ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 6	Principles of Digital Communications
Problem Set 3	Mar. 4, 2015

PROBLEM 1. Consider the ternary hypothesis testing problem

$$H_0: Y = c_0 + Z,$$
 $H_1: Y = c_1 + Z,$ $H_2: Y = c_2 + Z$

where $Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$ is the two-dimensional observation vector,

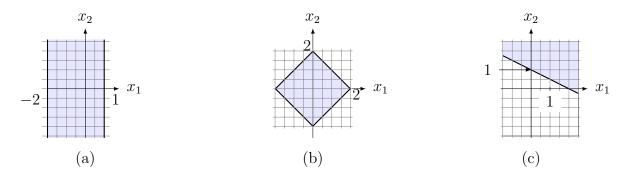
$$c_0 = \sqrt{\mathcal{E}} \begin{bmatrix} 1\\ 0 \end{bmatrix}, \qquad c_1 = \frac{1}{2}\sqrt{\mathcal{E}} \begin{bmatrix} -1\\ \sqrt{3} \end{bmatrix}, \qquad c_2 = \frac{1}{2}\sqrt{\mathcal{E}} \begin{bmatrix} -1\\ -\sqrt{3} \end{bmatrix},$$

and $Z = \begin{bmatrix} Z_1\\ Z_2 \end{bmatrix} \sim \mathcal{N}(0, \sigma^2 I_2).$

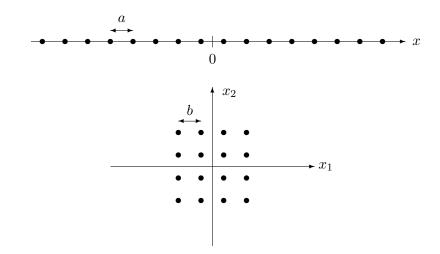
- (a) Assuming the three hypotheses are equally likely, draw the optimal decision regions in the (Y_1, Y_2) plane.
- (b) Assume now that the a-priori probabilities for the hypotheses are given by $\Pr \{H = 0\} = \frac{1}{2}$, $\Pr \{H = 1\} = \Pr \{H = 2\} = \frac{1}{4}$. Draw the decision regions in the (L_1, L_2) plane where

$$L_i := \frac{f_{Y|H}(Y|i)}{f_{Y|H}(Y|0)}, \quad i = 1, 2$$

PROBLEM 2. (*Q*-Function on Regions) Let $X \sim \mathcal{N}(0, \sigma^2 I_2)$. For each of the three figures below, express the probability that X lies in the shaded region. You may use the Q-function when appropriate.



PROBLEM 3. (16-PAM versus 16-QAM) The two signal constellations depicted below are used to communicate across an additive white Gaussian noise channel. Let the noise variance be σ^2 . Each point represents a codeword c_i for some *i*. Assume each codeword is used with the same probability.

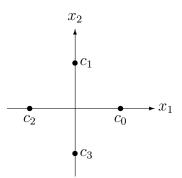


- (a) For each signal constellation, compute the average probability of error P_e as a function of the parameters a and b, respectively.
- (b) For each signal constellation, compute the average energy per symbol \mathcal{E} as a function of the parameters a and b, respectively:

$$\mathcal{E} = \sum_{i=1}^{16} P_H(i) \|c_i\|^2.$$

(c) Plot P_e versus \mathcal{E}/σ^2 for both signal constellations and comment.

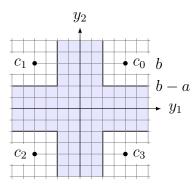
PROBLEM 4. (QPSK Decision Regions) Let $H \in \{0, 1, 2, 3\}$ and assume that when H = i you transmit the codeword c_i shown below. Under H = i, the receiver observes $Y = c_i + Z$.



- (a) Draw the decoding regions assuming that $Z \sim \mathcal{N}(0, \sigma^2 I_2)$ and that $P_H(i) = 1/4$, $i \in \{0, 1, 2, 3\}$.
- (b) Draw the decoding regions (qualitatively) assuming $Z \sim \mathcal{N}(0, \sigma^2 I_2)$ and $P_H(0) = P_H(2) > P_H(1) = P_H(3)$. Justify your answer.

(c) Assume again that $P_H(i) = 1/4$, $i \in \{0, 1, 2, 3\}$ and that $Z \sim \mathcal{N}(0, K)$, where $K = \begin{pmatrix} \sigma^2 & 0 \\ 0 & 4\sigma^2 \end{pmatrix}$. How do you decode now?

PROBLEM 5. (QAM with Erasure) Consider a QAM receiver that outputs a special symbol δ (called erasure) whenever the observation falls in the shaded area shown in the figure below. Assume that $c_0 \in \mathbb{R}^2$ is transmitted and that $Y = c_0 + N$ is received where $N \sim \mathcal{N}(0, \sigma^2 I_2)$. Let P_{0i} , i = 0, 1, 2, 3 be the probability that the receiver outputs $\hat{H} = i$ and let $P_{0\delta}$ be the probability that it outputs δ . Determine P_{00} , P_{01} , P_{02} , P_{03} and $P_{0\delta}$.



REMARK. If we choose b-a large enough, we can make sure that the probability of the error is very small (we say that an error occurred if $\hat{H} = i$, $i \in \{0, 1, 2, 3\}$ and $H \neq \hat{H}$). When $\hat{H} = \delta$, the receiver can ask for a retransmission of H. This requires a feedback channel from the receiver to the sender. In most practical applications, such a feedback channel is available.

PROBLEM 6. (Antenna Array) The following problem relates to the design of multiantenna systems. Consider the binary equiprobable hypothesis testing problem:

$$H = 0 : Y_1 = A + Z_1, \quad Y_2 = A + Z_2$$

$$H = 1 : Y_1 = -A + Z_1, \quad Y_2 = -A + Z_2.$$

where Z_1, Z_2 are independent Gaussian random variables with *different* variances $\sigma_1^2 \neq \sigma_2^2$, that is, $Z_1 \sim \mathcal{N}(0, \sigma_1^2)$ and $Z_2 \sim \mathcal{N}(0, \sigma_2^2)$. A > 0 is a constant.

(a) Show that the decision rule that minimizes the probability of error (based on the observable Y_1 and Y_2) can be stated as

$$\sigma_2^2 y_1 + \sigma_1^2 y_2 \stackrel{0}{\underset{1}{\gtrless}} 0$$

- (b) Draw the decision regions in the (Y_1, Y_2) plane for the special case where $\sigma_1 = 2\sigma_2$.
- (c) Evaluate the probability of the error for the optimal detector as a function of σ_1^2 , σ_2^2 and A.