ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 10	Principles of Digital Communications
Problem Set 5	Mar. 18, 2015

PROBLEM 1. (SIMO Channel with Laplacian Noise) One of the two signals $c_0 = -1, c_1 = 1$ is transmitted over the channel shown in the diagram below. The two noise random variables Z_1 and Z_2 are statistically independent of the transmitted signal and of each other. Their density functions are

- (a) Derive a maximum likelihood decision rule.
- (b) Describe the maximum likelihood decision regions in the (y_1, y_2) plane. Try to describe the "Either Choice" regions, i.e., the regions in which it does not matter if you decide for c_0 or for c_1 .

Hint: Use geometric reasoning and the fact that for a point (y_1, y_2) as shown below, $|y_1 - 1| + |y_2 - 1| = a + b$.

(c) A receiver decides that c_1 was transmitted if and only if $(y_1 + y_2) > 0$. Does this receiver minimize the error probability for equally likely messages?

(d) What is the error probability for the receiver in (c)?

Hint: One way to do this is to use the fact that if $W = Z_1 + Z_2$ then $f_W(w) = \frac{e^{-w}}{4}(1+w)$ for w > 0.

PROBLEM 2. (Gram-Schmidt Procedure On Tuples) Use the Gram-Schmidt orthogonalization procedure to find an orthonormal basis for the subspace spanned by the vectors β_1, \ldots, β_4 where $\beta_1 = (1, 0, 1, 1)^{\mathsf{T}}, \ \beta_2 = (2, 1, 0, 1)^{\mathsf{T}}, \ \beta_3 = (1, 0, 1, -2)^{\mathsf{T}}, \ \text{and} \ \beta_4 = (2, 0, 2, -1)^{\mathsf{T}}.$

PROBLEM 3. (Gram-Schmidt Procedure on Three Waveforms)

(a) By means of the Gram-Schmidt procedure, find an orthonormal basis for the signal space spanned by the waveforms in the figure below.

- (b) In your chosen orthonormal basis, let $w_0(t)$ and $w_1(t)$ be represented by the codewords $c_0 = (3, -1, 1)^{\mathsf{T}}$ and $c_1 = (-1, 2, 3)^{\mathsf{T}}$, respectively. Plot $w_0(t)$ and $w_1(t)$.
- (c) Compute the inner products $\langle c_0, c_1 \rangle$ and $\langle w_0, w_1 \rangle$ and compare them.
- (d) Compute the norms $||c_0||$ and $||w_0||$ and compare them.

PROBLEM 4. (Noise in Regions) Let N(t) be a white Gaussian noise of power spectral density $\frac{N_0}{2}$. Let $g_1(t)$, $g_2(t)$, and $g_3(t)$ be waveforms as shown in the following figure. For i = 1, 2, 3, let $Z_i = \int N(t)g_i^*(t) dt$. Then, define $Z = (Z_1, Z_2)^{\mathsf{T}}$ and $U = (Z_1, Z_3)^{\mathsf{T}}$.

$$g_1(t) \xrightarrow{1}_{0} T \xrightarrow{t} g_2(t) \xrightarrow{1}_{0} T/2 \xrightarrow{T/2} t g_3(t) \xrightarrow{0}_{-1} \xrightarrow{T} t$$

(a) Determine the norm $||g_i||$, i = 1, 2, 3.

- (b) Are Z_1 and Z_2 independent? Justify your answer.
- (c) Find the probability P_a that Z lies in the square labeled (a) in the figure below.
- (d) Find the probability P_b that Z lies in the square (b) of the same figure.

- (e) Find the probability Q_a that U lies in the square (a).
- (f) Find the probability Q_c that U lies in the square (c).

PROBLEM 5. (4-PSK Signaling) Consider the four waveforms $w_k(t)$, k = 0, 1, 2, 3 represented in the figure below.

- (a) Determine an orthonormal basis for the signal space spanned by these waveforms. *Hint:* No lengthy calculations needed.
- (b) Determine the codewords c_i , i = 0, 1, 2, 3 representing the waveforms.
- (c) Assume a transmitter sends w_i to communicate a digit $i \in \{0, 1, 2, 3\}$ across a continuous-time AWGN channel of power spectral density $\frac{N_0}{2}$. Write an expression for the error probability of the ML receiver in terms of \mathcal{E} and N_0 .