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Solution 1.

(a) Let gF(f) = 1{−B
2
≤ f ≤ B

2
} . Its inverse Fourier transform is g(t) = B sinc(Bt) .

We note that pF(f) = gF(f + f0) + gF(f − f0) , therefore

p(t) = g(t)
(
e−j2πf0t + ej2πf0t

)
= 2B sinc(Bt) cos(2πf0t).

(b) We have ∫ ∞
−∞

ψ2(t)dt = c2

∫ ∞
−∞

p2(t) dt

= c2

∫ ∞
−∞

p2
F(f) df

= 2c2B = 1,

which gives c = 1√
2B

.

(c) {ψ(t − nT )}n∈Z forms an orthonormal set if and only if Nyquist’s criterion with
parameter T holds. In other words,

∞∑
n=−∞

∣∣∣ψF (f − n

T

)∣∣∣2 = T.

A simple drawing of the frequency domain for T = 1
2B

shows that Nyquist’s criterion
holds. Therefore {ψ(t− nT )}n∈Z forms an orthonormal set.

(d) In applying Nyquist’s criterion, we picture the periodic repetition (with period 1
T

)
of the positive frequencies of |pF(f)|2 as filling half of the real line and the periodic
repetition of the negative frequencies as filling the remaining gaps. This happens if
and only if, when we shift the frequency interval [f0 − B

2
, f0 + B

2
] by some multiple

of 1
T

= 2B , the left end of the shifted interval corresponds to the right end of
[−f0 − B

2
,−f0 + B

2
] , i.e., if −f0 + B

2
+ k2B = f0 − B

2
. Solving the former gives

f0 = B
2

+ kB , where k is an integer.



Solution 2.

(a) Let xE(t) = xR(t) + jxI(t) . Then

x(t) =
√

2<{xE(t)ej2πfct}
=
√

2<{[xR(t) + jxI(t)]e
j2πfct}

=
√

2[xR(t) cos(2πfct)− xI(t) sin(2πfct)].

Hence, we have
xEI(t) =

√
2<{xE(t)}

and
xEQ(t) =

√
2={xE(t)}.

(b) Let xE(t) = α(t)ejβ(t) . Then

x(t) =
√

2<{xE(t)ej2πfct}
=
√

2<{α(t)ejβ(t)ej2πfct}
=
√

2<{α(t)ej(2πfct+β(t))}
=
√

2α(t) cos[2πfct+ β(t)].

We thus have

xE(t) = α(t)ejβ(t) =
a(t)√

2
ejθ(t).

(c) From (b) we see that

xE(t) =
A(t)√

2
ejϕ.

This is consistent with Example 7.9 (DSB-SC) given in the text. We can also verify:

x(t) =
√

2<{xE(t)ej2πfct}

=
√

2<
{
A(t)√

2
ejϕej2πfct

}
= <{A(t)ej(2πfct+ϕ)}
= A(t) cos(2πfct+ ϕ).

Solution 3.

(a) The key observation is that while ej2πf1t and e−j2πf1t are two different signals if
f1 6= 0, <{ej2πf1t} and <{e−j2πf1t} are identical.

Therefore, if we fix f1 6= 0 and choose a1(t) and a2(t) so that a1(t)ej2πfct =
ej2πf1t and a2(t)ej2πfct = e−j2πf1t , we get a1(t) 6= a2(t) and <

{
a1(t)ej2πfct

}
=

<
{
a2(t)ej2πfct

}
.

Let a1(t) = e−j2π(fc−f1)t and a2(t) = e−j2π(fc+f1)t . Then a1(t) 6= a2(t) and
√

2<
{
a1(t)ej2πfct

}
=
√

2<
{
a2(t)ej2πfct

}
.
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(b) Let b(t) = a(t)ej2πfct , which represents a translation of a(t) in the frequency domain:
If aF(f) = 0 for f < −fc , then bF(f) = 0 for f < 0 . Because <{b(t)} =
1
2

(
a(t)ej2πfct + a∗(t)e−j2πfct

)
, taking the real part has a scaling effect and adds a

negative-frequency component. The negative spectrum is canceled by the h> filter,
and the scaling is compensated by the

√
2 factors from the up-converter and down-

converter. Multiplying by e−j2πfct translates the spectrum back to the initial position.
In conclusion, we obtain a(t) .

