidt procedure:



(i)

(i)

(iii)

The first step is to normalize the function [y(t), i.e. the first function of the
basis that we are looking for is

Bo(t) Bo(t)

Yo(t) = 1Bo()] [ Bolt)? dt

0, ift<0
_ B V3 ) s wo<i<t.

1 2 ’
\ Jo 482 dt 0, ift>1

Next, we subtract from [;(¢) the components that are in the span of the cur-
rently established part of the basis, i.e. in the span of {iy(¢)}. This can be
achieved by projecting ((t) onto vy(t) and then subtracting this projection
from f(t), i.e.

cr(t) = But) — (Bo(0), do(O))io(t) = ( [ ot dt) bol®)
— (1) - ?) (5) w0
2
= Bi(t) — %%(t)

(t) 0, ft<l1
()= L ) Br—9), if1<t<2.
llas®IF ) it 2

Again, we subtract from fs(f) the components that are in the span of the
currently established part of the basis, i.e. in the span of {to(t), 41 (¢)}. This can
be achieved by projecting (55(t) onto y(t) and 4 (t) and then subtracting both
these projections from fy(t). For this step, it is essential that the basis elements
{to(t),11(t)} be orthonormal. Make sure you understand why. Continuing the
derivation, we obtain

az(t) = Ba(t) — (B2(1), ¥o(t))o(t) — (Ba(t), 11 (1)1 (1)
= Ba(t) — </ Ba(t)bo(t dt) Yo(t) — (/ Ba(t)hi (1) dt) 1(2)
= Pa(t) — 0 — ay(t)
= Ba(t) + Bo(t) — Bi(1),



and from this, we find the third basis element as

t) 0, ift<2
o(t) = 2 —V3(t—2), if2<t<3.
[z (2)]] .
0, ift>3

(b) By definition we can write wg(t) and wi(t) as follows

3v/3t, ifo<t<l1
wo(t) = 3¢o(t) — i) +ea(t) =S V3(t—2), if1<t<2
—V3(t—-2), if2<t<3

and
—/3t, ifo<t<l1
wi(t) = —o(t) + 201 (t) + 3he(t) = —2V/3(t—2), ifl<t<2.
—3V3(t—2), if2<t<3
wo(t) wi(t)
3v3 3v/3
ll ll
f 2v3 1\
| \
\
[ \ |/
| \ /
[ 12 3 t \/ L
/ \\ \\ 12 3
_\/g 4 \ _\/g \
(c)

(co,er) =—3-1—1-2+41-3=-2.

We know that wg(t) and wi(t) are both real, thus

(wo(t), wy (1)) = /wo(t)wl(t) dt = /01 —9t* dt + /12 —6(t —2)* dt + /239(15 —2)% dt
- _/126(75—2)2 dt = —2.

We see that the inner products are equal as expected.



leoll = v/{co; o)
3
[Jwo|? /Iwo (t)]* dt = / 2712 dt +/ 3(t—2)%dt=9+2=11.
1

We see that the norms are also equal.

SOLUTION 4.

(a)
lgill = VT, i=1,2,3.

(b) Z; and Z, are independent since g; and go are orthogonal. Hence Z is a Gaussian
random vector ~ N(0,0), where o2 = Z2T.

(c)

P, =Pr{Z, €[1,2]|NnZy € [1,2]} =Pr{Z, € [1,2]}Pr{Z; € [1,2]}
2
-lo(G)-2)]
where 0% = 207
(d) P, = P,, since one obtains the square (b) from the square (a) via a rotation.
(€) Zs=—21. U=Z(1,-1)7

, and thus U can never be in (a), hence Q, = 0.

(f) U is in square (c) if and only if Z; € [1,2]. Hence Q. = Q (1) — Q (3

—), where
9 N, ag ag
o-=32T.

SOLUTION 5.

(a) An orthonormal basis for the signal space spanned by the waveforms is':

Yo(t) Y1 (t)

1 1

1 2 1 2

Lthis can be obtained using Gram-Schmidt procedure or simply by looking at the waveforms



(b) The codewords representing the waveforms are

(c) As we have seen in the lecture, if R(t) is the noisy received waveform, (Yp,Y]) =
((R, o), (R,11)) is a sufficient statistic for decision. Hence, we have the following
hypothesis testing problem: Under H =4, 1 =0,1,2,3,

)/i:Ci—i_Za

where Z ~ N(0, %Ig). One can check that ¢;, + = 0,1, 2,3 represent the QPSK
codewords (and as we have seen in Homework 3) the decision regions for the ML
receiver will be as follows:

The distance between two adjacent codewords (say ¢y and ¢;) is d = v2€ and the
probability of error of the receiver is

SORAE

V2E o V2E
=20 (2 N0/2>_Q (2 N0/2>

<(i5)-o(5)



