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Problem 1.

(a) We have H
(
f(U)

)
≤ H

(
f(U), U

)
= H(U) + H

(
f(U)

∣∣U) = H(U) + 0 = H(U).

(b) Notice that U −−◦ V −−◦ f(V ) is a Markov chain. The data processing inequality implies
that H(U) − H

(
U
∣∣f(V )

)
= I

(
U ; f(V )

)
≤ I(U ;V ) = H(U) − H(U |V ). Therefore,

H(U |V ) ≤ H
(
U
∣∣f(V )

)
.

Problem 2.

(a) We have:

H(U |Û) ≤ H(U,W |Û) = H(W |Û) + H(U |Û ,W ) ≤ H(W ) + H(U |Û ,W )

= H(W ) + H(U |Û ,W = 0) · P[W = 0] + H(U |Û ,W = 1) · P[W = 1]

(∗)
≤ h2(pe) + 0 · (1− pe) + log(|U| − 1) · pe = h2(pe) + pe log(|U| − 1),

where (∗) follows from the following facts:

– H(W ) = h2(pe).

– H(U |Û ,W = 0) = 0: conditioned on W = 0, we know that U = Û and so the
conditional entropy H(U |Û ,W = 0) is equal to 0.

– H(U |Û ,W = 1) ≤ log(|U| − 1): conditioned on W = 1, we know that U 6= Û
and so there are at most |U|−1 values for U . Therefore, the conditional entropy
H(U |Û ,W = 0) is at most log(|U| − 1).

(b) Let Û = f(V ). We have H(U |Û) ≤ h2(pe) + pe log(|U| − 1) from (a). On the other
hand, from Problem 1(b) we have H(U |V ) ≤ H

(
U
∣∣f(V )

)
= H(U |Û). We conclude

that H(U |V ) ≤ h2(pe) + pe log(|U| − 1).

Problem 3.

(a) W is independent of (U,Z). Therefore, W is independent of (U,U ⊕ Z) = (U, V ),
which implies that PW |U,V (w|u, v) = PW (w) = PW |V (w|v) for every u, v, w ∈ {0, 1}.
Thus, U −−◦ V −−◦ W is a Markov chain and so we have I(U ;V ) ≥ I(U ;W ) from the
data processing inequality.

In order to show that U −−◦ V ′ −−◦ W ′ is a Markov chain, we will show first that W ′ is
independent of (U,Z ′). For every u, z′, w′ ∈ {0, 1} we have:

PU,Z′,W ′(u, z′, w′) = P[U = u, Z ′ = z′, U ⊕W = w′] = P[U = u, Z ′ = z′,W = u⊕ w′]

(∗)
= PU,Z′(u, z′) · 1

2

(∗∗)
= PU,Z′(u, z′) · PW ′(w′),

where (∗) follows from the fact that W is uniform and independent of (U,Z ′). (∗∗)
follows from the fact that W ′ = U ⊕W is uniform (it is easy to check by computing



the joint probability distribution that the XOR of two independent uniform binary
random variables is uniform).

Since we have shown that W ′ is independent of (U,Z ′), the proof that U −−◦ V ′ −−◦ W ′

is a Markov chain is similar to that of U −−◦ V −−◦ W , and the inequality I(U ;V ′) ≥
I(U ;W ′) follows from the data processing inequality.

(b) By computing the probability distribution of V , we can see that it is uniform. Simi-
larly, V ′ is also uniform. We have:

– I(U ;V ) = H(V ) − H(V |U) = H(V ) − H(U ⊕ Z|U) = H(V ) − H(Z|U) =
H(V )−H(Z) = 1− h2(p).

– I(U ;W ) = 0 since U and W are independent.

– I(U ;V ′) = H(V ′) − H(V ′|U) = H(V ′) − H(U ⊕ Z ′|U) = H(V ′) − H(Z ′|U) =
H(V ′)−H(Z ′) = 1− h2(p), where h2(p) = p log 1

p
+ (1− p) log 1

1−p .