(c) Take any baseband signal u(t) with frequency domain support [−fc −∆, fc + ∆] ,
∆ > 0 . The signal can be real-valued or complex-valued (for example uF(f) =
1[−fc−∆,fc+∆](f) , which is a sinc in time domain). After we up-convert, the support
of uF(f) will not extend beyond 2fc + ∆. When we chop the negative frequencies
we obtain a support contained in [0, 2fc + ∆] and when we shift back to the left the
support will be contained in [−fc, fc + ∆] , which is too small to be the support of
uF(f) .

(d) In time domain:

w(t) =
√

2<{a(t)ej2πfct}
a∈R
=
√

2a(t) cos(2πfct).

Therefore,

a(t) =
w(t)√

2 cos(2πfct)
.

In frequency domain: If aF(f) = 0 for f < −fc , we obtain a(t) as described in (b).
In the following, we consider the case aF(f) 6= 0 for f < −fc .

We have wF(f) = 1√
2

[aF(f − fc) + aF(f + fc)] = a+
F(f) + a−F(f) , with a+

F(f) =
1√
2
aF(f − fc) and a−F(f) = 1√

2
aF(f + fc) , respectively. These two components have

overlapping support in some interval centered at 0 . However, there is no overlap for
sufficiently large frequencies. This means that for sufficiently large frequencies f we
have wF(f) = 1√

2
a+
F(f) , which implies that from wF(f) we can observe the right

tail of a+
F(f) and use that information to remove the right tail of a−F(f) from wF(f)

(the right tails of a+
F(f) and a−F(f) are the same because a(t) is real). Hence,

from wF(f) we can read more of the right tail of a+
F(f) . The procedure can be

repeated until we get to see a+
F(f) for all frequencies above fc . At this point, using

aF(f) = a+
F(f + fc)

√
2 and the fact that a(t) is real-valued, we have aF(f) for the

positive frequencies, hence for all frequencies.
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Solution 4.

x(t)
√

2 cos(2πfct) = x(t)

[
ej2πfct + e−j2πfct

√
2

]
=
√

2<{xE(t)ej2πfct}
[
ej2πfct + e−j2πfct

√
2

]
=

[
xE(t)ej2πfct + x∗E(t)e−j2πfct

√
2

] [
ej2πfct + e−j2πfct

√
2

]
=
xE(t)ej4πfct + xE(t) + x∗E(t) + x∗E(t)e−j4πfct

2
.

At the lowpass filter output we have

xE(t) + x∗E(t)

2
= <{xE(t)}.

The calculation for the other path is similar.

Solution 5.

(a) Notice that the sinusoids of w(t) have a period of Tc = 4 ms units of time, which
implies that fc = 1

Tc
= 1

4 ms
= 250 Hz.

(b) Notice that the phase of the sinusoidal signal changes every Ts = 4 ms. (Here we
have Ts = Tc , but in general it is not the case. In practice we usually have Ts � Tc .
See the note at the end.)

The expression of w(t) as a function of t is:

