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Solution 1.

(a) In the absence of noise,

y(t) =
∑
l∈Z

slp(t− lT ) ? h(t) ? q(t).

Because f(t− τ) ? g(t) = (f ? g)(t− τ) , we obtain

y(t) =
∑
l∈Z

sl(p ? h ? q)(t− lT ) =
∑
l∈Z

slg(t− lT ).

(b) Following the hint, we obtain

g(−lT ) =

∫ ∞
−∞

gF(f)e−j2πflT df

=
∑
i∈Z

∫ 1
2T

− 1
2T

gF(f − i

T
)e−j2π(f−

i
T )lT df

=
∑
i∈Z

∫ 1
2T

− 1
2T

gF(f − i

T
)e−j2πflT df

=

∫ 1
2T

− 1
2T

∑
i∈Z

gF(f − i

T
)e−j2πflT df

=

∫ 1
2T

− 1
2T

s(f)e−j2πflT df,

where s(f) =
∑

i∈Z gF(f − i
T

) .

Therefore, g(−lT ) are the Fourier series coefficients (multiplied by 1/T ) of the pe-
riodic function s(f) . If g(lT ) = 1{l = 0} , then s(f) is constant over the interval[
− 1

2T
, 1
2T

]
and equal to T . If s(f) is constant and equal to T over

[
− 1

2T
, 1
2T

]
, then

g(lT ) = 1{l = 0} .

Because s(f) has period 1/T , it is equal to T for any f , not only in the interval[
− 1

2T
, 1
2T

]
.

(c) Using the hint and (b), we see that {ψ(t − jT )}∞j=−∞ is an orthonormal set if and

only if
∑

l∈ZRψF(f − l
T

) = T . But RψF(f) = |ψF(f)|2 , which proves Theorem 5.6.



(d) From the below figure, we see that
∑

i∈Z gF(f − i
T

) = 2T . Therefore, according to
(b), g(kT ) = 21{k = 0} and y(kT ) = 2sk .
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Solution 2. Because ψ(t) is real, its Fourier transform is conjugate symmetric (ψF(f) =
ψ∗F(−f)) .

From the condition
∫
ψ(t−kT )ψ(t− lT )dt = 1{k = l} for every pair k , l , it follows that

|ψF(f)|2 satisfies Nyquist’s criterion with parameter T ,
∑

k∈Z |ψF(f − k/T )|2 = T . On
the other hand, since ψF(f) = 0 for |f | > 1

T
, |ψF(f)|2 must have band-edge symmetry.

Putting everything together, we obtain the complete plot of |ψF(f)|2 .
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Solution 3.

(a) The self-similarity function is the inverse Fourier transform of |ψF(f)|2 , hence

|ψF(f)|2 = T1{f ∈ [−1/2T, 1/2T ]} ⇐⇒ Rψ(τ) = sinc(τ/T ) =
sin(πτ/T )

πτ/T

To determine the time-domain pulse ψ(t) , we first observe that the frequency domain
pulse can be

ψF(f) =
√
T1{f ∈ [−1/2T, 1/2T ]}e−j2πft0 , for ∀t0 ∈ R .

Consequently,

ψ(t) =
1√
T

sinc

(
t− t0
T

)
for ∀t0 ∈ R .

2



(b) We have

Yj =

∫ +∞

−∞
R(t)ψ∗(t− jT ) dt

=

∫ +∞

−∞
W (t)ψ∗(t− jT ) +

∫ +∞

−∞
N(t)ψ∗(t− jT ) dt︸ ︷︷ ︸

,Zj

=

∫ +∞

−∞

∑
i

Siψ(t− iT )ψ∗(t− jT ) dt+ Zj

=
∑
i

Si

∫ +∞

−∞
ψ(t− iT )ψ∗(t− jT ) dt+ Zj

=
∑
i

Si

∫ +∞

−∞
ψ(t− iT )ψ∗(t− jT ) dt+ Zj

=
∑
i

SiRψ ((j − i)T ) + Zj. (1)

Since N(t) is a white Gaussian noise we know Zj are zero-mean jointly Gaussian
random variables with covariance

cov(Zi, Zj) =
N0

2

∫
ψ∗(t− iT )ψ(t− jT ) =

N0

2
Rψ ((i− j)T ) . (2)

From Problem 1 we know that ψ(t) is orthonormal to its time translates by T , which
is equivalent to

Rψ(kT ) = 1{k = 0}.

