ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 11
Principles of Digital Communications
Solutions to Problem Set 5 Mar. 24, 2015

Solution 1.

(a) Let the two hypotheses be $H=0$ and $H=1$ when c_{0} and c_{1} are transmitted, respectively. The ML decision rule is

$$
f_{Y_{1} Y_{2} \mid H}\left(y_{1}, y_{2} \mid 1\right) \stackrel{\hat{H}=1}{\gtrless} f_{Y_{1} Y_{2} \mid H}\left(y_{1}, y_{2} \mid 0\right) .
$$

Because Z_{1} and Z_{2} are independent, we can write

$$
\frac{1}{2} e^{-\left|y_{1}-1\right|} \frac{1}{2} e^{-\left|y_{2}-1\right|} \stackrel{\hat{H}=1}{\gtrless} \frac{1}{\hat{H}=0} e^{-\left|y_{1}+1\right|} \frac{1}{2} e^{-\left|y_{2}+1\right|},
$$

and, after taking the logarithm,

$$
\left|y_{1}+1\right|+\left|y_{2}+1\right| \underset{\hat{H}=0}{\stackrel{\hat{H}=1}{\gtrless}}\left|y_{1}-1\right|+\left|y_{2}-1\right| .
$$

(b) Because the hypotheses are equally likely and Z_{1} and Z_{2} have the same distribution, the decision region for $\hat{H}=0$ contains the points closer to $(-1,-1)$ and the decision region for $\hat{H}=1$ contains the points closer to $(1,1)$. For this problem, the distance between the points $\left(y_{11}, y_{12}\right)$ and $\left(y_{21}, y_{22}\right)$ is the Manhattan distance, $\left|y_{11}-y_{21}\right|+$ $\left|y_{12}-y_{22}\right|$, and not the Euclidean distance.
Let us first consider the points above the line $y_{2}=-y_{1}$. It is easy to notice that the points in the positive quadrant are closer to $(1,1)$ than to $(-1,-1)$, therefore they belong to $\mathcal{R}_{1}(\hat{H}=1)$. This is also true if $\left\{\left(y_{1} \geq 0\right) \cap\left(y_{2} \in(-1,0)\right)\right\}$, or if $\left\{\left(y_{2} \geq 0\right) \cap\left(y_{1} \in(-1,0)\right)\right\}$.

Similar reasoning can be applied to the points below the diagonal to determine \mathcal{R}_{0}. The points for which $\left\{\left(y_{1} \leq-1\right) \cap\left(y_{2} \geq 1\right)\right\}$ or $\left\{\left(y_{1} \geq 1\right) \cap\left(y_{2} \leq-1\right)\right\}$ are equally distanced to $(-1,-1)$ and $(1,1)$, therefore they can belong to either \mathcal{R}_{0} or \mathcal{R}_{1} with the same probability. This region is named $\mathcal{R}_{\text {? }}$.
(c) The two hypotheses are equally probable for the region $\mathcal{R}_{\text {? }}$. Therefore, we can split this region in any way between the decision regions and have the same error probability. Because \mathcal{R}_{1} is included in the region for which $y_{2}>-y_{1}$ and \mathcal{R}_{0} does not intersect the region for which $y_{2}>-y_{1}$, the error probability is minimized by deciding $\hat{H}=1$ if $\left(y_{1}+y_{2}\right)>0$.
(d)

$$
\begin{aligned}
P_{e}(0) & =\operatorname{Pr}\left\{Y_{1}+Y_{2}>0 \mid H=0\right\} \\
& =\operatorname{Pr}\left\{Z_{1}+Z_{2}-2>0\right\} \\
& =\int_{2}^{\infty} \frac{e^{-w}}{4}(1+w) d w \\
& =\left.\frac{-e^{-w}}{4}(w+2)\right|_{2} ^{\infty}=e^{-2}
\end{aligned}
$$

By symmetry, and considering that the messages are equally likely, $P_{e}(0)=P_{e}(1)=$ P_{e}.

