ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 23	Principles of Digital Communications
Problem Set 10	May 6, 2015

PROBLEM 1. (Nyquist Pulse) A communication system uses signals of the form

$$\sum_{l\in\mathbb{Z}}s_lp(t-lT)$$

where s_l takes values in some symbol alphabet and p(t) is a finite-energy pulse. The transmitted signal is first filtered by a channel of impulse response h(t) and then corrupted by additive white Gaussian noise of power spectral density $\frac{N_0}{2}$. The receiver front-end is a filter of impulse response q(t).

(a) Neglecting the noise, show that the front-end filter output has the form

$$y(t) = \sum_{l \in \mathbb{Z}} s_l g(t - lT),$$

where $g(t) = (p \star h \star q)(t)$ and \star denotes convolution.

(b) The necessary and sufficient (time-domain) condition that g(t) has to fulfill so that the samples of y(t) satisfy $y(lT) = s_l$, $l \in \mathbb{Z}$, is

$$g(lT) = \mathbb{1}\{l = 0\}$$

A function g(t) that fulfills this condition is called a Nyquist pulse of parameter T. Prove the following theorem:

THEOREM. (Nyquist Criterion for Nyquist Pulses) The \mathcal{L}_2 pulse g(t) is a Nyquist pulse (with parameter T) if and only if its Fourier transform $g_{\mathcal{F}}(f)$ fulfills Nyquist's criterion (with parameter T), i.e.,

l. i. m.
$$\sum_{l \in \mathbb{Z}} g_{\mathcal{F}}(f - \frac{l}{T}) = T, \qquad t \in \mathbb{R}.$$

Note: Due to the periodicity of the left-hand side, equality is fulfilled if and only if it is fulfilled over an interval of length 1/T.

Hint: Set $g(t) = \int g_{\mathcal{F}}(f) e^{j2\pi f t} df$, insert on both sides t = -lT and proceed as in the proof of Theorem 5.6.

(c) Prove Theorem 5.6 as a corollary to the above theorem.

Hint: $\mathbb{1}\{l=0\} = \int \psi(t-lT)\psi^*(t)dt$ if and only if the self-similarity function $R_{\psi}(\tau)$ is a Nyquist pulse with parameter T.

(d) Let p(t) and q(t) be real-valued with Fourier transform as shown below, where only positive frequencies are plotted (both functions being even). The channel frequency response is $h_{\mathcal{F}}(f) = 1$. Determine $y(kT), k \in \mathbb{Z}$.

PROBLEM 2. (Pulse Orthogonal to its T-Spaced Time Translates) The following figure shows part of the plot of a function $|\psi_{\mathcal{F}}(f)|^2$, where $\psi_{\mathcal{F}}(f)$ is the Fourier transform of some pulse $\psi(t)$.

Complete the plot (for positive and negative frequencies) and label the ordinate, knowing that the following conditions are satisfied:

- For every pair of integers $k, l, \int \psi(t kT)\psi(t lT)dt = \mathbb{1}\{k = l\}$.
- $\psi(t)$ is real-valued.
- $\psi_{\mathcal{F}}(f) = 0$ for $|f| > \frac{1}{T}$.

PROBLEM 3. (*Peculiarity of Sinc*) Let $\psi(t)$ be the pulse with $|\psi_{\mathcal{F}}(f)|^2$ as depicted below.

(a) Given $|\psi_{\mathcal{F}}(f)|^2$, compute the time-domain pulse $\psi(t)$ and its self similarity function $R_{\psi}(t)$.

(b) Let $\{S_i\}_{i=-\infty}^{+\infty}$ be an i.i.d. sequence of uniformly distributed data symbols in $\{\pm 1\}$. Suppose the transmitter uses the pulse $\psi(t)$ to create the output waveform

$$W(t) = \sum_{i} S_i \psi(t - iT).$$

The signal W(t) is then sent through an AWGN channel, i.e., the received signal is

$$R(t) = W(t) + N(t),$$

where N(t) is the white Gaussian noise of power spectral density $\frac{N_0}{2}$.

The receiver filters R(t) using a matched filter of impulse response $\psi^*(-t)$. Let y(t) be the output of the matched filter. Show that if y(t) is sampled at time t = jT then the output samples are

$$Y_j = Y(jT) = S_j + Z_j$$

where $Z_j \sim \mathcal{N}(0, \frac{N_0}{2})$ are i.i.d. noise samples.

