# ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 

School of Computer and Communication Sciences

## Problem 1.

(a) Since the $X_{1}, \ldots, X_{n}$ are i.i.d., so are $p\left(X_{1}\right), p\left(X_{2}\right), \ldots, p\left(X_{n}\right)$, and hence we can apply the law of large numbers to obtain

$$
\begin{aligned}
\lim -\frac{1}{n} \log p\left(X_{1}, \ldots, X_{n}\right) & =\lim -\frac{1}{n} \sum \log p\left(X_{i}\right) \\
& =-E[\log p(X)] \\
& =-\sum p(x) \log p(x) \\
& =H(X)
\end{aligned}
$$

(b) Since the $X_{1}, \ldots, X_{n}$ are i.i.d., so are $q\left(X_{1}\right), q\left(X_{2}\right), \ldots, q\left(X_{n}\right)$, and hence we can apply the law of large numbers to obtain

$$
\begin{aligned}
\lim -\frac{1}{n} \log q\left(X_{1}, \ldots, X_{n}\right) & =\lim -\frac{1}{n} \sum \log q\left(X_{i}\right) \\
& =-E[\log q(X)] \\
& =-\sum p(x) \log q(x) \\
& =\sum p(x) \log \frac{p(x)}{q(x)}-\sum p(x) \log p(x) \\
& =D(p \| q)+H(X) .
\end{aligned}
$$

(c) Again, by the law of large numbers,

$$
\begin{aligned}
\lim -\frac{1}{n} \log \frac{q\left(X_{1}, \ldots, X_{n}\right)}{p\left(X_{1}, \ldots, X_{n}\right)} & =\lim -\frac{1}{n} \sum \log \frac{q\left(X_{i}\right)}{p\left(X_{i}\right)} \\
& =-E\left[\log \frac{q(X)}{p(X)}\right] \\
& =-\sum p(x) \log \frac{q(x)}{p(x)} \\
& =\sum p(x) \log \frac{p(x)}{q(x)} \\
& =D(p \| q)
\end{aligned}
$$

## Problem 2.

(a) It is easy to check that $W$ is an i.i.d. process but $Z$ is not. As $W$ is i.i.d. it is also stationary. We want to show that $Z$ is also stationary. To show this, it is sufficient
to prove that the distribution of the process does not change by shift in the time domain.

$$
\begin{aligned}
& p_{Z}\left(Z_{m}=a_{m}, Z_{m+1}=a_{m+1}, \cdots, Z_{m+r}=a_{m+r}\right) \\
& =\frac{1}{2} p_{X}\left(X_{m}=a_{m}, X_{m+1}=a_{m+1}, \cdots, X_{m+r}=a_{m+r}\right) \\
& +\frac{1}{2} p_{Y}\left(Y_{m}=a_{m}, Y_{m+1}=a_{m+1}, \cdots, Y_{m+r}=a_{m+r}\right) \\
& =\frac{1}{2} p_{X}\left(X_{m+s}=a_{m}, X_{m+s+1}=a_{m+1}, \cdots, X_{m+s+r}=a_{m+r}\right) \\
& +\frac{1}{2} p_{Y}\left(Y_{m+s}=a_{m}, Y_{m+s+1}=a_{m+1}, \cdots, Y_{m+s+r}=a_{m+r}\right) \\
& =p_{Z}\left(Z_{m+s}=a_{m}, Z_{m+s+1}=a_{m+1}, \cdots, Z_{m+s+r}=a_{m+r}\right),
\end{aligned}
$$

where we used the stationarity of the $X$ and $Y$ processes. This shows the invariance of the distribution with respect to the arbitrary shift $s$ in time which implies stationarity.
(b) For the $Z$ process we have

$$
\begin{aligned}
H(Z) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(Z_{1}, \cdots, Z_{n}\right) \\
& =\lim _{n \rightarrow \infty} H\left(Z_{1}, \cdots, Z_{n} \mid \Theta\right) \\
& =\frac{1}{2} H\left(X_{0}\right)+\frac{1}{2} H\left(Y_{0}\right)=1 .
\end{aligned}
$$

$W$ process is an i.i.d process with the distribution $p_{W}(a)=\frac{1}{2} p_{X}(a)+\frac{1}{2} p_{Y}(a)$. From concavity of the entropy, it is easy to see that $H(W)=H\left(W_{0}\right) \geq \frac{1}{2} H\left(X_{0}\right)+\frac{1}{2} H\left(Y_{0}\right)=$ 1. Hence, the entropy rate of $W$ is greater than the entropy rate of $Z$ and the equality holds if and only if $X_{0}$ and $Y_{0}$ have the same probability distribution function.

Problem 3. Upon noticing $0.9^{6}>0.1$, we obtain $\{1,01,001,0001,00001,000001,0000001$, $0000000\}$ as the dictionary entries.

Problem 4. Since the words of a valid and prefix condition dictionary reside in the leaves of a full tree, the Kraft inequality must be satisfied with equality: Consider climbing up the tree starting from the root, choosing one of the $D$ branches that climb up from a node with equal probability. The probability of reaching a leaf at depth $l_{i}$ is then $D^{-l_{i}}$. Since the climbing process will certainly end in a leaf, we have

$$
1=\operatorname{Pr}(\text { ending in a leaf })=\sum_{i} D^{-l_{i}} .
$$

If the dictionary is valid but not prefix-free, by removing all words that already have a prefix in the dictionary we would obtain a valid prefix-free dictionary. Since this reduced dictionary would satisfy the Kraft inequality with equality, the extra words would cause the inequality to be violated.

