ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 8	Principles of Digital Communications
Problem Set 4	Mar. 11, 2015

PROBLEM 1. (Fisher-Neyman Factorization Theorem) Consider the hypothesis testing problem where the hypothesis is $H \in \{0, 1, ..., m-1\}$, the observable is Y, and T(Y)is a function of the observable. Let $f_{Y|H}(y|i)$ be given for all $i \in \{0, 1, ..., m-1\}$. Suppose that there are positive functions $g_0, g_1, ..., g_{m-1}$, and h so that for each $i \in \{0, 1, ..., m-1\}$ one can write

$$f_{Y|H}(y|i) = g_i(T(y))h(y).$$
 (1)

(a) Show that when the above conditions are satisfied, a MAP decision depends on the observable Y only through T(Y). In other words, Y itself is not necessary.

Hint: Work directly with the definition of a MAP decision rule.

(b) Show that T(Y) is a sufficient statistic, that is $H \to T(Y) \to Y$. *Hint:* Given a random variable Y with probability density function $f_Y(y)$ and given an arbitrary event \mathcal{B} , we have

$$f_{Y|Y\in\mathcal{B}} = \frac{f_Y(y)\mathbb{1}_{\mathcal{B}}(y)}{\int_{\mathcal{B}} f_Y(y)dy}.$$
(2)

Proceed by defining \mathcal{B} to be the event $\mathcal{B} = \{y : T(y) = t\}$ and make use of (2) applied to $f_{Y|H}(y|i)$ to prove that $f_{Y|H,T(Y)}(y|i,t)$ is independent of i.

PROBLEM 2. (Application of Factorization Theorem) Using the result you proved in Problem 1, show the following:

(a) Under hypothesis H = i, let $Y = (Y_1, \ldots, Y_n)$, $Y_i \in \{0, 1, 2, \ldots\}$, be and i.i.d. sequence of Poisson random variables with parameter $\lambda_i > 0$. That is,

$$P_{Y_k|H}(y_k|i) = \frac{\lambda_i^{y_k}}{(y_k)!} e^{-\lambda_i}, \quad y_k \in \{0, 1, 2, \dots\}.$$

Show that $T(y_1, \ldots, y_n) = \frac{1}{n} \sum_{i=1}^n y_i$ is a sufficient statistic. This statistic is called the *sample mean*.

(b) Under hypothesis H_i , the observable is $Y = (Y_1, \ldots, Y_n)$ where $Y_k = \theta_i + Z_k$ and Z_k , $k = 1, 2, \ldots, n$ are i.i.d. Exponential random variables with rate $\lambda > 0$, i.e.,

$$f_{Z_k}(z_k) = \begin{cases} \lambda e^{-\lambda z_k}, & \text{if } z_k \ge 0, \\ 0 & \text{otherwise} \end{cases}$$

Show that the two-dimensional vector $T(y_1, \ldots, y_n) = (\min_{k=1,\ldots,n} y_k, \frac{1}{n} \sum_{k=1}^n y_k)$ is a sufficient statistic.

PROBLEM 3. (Sufficient Statistic) Consider a binary hypothesis testing problem specified by:

$$H = 0: \begin{cases} Y_1 = Z_1 \\ Y_2 = Z_1 Z_2 \end{cases} \qquad H = 1: \begin{cases} Y_1 = -Z_1 \\ Y_2 = -Z_1 Z_2 \end{cases}$$

where Z_1 , Z_2 and H are independent random variables. Is Y_1 a sufficient statistic? *Hint:* If Y = aZ for some scalar a then $f_Y(y) = \frac{1}{|a|} f_Z(\frac{y}{a})$.