Solution 2. We start by normalizing β_{1} :

$$
\begin{aligned}
\left\|\beta_{1}\right\| & =\sqrt{\left\langle\beta_{1}, \beta_{1}\right\rangle}=\sqrt{3} \\
\psi_{1} & =\frac{\beta_{1}}{\left\|\beta_{1}\right\|}=\left(\frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) .
\end{aligned}
$$

We get the next basis vectors as follows:

$$
\begin{aligned}
\left\langle\psi_{1}, \beta_{2}\right\rangle & =\sqrt{3} \\
\phi_{2} & =\beta_{2}-\sqrt{3} \psi_{1}=(1,1,-1,0) \\
\left\|\phi_{2}\right\| & =\sqrt{3} \\
\psi_{2} & =\frac{\phi_{2}}{\left\|\phi_{2}\right\|}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, 0\right) .
\end{aligned}
$$

We compute

$$
\begin{aligned}
& \left\langle\psi_{1}, \beta_{3}\right\rangle=0 \\
& \left\langle\psi_{2}, \beta_{3}\right\rangle=0 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\phi_{3} & =\beta_{3}-0 \psi_{1}-0 \psi_{2}=(1,0,1,-2) \\
\left\|\phi_{3}\right\| & =\sqrt{1+1+4}=\sqrt{6} \\
\psi_{3} & =\frac{\phi_{3}}{\left\|\phi_{3}\right\|}=\left(\frac{1}{\sqrt{6}}, 0, \frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}\right) .
\end{aligned}
$$

We proceed similarly to obtain ϕ_{4} :

$$
\begin{aligned}
\left\langle\psi_{1}, \beta_{4}\right\rangle & =\sqrt{3} \\
\left\langle\psi_{2}, \beta_{4}\right\rangle & =0 \\
\left\langle\psi_{3}, \beta_{4}\right\rangle & =\sqrt{6} \\
\phi_{4} & =\beta_{4}-\sqrt{3} \psi_{1}-0 \psi_{2}-\sqrt{6} \psi_{3}=(0,0,0,0)
\end{aligned}
$$

As can be seen, the last vector is zero. This shows that the dimensionality of the space spanned by $\beta_{1}, \cdots, \beta_{4}$ is only 3 , not 4 . So the other benefit of Gram-Schmidt orthogonalization is that it gives us the dimension of the space spanned by the initial vectors.

Solution 3.
(a) We use the Gram-Schmidt procedure:
(i) The first step is to normalize the function $\beta_{0}(t)$, i.e. the first function of the basis that we are looking for is

$$
\begin{aligned}
\psi_{0}(t) & =\frac{\beta_{0}(t)}{\left\|\beta_{0}(t)\right\|}=\frac{\beta_{0}(t)}{\sqrt{\int \beta_{0}(t)^{2} d t}} \\
& =\frac{\beta_{0}(t)}{\sqrt{\int_{0}^{1} 4 t^{2} d t}}=\frac{\sqrt{3}}{2} \beta_{0}(t)= \begin{cases}0, & \text { if } t<0 \\
\sqrt{3} t, & \text { if } 0 \leq t \leq 1 . \\
0, & \text { if } t>1\end{cases}
\end{aligned}
$$

(ii) Next, we subtract from $\beta_{1}(t)$ the components that are in the span of the currently established part of the basis, i.e. in the span of $\left\{\psi_{0}(t)\right\}$. This can be achieved by projecting $\beta_{1}(t)$ onto $\psi_{0}(t)$ and then subtracting this projection from $\beta_{1}(t)$, i.e.

$$
\begin{aligned}
\alpha_{1}(t) & =\beta_{1}(t)-\left\langle\beta_{1}(t), \psi_{0}(t)\right\rangle \psi_{0}(t)=\beta_{1}(t)-\left(\int \beta_{1}(t) \psi_{0}(t) d t\right) \psi_{0}(t) \\
& =\beta_{1}(t)-\left(\frac{\sqrt{3}}{2}\right)\left(\frac{4}{3}\right) \psi_{0}(t) \\
& =\beta_{1}(t)-\frac{2}{\sqrt{3}} \psi_{0}(t) \\
& =\beta_{1}(t)-\beta_{0}(t)
\end{aligned}
$$