(c) Now suppose the receiver's clock has an offset of $\Delta \in (0, T)$ such that the matched filter's output is sampled at times $t = jT + \Delta$ instead of t = jT. Show that now the output samples are now

$$Y_j = l_0 S_j + \sum_{i \neq j} S_i l_{j-i} + Z_j,$$

where $Z_j \sim \mathcal{N}(0, \frac{N_0}{2})$ are i.i.d. noise samples. Compute the coefficients l_k .

(d) As you have seen in your book, the term $\sum_{i \neq j} S_i l_{j-i}$ is the ISI. Consider only the transmission of a finite block of data symbols S_1, \ldots, S_n (i.e. assume $S_i = 0$ for $i \notin \{1, 2, \ldots, n\}$). Show that there exists a $\Delta \in (0, T)$ and particular realizations of this block such that the ISI contribution in Y_n can grow unboundedly with n.

Hint: The series $\sum_{k=1}^{\infty} \frac{1}{ak+b}$ *diverges.*

PROBLEM 4. (Power Spectral Density) Consider the random process

$$X(t) = \sum_{i=-\infty}^{\infty} X_i \sqrt{\mathcal{E}_s} \psi(t - iT_s - T_0),$$

where T_s and \mathcal{E}_s are fixed positive numbers, $\psi(t)$ is some unit-energy function, T_0 is a uniformly distributed random variable taking value in $[0, T_s)$, and $\{X_i\}_{i=-\infty}^{\infty}$ is the output of the convolutional encoder described by

$$X_{2n} = B_n B_{n-2}$$

 $X_{2n+1} = B_n B_{n-1} B_{n-2}$

with i.i.d. input sequence $\{B_i\}_{i=-\infty}^{\infty}$ taking values in $\{\pm 1\}$.

- (a) Express the power spectral density of X(t) for a general $\psi(t)$.
- (b) Plot the power spectral density of X(t) assuming that $\psi(t)$ is a unit-norm rectangular pulse of width T_s .

PROBLEM 5. (Viterbi Algorithm) An output sequence x_1, \ldots, x_{10} from the convolutional encoder depicted in the figure below is transmitted over the discrete-time AWGN channel. The initial and final state of the encoder is (1,1). Using the Viterbi algorithm, find the maximum likelihood information sequence $\hat{b}_1, \ldots, \hat{b}_3, 1, 1$, knowing that b_1, \ldots, b_3 are drawn independently and uniformly from $\{\pm 1\}$ and that the channel output $y_1, \ldots, y_{10} =$ 1, 2, -1, 4, -2, 1, 1, -3, -1, -2. (It is for convenience that we are choosing integers rather than real numbers.)

PROBLEM 6. (Inter-Symbol Interference) From the decoder's point of view, inter-symbol interference (ISI) can be modeled as follows

$$Y_i = X_i + Z_i$$

 $X_i = \sum_{j=0}^{L} B_{i-j} h_j, \qquad i = 1, 2, \dots$ (1)

where B_i is the *i*-th information bit, h_0, \ldots, h_L are coefficients that describe the intersymbol interference, and Z_i is zero-mean, Gaussian, of variance σ^2 and statistically independent of everything else. Relationship (1) can be described by a trellis, and the ML decision rule can be implemented by the Viterbi algorithm.

(a) Draw the trellis that describes all sequences of the form X_1, \ldots, X_6 resulting from information sequences of the form $B_1, \ldots, B_5, 0, B_i \in \{0, 1\}$, assuming

$$h_i = \begin{cases} 1, & i = 0\\ -2, & i = 1\\ 0, & \text{otherwise} \end{cases}$$

To determine the initial state, you may assume that the preceding information sequence terminated with 0. Label the trellis edges with the input/output symbols.

- (b) Specify a metric $f(x_1, \ldots, x_6) = \sum_{i=1}^6 f(x_i, y_i)$ whose minimization or maximization with respect to the valid x_1, \ldots, x_6 leads to a maximum likelihood decision. Specify if your metric needs to be minimized or maximized.
- (c) Assume $y_1, \ldots, y_6 = 2, 0, -1, 1, 0, -1$. Find the maximum likelihood estimate of the information sequence B_1, \ldots, B_5 .