– I(U ;W ′) = 0 since U and W ′ are independent.

Since 0 < p < 1
2
, h2(p) < 1 and 1 − h2(p) > 0. Therefore, I(U ;V ) > I(U ;W ) and

I(U ;V ′) > I(U ;W ′).

(c) By computing the joint probability distribution of (V, Z, Z ′), we can see that V is
independent of (Z,Z ′), which implies that V is independent of Z ⊕ Z ′. We have:

I(U ;V V ′) = H(V, V ′)−H(V, V ′|U) = H(V, V ′ ⊕ V )−H(U ⊕ Z,U ⊕ Z ′|U)

= H(V, Z ⊕ Z ′)−H(Z,Z ′)
(∗)
= H(V ) + H(Z ⊕ Z ′)−H(Z)−H(Z ′)

(∗∗)
= 1 + h2

(
2p(1− p)

)
− 2h2(p).

(∗) follows from the fact that V is independent of Z ⊕ Z ′ and that Z is independent
of Z ′. (∗∗) follows from the fact that H(Z ⊕ Z ′) = h2

(
2p(1− p)

)
(since P[Z ⊕ Z ′ =

1] = 2p(1− p)) and H(Z) = H(Z ′) = h2(p).

On the other hand, we have:

I(U ;WW ′) = I(U ;W,W ⊕W ′) = I(U ;W,U)

= I(U ;U) + I(U ;W |U) = H(U) + 0 = 1.

In order to see that I(U ;V V ′) < I(U ;WW ′), notice that H(Z)+H(Z ′) = H(Z,Z ′) =
H(Z,Z ⊕ Z ′) = H(Z ⊕ Z ′) + H(Z|Z ⊕ Z ′). Therefore, H(Z ⊕ Z ′) ≤ H(Z) + H(Z ′)
with equality if and only if H(Z|Z ⊕Z ′) = 0. Now notice that for every a, b ∈ {0, 1},
P[Z = a, Z ⊕ Z ′ = b] = P[Z = a, Z ′ = a ⊕ b] = P[Z = a]P[Z ′ = a ⊕ b] > 0. This
implies that for every a, b ∈ {0, 1}, P[Z = a|Z ⊕ Z ′ = b] > 0. Therefore, conditioned
on Z ⊕ Z ′, Z is not deterministic and so H(Z|Z ⊕ Z ′) > 0. We conclude that
H(Z ⊕ Z ′) < H(Z) + H(Z ′) which implies that 1 + H(Z ⊕ Z ′)−H(Z)−H(Z ′) < 1
and I(U ;V V ′) < I(U ;WW ′).

Problem 4.

(a) By using the inequality ln x ≤ x− 1 for x > 0, we get:

p log
p + q

2p
+ q log

p + q

2q
≤ p

ln 2

(
p + q

2p
− 1

)
+

q

ln 2

(
p + q

2q
− 1

)
= 0.
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Therefore, p log
1

p
+ p log

p + q

2
+ q log

1

q
+ q log

p + q

2
≤ 0, from which we conclude

that
1

2

(
p log

1

p
+ q log

1

q

)
≤ p + q

2
log

2

p + q
.

(b) We have:

H(r) =
∑
u∈U

r(u) log
1

r(u)
=
∑
u∈U

p(u) + q(u)

2
log

2

p(u) + q(u)

(∗)
≥
∑
u∈U

1

2

(
p(u) log

1

p(u)
+ q(u) log

1

q(u)

)

=
1

2

(∑
u∈U

p(u) log
1

p(u)

)
+

1

2

(∑
u∈U

q(u) log
1

q(u)

)
=

1

2
H(p) +

1

2
H(q),

where (∗) follows from (a).

Problem 5.