From this, we find the second basis element as

$$
\psi_{1}(t)=\frac{\alpha_{1}(t)}{\left\|\alpha_{1}(t)\right\|}= \begin{cases}0, & \text { if } t<1 \\ -\sqrt{3}(t-2), & \text { if } 1 \leq t \leq 2 \\ 0, & \text { if } t>2\end{cases}
$$

(iii) Again, we subtract from $\beta_{2}(t)$ the components that are in the span of the currently established part of the basis, i.e. in the span of $\left\{\psi_{0}(t), \psi_{1}(t)\right\}$. This can be achieved by projecting $\beta_{2}(t)$ onto $\psi_{0}(t)$ and $\psi_{1}(t)$ and then subtracting both these projections from $\beta_{2}(t)$. For this step, it is essential that the basis elements $\left\{\psi_{0}(t), \psi_{1}(t)\right\}$ be orthonormal. Make sure you understand why. Continuing the derivation, we obtain

$$
\begin{aligned}
\alpha_{2}(t) & =\beta_{2}(t)-\left\langle\beta_{2}(t), \psi_{0}(t)\right\rangle \psi_{0}(t)-\left\langle\beta_{2}(t), \psi_{1}(t)\right\rangle \psi_{1}(t) \\
& =\beta_{2}(t)-\left(\int \beta_{2}(t) \psi_{0}(t) d t\right) \psi_{0}(t)-\left(\int \beta_{2}(t) \psi_{1}(t) d t\right) \psi_{1}(t) \\
& =\beta_{2}(t)-0-\alpha_{1}(t) \\
& =\beta_{2}(t)+\beta_{0}(t)-\beta_{1}(t),
\end{aligned}
$$

and from this, we find the third basis element as

$$
\psi_{2}(t)=\frac{\alpha_{2}(t)}{\left\|\alpha_{2}(t)\right\|}= \begin{cases}0, & \text { if } t<2 \\ -\sqrt{3}(t-2), & \text { if } 2 \leq t \leq 3 \\ 0, & \text { if } t>3\end{cases}
$$

(b) By definition we can write $w_{0}(t)$ and $w_{1}(t)$ as follows

$$
w_{0}(t)=3 \psi_{0}(t)-\psi_{1}(t)+\psi_{2}(t)= \begin{cases}3 \sqrt{3} t, & \text { if } 0 \leq t<1 \\ \sqrt{3}(t-2), & \text { if } 1<t<2 \\ -\sqrt{3}(t-2), & \text { if } 2<t \leq 3\end{cases}
$$

and

$$
w_{1}(t)=-\psi_{0}(t)+2 \psi_{1}(t)+3 \psi_{2}(t)= \begin{cases}-\sqrt{3} t, & \text { if } 0 \leq t<1 \\ -2 \sqrt{3}(t-2), & \text { if } 1<t<2 \\ -3 \sqrt{3}(t-2), & \text { if } 2<t \leq 3\end{cases}
$$

(c)

$$
\left\langle c_{0}, c_{1}\right\rangle=-3 \cdot 1-1 \cdot 2+1 \cdot 3=-2 .
$$

We know that $w_{0}(t)$ and $w_{1}(t)$ are both real, thus

$$
\begin{aligned}
\left\langle w_{0}(t), w_{1}(t)\right\rangle & =\int w_{0}(t) w_{1}(t) d t=\int_{0}^{1}-9 t^{2} d t+\int_{1}^{2}-6(t-2)^{2} d t+\int_{2}^{3} 9(t-2)^{2} d t \\
& =-\int_{1}^{2} 6(t-2)^{2} d t=-2 .
\end{aligned}
$$

We see that the inner products are equal as expected.
(d)

$$
\begin{aligned}
\left\|c_{0}\right\| & =\sqrt{\left\langle c_{0}, c_{0}\right\rangle}=\sqrt{11} \\
\left\|w_{0}\right\|^{2} & =\int\left|w_{0}(t)\right|^{2} d t=\int_{0}^{1} 27 t^{2} d t+\int_{1}^{3} 3(t-2)^{2} d t=9+2=11
\end{aligned}
$$

We see that the norms are also equal.