## Problem 5.

(a) Let $I$ be the set of intermediate nodes (including the root), let $N$ be the set of nodes except the root and let $L$ be the set of all leaves. For each $n \in L$ define $A(n)=\{m \in N: m$ is an ancestor of $n\}$ and for each $m \in N$ define $D(m)=\{n \in$
$L: n$ is a descendant of $m\}$. We assume each leaf is an ancestor and a descendant of itself. Then

$$
\begin{aligned}
E[\text { distance to a leaf }]=\sum_{n \in L} P(n) \sum_{m \in A(n)} & d(m) \\
& =\sum_{m \in N} d(m) \sum_{n \in D(m)} P(n)=\sum_{m \in N} P(m) d(m) .
\end{aligned}
$$

(b) Let $d(n)=-\log Q(n)$. We see that $-\log P\left(n_{j}\right)$ is the distance associated with a leaf. From part (a),

$$
\begin{aligned}
H(\text { leaves }) & =E[\text { distance to a leaf }] \\
& =\sum_{n \in N} P(n) d(n) \\
& =-\sum_{n \in N} P(n) \log Q(n) \\
& =-\sum_{n \in N} P(\text { parent of } n) Q(n) \log Q(n) \\
& =-\sum_{m \in I} P(m) \sum_{n: n \text { is a child of } m} Q(n) \log Q(n) \\
& =\sum_{m \in I} P(m) H_{m^{\prime}}
\end{aligned}
$$

(c) Since all the intermediate nodes of a valid and prefix condition dictionary have the same number of children with the same set of $Q_{n}$, each $H_{n}=H$. Thus $H$ (leaves) $=$ $H \sum_{n \in I} P(n)=H E[L]$.

## Problem 6.

(a) Assume that $p$ and $q$ are two distributions on the same alphabet $\mathcal{X}$. We have:

$$
\begin{aligned}
-D(p \| q) & =-\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}=\sum_{x \in \mathcal{X}} p(x) \log \frac{q(x)}{p(x)} \stackrel{(*)}{\leq} \sum_{x \in \mathcal{X}} \frac{p(x)}{\ln 2}\left(\frac{q(x)}{p(x)}-1\right) \\
& =\frac{1}{\ln 2} \sum_{x \in \mathcal{X}}(p(x)-q(x))=\frac{1}{\ln 2}(1-1)=0 .
\end{aligned}
$$

Therefore, $D(p \| q) \geq 0$. Notice that $D(p \| q)=0$ if and only if $\ln \frac{p(x)}{q(x)}=\frac{p(x)}{q(x)}-1$ for every $x \in \mathcal{X}$ satisfying $p(x)>0$ (see inequality $(*)$ ). But $\ln z=z-1$ if and only if $z=1$. Therefore, $D(p \| q)=0$ if and only if $p(x)=q(x)$ whenever $p(x)>0$. On the other hand, it is easy to see that the condition " $p(x)=q(x)$ whenever $p(x)>0$ " is equivalent to $p=q$. We conclude that $D(p \| q)=0$ if and only if $p=q$.
(b) Let $\alpha=p(1)$, we have:

$$
\begin{aligned}
D(p \| q) & =\alpha \log \frac{\alpha}{\frac{1}{2}}+(1-\alpha) \log \frac{1-\alpha}{\frac{1}{2}} \\
& =\alpha \log \alpha+\alpha \log 2+(1-\alpha) \log (1-\alpha)+(1-\alpha) \log 2 \\
& =1-h_{2}(\alpha)
\end{aligned}
$$

where $h_{2}(\alpha)=\alpha \log \frac{1}{\alpha}+(1-\alpha) \log \frac{1}{1-\alpha}$. On the other hand, we have:

$$
\begin{aligned}
D(q \| p) & =\frac{1}{2} \log \frac{\frac{1}{2}}{\alpha}+\frac{1}{2} \log \frac{\frac{1}{2}}{1-\alpha} \\
& =\frac{1}{2} \log \frac{1}{2}+\frac{1}{2} \log \frac{1}{\alpha}+\frac{1}{2} \log \frac{1}{2}+\frac{1}{2} \log \frac{1}{1-\alpha} \\
& =\frac{1}{2} \log \frac{1}{\alpha(1-\alpha)}-1 .
\end{aligned}
$$

By taking $\alpha=\frac{1}{4}$, we obtain $D(p \| q) \neq D(q \| p)$. Therefore, $D(p \| q)$ is not necessarily equal to $D(q \| p)$ in general.
(d) We have:

$$
\begin{aligned}
I(U ; V) & =H(U)-H(U \mid V)=E\left[\log \frac{1}{P_{U}(U)}\right]-E\left[\log \frac{1}{P_{U \mid V}(U \mid V)}\right] \\
& =E\left[\log \frac{P_{U \mid V}(U \mid V)}{P_{U}(U)}\right]=E\left[\log \frac{P_{U, V}(U, V)}{P_{U}(U) \cdot P_{V}(V)}\right] \\
& =\sum_{u \in \mathcal{U}, v \in \mathcal{V}} P_{U, V}(u, v) \log \frac{P_{U, V}(u, v)}{P_{U}(v) \cdot P_{V}(v)}=D\left(P_{U, V} \| P_{U} \cdot P_{V}\right) .
\end{aligned}
$$