w(t) =


4 cos(2πfct− π

2
) t ∈]0, Ts[

4 cos(2πfct) t ∈]Ts, 2Ts[

4 cos(2πfct+ π) t ∈]2Ts, 3Ts[

4 cos(2πfct+ π
2
) t ∈]3Ts, 4Ts[

=


<
{

4ej(2πfct−
π
2

)
}

t ∈]0, Ts[

<
{

4ej(2πfct)
}

t ∈]Ts, 2Ts[

<
{

4ej(2πfct+π)
}

t ∈]2Ts, 3Ts[

<
{

4ej(2πfct+
π
2

)
}

t ∈]3Ts, 4Ts[

=


<
{
−4jej2πfct

}
t ∈]0, Ts[

<
{

4ej2πfct
}

t ∈]Ts, 2Ts[

<
{
−4ej2πfct

}
t ∈]2Ts, 3Ts[

<
{

4jej2πfct
}

t ∈]3Ts, 4Ts[

=
√

2<
{
wE(t)ej2πfct

}
,
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where

wE(t) =− 4j√
2
1{t ∈]0, Ts[}+

4√
2
1{t ∈]Ts, 2Ts[}

− 4√
2
1{t ∈]2Ts, 3Ts[}+

4j√
2
1{t ∈]3Ts, 4Ts[}

=− j
√

8Ts
1√
Ts
1{t ∈]0, Ts[}+

√
8Ts

1√
Ts
1{t ∈]Ts, 2Ts[}

−
√

8Ts
1√
Ts
1{t ∈]2Ts, 3Ts[}+ j

√
8Ts

1√
Ts
1{t ∈]3Ts, 4Ts[}.

If we define ψ(t) = 1√
Ts
1{t ∈]0, Ts[} , c0 = −j

√
8Ts , c1 =

√
8Ts , c2 = −

√
8Ts and

c3 = j
√

8Ts , we get

wE(t) =
3∑
i=0

ciψ(t− iTs). (1)

Therefore, the pulse used in the waveform former is ψ(t) = 1√
Ts
1{t ∈]0, Ts[} , and the

waveform former output signal is given by (1). The orthonormal basis that is used is
{ψ(t− iTs)}3

i=0 .

(c) The symbol sequence is {c0, c1, c2, c3} =
{
−j
√
Es,
√
Es, −

√
Es, j

√
Es
}

, where Es =
8Ts . We can see that the symbol alphabet is

{√
Es, j

√
Es, −

√
Es, −j

√
Es
}

.

(d) We have:

• The output sequence of the encoder is the symbol sequence, which is

{c0, c1, c2, c3} =
{
−j
√
Es,

√
Es, −

√
Es, j

√
Es
}
.

• The symbol alphabet contains 4 symbols. This means that each symbol repre-
sents two bits. Now since the symbol rate is fs = 1

Ts
= 250 symbols/s, the bit

rate is 2× 250 = 500 bits/s.

• The input/output mapping can be obtained by assigning two bits for each
symbol in the symbol alphabet. Keeping in mind that it is better to mini-
mize the number of bit-differences between close symbols, we obtain the fol-
lowing input/output mapping (which is not unique, i.e., we can obtain other
mappings that satisfy the mentioned criterion):

√
Es ←→ 00 , j

√
Es ←→ 01 ,

−
√
Es ←→ 11 and −j

√
Es ←→ 10 .

• Assuming that the above input/output mapping was used, we can obtain the
input sequence of the encoder: 10001101.

Note that in this example, we have Ts = Tc , so fc = fs . This is very unusual. In practice
we almost always have fc � fs , especially if we are using electromagnetic waves.
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Solution 6.

(a) x(t) is a sinusoid with instantaneous amplitude (1+mb(t))
√

2 , therefore it will always
be in the interval

√
2[−1 −mb(t), 1 + mb(t)] . In conclusion, the envelope of |x(t)|

will be (1 +mb(t))
√

2 . Below, we show an example for fc = 10 Hz, b(t) = cos(2πt)
and m = 0.6 .

0 1 2 3 4 5
−2

−1

0

1

2

3

t[s]

 

 

x(t)

(1+mb(t))√2

(b)

|x(t)| = (1 +mb(t))
√

2| cos(2πfct)|
(∗)
= (1 +mb(t))

√
2
∞∑

k=−∞

cke
j2π(2kfc)t,

where (∗) is obtained by expanding the periodic signal | cos(2πfct)| of period T = 1
2fc

as a Fourier series. Note that each term of the series has frequency 2kfc . Therefore,
if we pass |x(t)| through an ideal lowpass filter with the cutoff frequency f0 in the
interval [B, 2fc−B] , we will only keep the central term and obtain 1+mb(t) , scaled
by c0

√
2 .

(c) The diode and the parallel R1C1 circuit form an envelope detector, so the voltage
on top of R1 is (1 +mb(t))

√
2 . If we read the voltage on top of R2 , the series R2C2

circuit is a highpass filter, which eliminates the constant component, and we obtain a
scaled version of b(t) . (We assume that b(t) does not contain low frequencies which
will be affected by the filter.)
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