Using the above in (1) and (2) shows that

Yj = Sj + Zj,

where Zj are i.i.d. N (0, N0

2
) noise samples.
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(c) Following the same steps as in (b) we have

Yj =

∫ +∞

−∞
R(t)ψ∗(t− jT −∆) dt

=

∫ +∞

−∞
W (t)ψ∗(t− jT −∆) +

∫ +∞

−∞
N(t)ψ∗(t− jT −∆) dt︸ ︷︷ ︸

,Zj

=

∫ +∞

−∞

∑
i

Siψ(t− iT )ψ∗(t− jT −∆) dt+ Zj

=
∑
i

Si

∫ +∞

−∞
ψ(t− iT )ψ∗(t− jT −∆) dt+ Zj

=
∑
i

Si

∫ +∞

−∞
ψ(t− iT )ψ∗(t− jT −∆) dt+ Zj

=
∑
i

SiRψ ((j − i)T + ∆) + Zj. (3)

Once more since N(t) is a white Gaussian noise we know Zj are zero-mean jointly
Gaussian random variables with covariance

cov(Zi, Zj) =
N0

2

∫
ψ∗(t− iT −∆)ψ(t− jT −∆) =

N0

2
Rψ ((i− j)T ) ,

which shows Zj are still i.i.d. N (0, N0

2
) noise samples. However, the samples are

now of the form
Yj = l0Sj +

∑
i 6=j

Silj−i + Zj

where

lk = Rψ(kT + ∆) = sinc

(
k +

∆

T

)
. (4)

(d) Suppose ∆ = T
2

. Then,

lk = sinc

(
k +

1

2

)
=

sin(kπ + π/2)

kπ + π/2
=

(−1)k

kπ + π/2
.

Now if s1, . . . , sn is a sequence satisfying si = −si+1 , for i = 1, 2, . . . , n − 1 and
arbitrary sn ∈ {±1} , we have

Yn =
2

π
sn +

∑
k 6=0

sn−klk + Zn

=
2

π
sn +

n∑
k=1

sn−klk + Zn

=
2

π
sn +

n∑
k=1

(−1)k
(−1)k

kπ + π/2
sn + Zn
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The ISI term is hence

n∑
k=1

(−1)k
(−1)k

kπ + π/2
sn =

n∑
k=1

1

kπ + π/2
sn

= sn

(
n∑
k=0

1

kπ + π/2
− π

2

)

We see that the term inside the parenthesis diverges as n grows large.

Solution 4.

(a) When i = j , E [XiXj] is

E
[
X2
i

]
= E [1] = 1.

Remember that the Bi are iid Bernoulli (1
2
) random variables. Hence, we find imme-

diately

KX [1] = E [X2nX2n+1] = E [BnBn−2BnBn−1Bn−2]

= E
[
B2
nBn−1B

2
n−2
]

= E [Bn−1] = 0,

and also

KX [2] = E [X2nX2n+2] = E [BnBn−2Bn+1Bn−1]

= E [Bn] E [Bn−2] E [Bn+1] E [Bn−1] = 0.

By continuing this argument we find

KX [i] = 1{i = 0}.

Hence,

SX(f) =
Es
Ts
|ψF(f)|2.

This means that by choosing ψ(t) appropriately, we can control the bandwidth con-
sumption of our communications scheme.

(b) We know that
|ψF(f)|2 = Ts sinc2(Tsf).

It follows that
SX(f) = Es sinc2(Tsf).

A plot of SX(f) is shown here:
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0

SX(f)

Es

f
− 3/Ts − 2/Ts − 1/Ts 1/Ts 2/Ts 3/Ts

Solution 5. The trellis representing the encoder is shown below:
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We display the diagram labeled with edge-metric according to the received sequence and
state-metric of the survivor path. We also indicate the survivor paths and the decoding
path.
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From the figure we can read the decoded sequence 1, 1, −1, 1, 1.
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Solution 6.

(a)

Xi = Bi − 2Bi−1

From this, we can draw the following trellis:

0

1

0/0

1/1

0/0
1/1

1/-1

0/-2

0/0
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1/-1

0/-2

0/0
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0/0
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1/-1

0/-2

0/0

0/-2

(b) We have Y = X + Z , where Z = (Z1, . . . , Z6) is a sequence of iid components with
Zi ∼ N (0, σ2) . Our maximum likelihood decoder is a minimum distance decoder.
We have to minimize ‖y − x‖2 or equivalently, maximize 2〈y, x〉 − ‖x‖2 . We thus
have f(x, y) =

∑6
i=1 2yixi − x2i whose maximization with respect to x leads to a

maximum likelihood decision on X .

(c) We label our trellis with the edge metric 2yixi−x2i and then trace back the decoding
path.
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We see that the two sequences 1, 1, 0, 0, 0 and 1, 1, 0, 1, 1 are equally likely, so the
decoder would choose either of the two.
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