Solution 4.

(a)

$$
\left\|g_{i}\right\|=\sqrt{T}, \quad i=1,2,3
$$

(b) Z_{1} and Z_{2} are independent since g_{1} and g_{2} are orthogonal. Hence Z is a Gaussian random vector $\sim \mathcal{N}\left(0, \sigma^{2} I_{2}\right)$, where $\sigma^{2}=\frac{N_{0}}{2} T$.
(c)

$$
\begin{aligned}
P_{a} & =\operatorname{Pr}\left\{Z_{1} \in[1,2] \cap Z_{2} \in[1,2]\right\}=\operatorname{Pr}\left\{Z_{1} \in[1,2]\right\} \operatorname{Pr}\left\{Z_{2} \in[1,2]\right\} \\
& =\left[Q\left(\frac{1}{\sigma}\right)-Q\left(\frac{2}{\sigma}\right)\right]^{2},
\end{aligned}
$$

where $\sigma^{2}=\frac{N_{0}}{2} T$.
(d) $P_{b}=P_{a}$, since one obtains the square (b) from the square (a) via a rotation.
(e) $Z_{3}=-Z_{1} . U=Z_{1}(1,-1)^{\top}$, and thus U can never be in (a), hence $Q_{a}=0$.
(f) U is in square (c) if and only if $Z_{1} \in[1,2]$. Hence $Q_{c}=Q\left(\frac{1}{\sigma}\right)-Q\left(\frac{2}{\sigma}\right)$, where $\sigma^{2}=\frac{N_{0}}{2} T$.

Solution 5.

(a) An orthonormal basis for the signal space spanned by the waveforms is ${ }^{1}$:

[^0](b) The codewords representing the waveforms are
\[

$$
\begin{aligned}
& c_{0}=(\sqrt{\mathcal{E}}, 0) \\
& c_{1}=(-\sqrt{\mathcal{E}}, 0) \\
& c_{2}=(0, \sqrt{\mathcal{E}}) \\
& c_{3}=(0,-\sqrt{\mathcal{E}})
\end{aligned}
$$
\]

(c) As we have seen in the lecture, if $R(t)$ is the noisy received waveform, $\left(Y_{0}, Y_{1}\right)=$ $\left(\left\langle R, \psi_{0}\right\rangle,\left\langle R, \psi_{1}\right\rangle\right)$ is a sufficient statistic for decision. Hence, we have the following hypothesis testing problem: Under $H=i, i=0,1,2,3$,

$$
Y_{i}=c_{i}+Z,
$$

where $Z \sim \mathcal{N}\left(0, \frac{N_{0}}{2} I_{2}\right)$. One can check that $c_{i}, i=0,1,2,3$ represent the QPSK codewords (and as we have seen in Homework 3) the decision regions for the ML receiver will be as follows:

The distance between two adjacent codewords (say c_{0} and c_{1}) is $d=\sqrt{2 \mathcal{E}}$ and the probability of error of the receiver is

$$
\begin{aligned}
P_{e} & =2 Q\left(\frac{d}{2 \sigma}\right)-Q^{2}\left(\frac{d}{2 \sigma}\right) \\
& =2 Q\left(\frac{\sqrt{2 \mathcal{E}}}{2 \sqrt{N_{0} / 2}}\right)-Q^{2}\left(\frac{\sqrt{2 \mathcal{E}}}{2 \sqrt{N_{0} / 2}}\right) \\
& =2 Q\left(\sqrt{\frac{\mathcal{E}}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{\mathcal{E}}{N_{0}}}\right) .
\end{aligned}
$$

[^0]: ${ }^{1}$ this can be obtained using Gram-Schmidt procedure or simply by looking at the waveforms