(a) We have:

S =
∑
u∈U

max{P1(u), P2(u)}
(∗)
≤
∑
u∈U

(P1(u) + P2(u))

=
∑
u∈U

P1(u) +
∑
u∈U

P2(u) = 1 + 1 = 2,

It is easy to see from (∗) that S = 2 if and only if max{P1(u), P2(u)} = P1(u)+P2(u)
for all u ∈ U , which is equivalent to say that there is no u ∈ U for which we have
P1(u) > 0 and P2(u) > 0. In other words, S = 2 if and only if

{u ∈ U : P1(u) > 0} ∩ {u ∈ U : P2(u) > 0} = ø.

(b) Let li = dlog2
S

max{P1(ai),P2(ai)}e, and let us compute the Kraft sum:

M∑
i=1

2−li ≤
M∑
i=1

2
− log2

S
max{P1(ai),P2(ai)} =

M∑
i=1

max{P1(ai), P2(ai)}
S

= 1.

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of
the codeword associated to ai is li.

(c) Since the code constructed in (b) is prefix free, it must be the case that l ≥ H(U).
In order to prove the upper bounds, let P ∗ be the true distribution (which is either
P1 or P2). It is easy to see that P ∗(ai) ≤ max{P1(ai), P2(ai)} for all 1 ≤ i ≤M . We
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have:

l =
M∑
i=1

P ∗(ai).li =
M∑
i=1

P ∗(ai).
⌈

log2

S

max{P1(ai), P2(ai)}

⌉
<

M∑
i=1

P ∗(ai).
(

1 + log2

S

max{P1(ai), P2(ai)}

)
=

M∑
i=1

P ∗(ai).
(

1 + logS + log2

1

max{P1(ai), P2(ai)}

)
= 1 + logS +

M∑
i=1

P ∗(ai). log2

1

max{P1(ai), P2(ai)}

(∗)
≤ 1 + logS +

M∑
i=1

P ∗(ai). log2

1

P ∗(ai)
= H(U) + logS + 1 ≤ H(U) + 2,

where the inequality (∗) uses the fact that P ∗(ai) ≤ max{P1(ai), P2(ai)} for all 1 ≤
i ≤M .

(d) Now let li = dlog2
S

max{P1(ai),...,Pk(ai)}
e, and let us compute the Kraft sum:

M∑
i=1

2−li ≤
M∑
i=1

2
− log2

S
max{P1(ai),...,Pk(ai)} =

M∑
i=1

max{P1(ai), . . . , Pk(ai)}
S

= 1.

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the
codeword associated to ai is li. Since the code is prefix free, it must be the case that
l ≥ H(U). In order to prove the upper bounds, let P ∗ be the true distribution (which
is either P1 or . . . or Pk). It is easy to see that P ∗(ai) ≤ max{P1(ai), . . . , Pk(ai)} for
all 1 ≤ i ≤M . We have:

l =
M∑
i=1

P ∗(ai).li =
M∑
i=1

P ∗(ai).
⌈

log2

S

max{P1(ai), . . . , Pk(ai)}

⌉
<

M∑
i=1

P ∗(ai).
(

1 + log2

S

max{P1(ai), . . . , Pk(ai)}

)
=

M∑
i=1

P ∗(ai).
(

1 + log2 S + log2

1

max{P1(ai), . . . , Pk(ai)}

)
= 1 + log2 S +

M∑
i=1

P ∗(ai). log2

1

max{P1(ai), . . . , Pk(ai)}

(∗)
≤ 1 + log2 S +

M∑
i=1

P ∗(ai). log2

1

P ∗(ai)
= H(U) + log2 S + 1,

where the inequality (∗) uses the fact that P ∗(ai) ≤ max{P1(ai), . . . , Pk(ai)} for
all 1 ≤ i ≤ M . Now notice that max{P1(ai), . . . , Pk(ai)} ≤

∑k
j=1 Pj(ai) for all

1 ≤ i ≤M . Therefore, we have

S =
M∑
i=1

max{P1(ai), . . . , Pk(ai)} ≤
M∑
i=1

k∑
j=1

Pj(ai) =
k∑

j=1

M∑
i=1

Pj(ai) =
k∑

j=1

1 = k.

We conclude that H(U) ≤ l ≤ H(U) + logS + 1 ≤ H(U) + log k + 1.
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