PROBLEM 4. (More on Sufficient Statistic) We have seen that if $H \to T(Y) \to Y$ then the P_e of a MAP decoder that observes both T(Y) and Y is the same as that of a MAP decoder that observes only T(Y). You may wonder if the contrary is also true, namely if the knowledge that Y does not help reducing the error probability that one can achieve with T(Y) implies $H \to T(Y) \to Y$. Here is a counterexample. Let the hypothesis H be either 0 or 1 with equal probability (the choice of distribution on H is critical in this example). Let the observable Y take four values with the following conditional probabilities

$$P_{Y|H}(y|0) = \begin{cases} 0.4 & \text{if } y = 0\\ 0.3 & \text{if } y = 1\\ 0.2 & \text{if } y = 2\\ 0.1 & \text{if } y = 3 \end{cases} \qquad P_{Y|H}(y|1) = \begin{cases} 0.1 & \text{if } y = 0\\ 0.2 & \text{if } y = 1\\ 0.3 & \text{if } y = 2\\ 0.4 & \text{if } y = 3 \end{cases}$$

and T(Y) is the following function

$$T(y) = \begin{cases} 0 & \text{if } y = 0 \text{ or } y = 1\\ 1 & \text{if } y = 2 \text{ or } y = 3. \end{cases}$$

- (a) Show that the MAP decoder $\hat{H}(T(y))$ that makes its decisions based on T(y) is equivalent to the MAP decoder $\hat{H}(y)$ that operates based on y.
- (b) Compute the probabilities Pr(Y = 0 | T(Y) = 0, H = 0) and Pr(Y = 0 | T(Y) = 0, H = 1). Do we have $H \to T(Y) \to Y$?

PROBLEM 5. (Repeat Codes and Bhattacharyya Bound) Consider two equally likely hypotheses. Under hypothesis H = 0, the transmitter sends $c_0 = (1, ..., 1)^{\mathsf{T}}$ and under H = 1 it sends $c_1 = (-1, ..., -1)^{\mathsf{T}}$, both of length n. The channel model is AWGN with variance σ^2 in each component. Recall that the probability of error for a ML receiver that observes the channel output $Y \in \mathbb{R}^n$ is

$$P_e = Q\left(\frac{\sqrt{n}}{\sigma}\right).$$

Suppose now that the decoder has access only to the sign of Y_i , $1 \le i \le n$, i.e., it observes

$$W = (W_1, \dots, W_n) = (\operatorname{sign}(Y_1), \dots, \operatorname{sign}(Y_n)).$$
(3)

- (a) Determine the MAP decision rule based on the observable W. Give a simple sufficient statistic.
- (b) Find the expression for the probability of error \tilde{P}_e of the MAP decoder that observes W. You may assume that n is odd.
- (c) Your answer to (b) contains a sum that cannot be expressed in closed form. Express the Bhattacharyya bound on \tilde{P}_e .
- (d) For n = 1, 3, 5, 7, find the numerical values of P_e , \tilde{P}_e , and the Bhattacharyya bound on \tilde{P}_e .

PROBLEM 6. (Bhattacharyya Bound for DMCs) Consider a Discrete Memoryless Channel (DMC). This is a channel model described by an input alphabet \mathcal{X} , an output alphabet \mathcal{Y} and a transition probability¹ $P_{Y|X}(y|x)$. When we use this channel to transmit an n-tuple $x \in \mathcal{X}^n$, the transition probability is

$$P_{Y|X}(y|x) = \prod_{i=1}^{n} P_{Y|X}(y_i|x_i).$$

So far, we have come across two DMCs, namely the BSC (Binary Symmetric Channel) and the BEC (Binary Erasure Channel). The purpose of this problem is to see that for DMCs, the *Bhattacharyya Bound* takes a simple form, in particular when the channel input alphabet \mathcal{X} contains only two letters.

