ÉCole polytechnique fédérale de lausanne

School of Computer and Communication Sciences

Handout 10
Principles of Digital Communications
Problem Set 5

Problem 1. (SIMO Channel with Laplacian Noise) One of the two signals $c_{0}=-1, c_{1}=$ 1 is transmitted over the channel shown in the diagram below. The two noise random variables Z_{1} and Z_{2} are statistically independent of the transmitted signal and of each other. Their density functions are

$$
f_{Z_{1}}(\alpha)=f_{Z_{2}}(\alpha)=\frac{1}{2} e^{-|\alpha|} .
$$

(a) Derive a maximum likelihood decision rule.
(b) Describe the maximum likelihood decision regions in the (y_{1}, y_{2}) plane. Try to describe the "Either Choice" regions, i.e., the regions in which it does not matter if you decide for c_{0} or for c_{1}.
Hint: Use geometric reasoning and the fact that for a point $\left(y_{1}, y_{2}\right)$ as shown below, $\left|y_{1}-1\right|+\left|y_{2}-1\right|=a+b$.

(c) A receiver decides that c_{1} was transmitted if and only if $\left(y_{1}+y_{2}\right)>0$. Does this receiver minimize the error probability for equally likely messages?
(d) What is the error probability for the receiver in (c)?

Hint: One way to do this is to use the fact that if $W=Z_{1}+Z_{2}$ then $f_{W}(w)=$ $\frac{e^{-w}}{4}(1+w)$ for $w>0$.

Problem 2. (Gram-Schmidt Procedure On Tuples) Use the Gram-Schmidt orthogonalization procedure to find an orthonormal basis for the subspace spanned by the vectors $\beta_{1}, \ldots, \beta_{4}$ where $\beta_{1}=(1,0,1,1)^{\top}, \beta_{2}=(2,1,0,1)^{\top}, \beta_{3}=(1,0,1,-2)^{\top}$, and $\beta_{4}=(2,0,2,-1)^{\top}$.

Problem 3. (Gram-Schmidt Procedure on Three Waveforms)

(a) By means of the Gram-Schmidt procedure, find an orthonormal basis for the signal space spanned by the waveforms in the figure below.

(b) In your chosen orthonormal basis, let $w_{0}(t)$ and $w_{1}(t)$ be represented by the codewords $c_{0}=(3,-1,1)^{\top}$ and $c_{1}=(-1,2,3)^{\top}$, respectively. Plot $w_{0}(t)$ and $w_{1}(t)$.
(c) Compute the inner products $\left\langle c_{0}, c_{1}\right\rangle$ and $\left\langle w_{0}, w_{1}\right\rangle$ and compare them.
(d) Compute the norms $\left\|c_{0}\right\|$ and $\left\|w_{0}\right\|$ and compare them.

Problem 4. (Noise in Regions) Let $N(t)$ be a white Gaussian noise of power spectral density $\frac{N_{0}}{2}$. Let $g_{1}(t), g_{2}(t)$, and $g_{3}(t)$ be waveforms as shown in the following figure. For $i=1,2,3$, let $Z_{i}=\int N(t) g_{i}^{*}(t) d t$. Then, define $Z=\left(Z_{1}, Z_{2}\right)^{\top}$ and $U=\left(Z_{1}, Z_{3}\right)^{\top}$.

(a) Determine the norm $\left\|g_{i}\right\|, i=1,2,3$.
(b) Are Z_{1} and Z_{2} independent? Justify your answer.
(c) Find the probability P_{a} that Z lies in the square labeled (a) in the figure below.
(d) Find the probability P_{b} that Z lies in the square (b) of the same figure.
(e) Find the probability Q_{a} that U lies in the square (a).
(f) Find the probability Q_{c} that U lies in the square (c).

(a)

(b)

(c)

Problem 5. (4-PSK Signaling) Consider the four waveforms $w_{k}(t), k=0,1,2,3$ represented in the figure below.

(a) Determine an orthonormal basis for the signal space spanned by these waveforms.

Hint: No lengthy calculations needed.
(b) Determine the codewords $c_{i}, i=0,1,2,3$ representing the waveforms.
(c) Assume a transmitter sends w_{i} to communicate a digit $i \in\{0,1,2,3\}$ across a continuous-time AWGN channel of power spectral density $\frac{N_{0}}{2}$. Write an expression for the error probability of the ML receiver in terms of \mathcal{E} and N_{0}.