(a) Consider a transmitter that sends $c_0 \in \mathcal{X}^n$ and $c_1 \in \mathcal{X}^n$ with equal probability. Justify the following chain of (in)equalities.

$$\begin{split} P_{e} &\stackrel{(a)}{\leq} \sum_{y} \sqrt{P_{Y|X}(y|c_{0})P_{Y|X}(y|c_{1})} \\ &\stackrel{(b)}{=} \sum_{y} \sqrt{\prod_{i=1}^{n} P_{Y|X}(y_{i}|c_{0,i})P_{Y|X}(y_{i}|c_{1,i})} \\ &\stackrel{(c)}{=} \sum_{y_{1},\ldots,y_{n}} \prod_{i=1}^{n} \sqrt{P_{Y|X}(y_{i}|c_{0,i})P_{Y|X}(y_{i}|c_{1,i})} \\ &\stackrel{(d)}{=} \sum_{y_{1}} \sqrt{P_{Y|X}(y_{1}|c_{0,1})P_{Y|X}(y_{1}|c_{1,1})} \dots \sum_{y_{n}} \sqrt{P_{Y|X}(y_{n}|c_{0,n})P_{Y|X}(y_{n}|c_{1,n})} \\ &\stackrel{(e)}{=} \prod_{i=1}^{n} \sum_{y} \sqrt{P_{Y|X}(y|c_{0,i})P_{Y|X}(y|c_{1,i})} \\ &\stackrel{(f)}{=} \prod_{a \in \mathcal{X}, b \in \mathcal{X}, a \neq b} \left(\sum_{y} \sqrt{P_{Y|X}(y|a)P_{Y|X}(y|b)} \right)^{n(a,b)} . \end{split}$$

 $^{^{1}}$ Here we are assuming that the output alphabet is discrete. Otherwise we use densities instead of probabilities.

where n(a, b) is the number of positions i in which $c_{0,i} = a$ and $c_{1,i} = b$.

(b) The Hamming distance $d_H(c_0, c_1)$ is defined as the number of positions in which c_0 and c_1 differ. Show that for a binary input channel, i.e, when $\mathcal{X} = \{a, b\}$, the Bhattacharyya Bound becomes

$$P_e \le z^{d_H(c_0,c_1)},$$

where

$$z = \sum_{y} \sqrt{P_{Y|X}(y|a)P_{Y|X}(y|b)}.$$

Notice that z depends only on the channel, whereas its exponent depends only on c_0 and c_1 .

- (c) Compute z for:
 - (i) The binary input Gaussian channel described by the densities

$$f_{Y|X}(y|0) = \mathcal{N}(-\sqrt{E},\sigma^2)$$

$$f_{Y|X}(y|1) = \mathcal{N}(\sqrt{E},\sigma^2).$$

(ii) The Binary Symmetric Channel (BSC) with the transition probabilities described by

$$P_{Y|X}(y|x) = \begin{cases} 1-\delta, & \text{if } y=x, \\ \delta, & \text{otherwise.} \end{cases}$$

(iii) The Binary Erasure Channel (BEC) with the transition probabilities given by

$$P_{Y|X}(y|x) = \begin{cases} 1-\delta, & \text{if } y = x, \\ \delta, & \text{if } y = E \\ 0, & \text{otherwise.} \end{cases}$$

PROBLEM 7. (*Tighter Union Bhattacharyya Bound: Binary Case*) In this problem we derive a tighter version of the Union Bhattacharyya Bound for binary hypotheses. Let

$$H = 0: Y \sim f_{Y|H}(y|0)$$
 $H = 1: Y \sim f_{Y|H}(y|1).$

(a) Argue that the probability of error of the MAP decision rule is

$$P_e = \int_y \min\left\{ P_H(0) f_{Y|H}(y|0), P_H(1) f_{Y|H}(y|1) \right\} \, dy.$$

(b) Prove that for $a, b \ge 0$, $\min(a, b) \le \sqrt{ab} \le \frac{a+b}{2}$. Use this to prove the tighter version of *Bhattacharyya Bound*, i.e,

$$P_e \leq \frac{1}{2} \int_y \sqrt{f_{Y|H}(y|0)f_{Y|H}(y|1)} dy.$$

(c) Compare the above bound to that of Equation (2.18) in your course notes when $P_H(0) = \frac{1}{2}$. How do you explain the improvement by a factor $\frac{1}{2}$?