ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 9
Information Theory and Coding
Solutions to homework 4
October 21, 2014

Problem 1.

(a) We have $H(f(U)) \leq H(f(U), U)=H(U)+H(f(U) \mid U)=H(U)+0=H(U)$.
(b) Notice that $U \ominus V \ominus f(V)$ is a Markov chain. The data processing inequality implies that $H(U)-H(U \mid f(V))=I(U ; f(V)) \leq I(U ; V)=H(U)-H(U \mid V)$. Therefore, $H(U \mid V) \leq H(U \mid f(V))$.

Problem 2.

(a) We have:

$$
\begin{aligned}
H(U \mid \hat{U}) & \leq H(U, W \mid \hat{U})=H(W \mid \hat{U})+H(U \mid \hat{U}, W) \leq H(W)+H(U \mid \hat{U}, W) \\
& =H(W)+H(U \mid \hat{U}, W=0) \cdot \mathbb{P}[W=0]+H(U \mid \hat{U}, W=1) \cdot \mathbb{P}[W=1] \\
& (* *) \\
& \leq h_{2}\left(p_{e}\right)+0 \cdot\left(1-p_{e}\right)+\log (|\mathcal{U}|-1) \cdot p_{e}=h_{2}\left(p_{e}\right)+p_{e} \log (|\mathcal{U}|-1)
\end{aligned}
$$

where ($*$) follows from the following facts:

- $H(W)=h_{2}\left(p_{e}\right)$.
- $H(U \mid \hat{U}, W=0)=0$: conditioned on $W=0$, we know that $U=\hat{U}$ and so the conditional entropy $H(U \mid \hat{U}, W=0)$ is equal to 0 .
- $H(U \mid \hat{U}, W=1) \leq \log (|\mathcal{U}|-1)$: conditioned on $W=1$, we know that $U \neq \hat{U}$ and so there are at most $|\mathcal{U}|-1$ values for U. Therefore, the conditional entropy $H(U \mid \hat{U}, W=0)$ is at $\operatorname{most} \log (|\mathcal{U}|-1)$.
(b) Let $\hat{U}=f(V)$. We have $H(U \mid \hat{U}) \leq h_{2}\left(p_{e}\right)+p_{e} \log (|\mathcal{U}|-1)$ from (a). On the other hand, from Problem 1(b) we have $H(U \mid V) \leq H(U \mid f(V))=H(U \mid \hat{U})$. We conclude that $H(U \mid V) \leq h_{2}\left(p_{e}\right)+p_{e} \log (|\mathcal{U}|-1)$.

Problem 3.

(a) W is independent of (U, Z). Therefore, W is independent of $(U, U \oplus Z)=(U, V)$, which implies that $\mathbb{P}_{W \mid U, V}(w \mid u, v)=\mathbb{P}_{W}(w)=\mathbb{P}_{W \mid V}(w \mid v)$ for every $u, v, w \in\{0,1\}$. Thus, $U \ominus V \ominus W$ is a Markov chain and so we have $I(U ; V) \geq I(U ; W)$ from the data processing inequality.
In order to show that $U \ominus V^{\prime} \ominus W^{\prime}$ is a Markov chain, we will show first that W^{\prime} is independent of $\left(U, Z^{\prime}\right)$. For every $u, z^{\prime}, w^{\prime} \in\{0,1\}$ we have:

$$
\begin{aligned}
\mathbb{P}_{U, Z^{\prime}, W^{\prime}}\left(u, z^{\prime}, w^{\prime}\right) & =\mathbb{P}\left[U=u, Z^{\prime}=z^{\prime}, U \oplus W=w^{\prime}\right]=\mathbb{P}\left[U=u, Z^{\prime}=z^{\prime}, W=u \oplus w^{\prime}\right] \\
& \stackrel{(*)}{=} \mathbb{P}_{U, Z^{\prime}}\left(u, z^{\prime}\right) \cdot \frac{1}{2} \stackrel{(* *)}{=} \mathbb{P}_{U, Z^{\prime}}\left(u, z^{\prime}\right) \cdot \mathbb{P}_{W^{\prime}}\left(w^{\prime}\right),
\end{aligned}
$$

where $(*)$ follows from the fact that W is uniform and independent of $\left(U, Z^{\prime}\right) .(* *)$ follows from the fact that $W^{\prime}=U \oplus W$ is uniform (it is easy to check by computing
the joint probability distribution that the XOR of two independent uniform binary random variables is uniform).

Since we have shown that W^{\prime} is independent of $\left(U, Z^{\prime}\right)$, the proof that $U \ominus V^{\prime} \ominus W^{\prime}$ is a Markov chain is similar to that of $U \ominus V \ominus W$, and the inequality $I\left(U ; V^{\prime}\right) \geq$ $I\left(U ; W^{\prime}\right)$ follows from the data processing inequality.
(b) By computing the probability distribution of V, we can see that it is uniform. Similarly, V^{\prime} is also uniform. We have:

$$
\begin{aligned}
- & I(U ; V)=H(V)-H(V \mid U)=H(V)-H(U \oplus Z \mid U)=H(V)-H(Z \mid U)= \\
& H(V)-H(Z)=1-h_{2}(p) .
\end{aligned}
$$

- $I(U ; W)=0$ since U and W are independent.
$-I\left(U ; V^{\prime}\right)=H\left(V^{\prime}\right)-H\left(V^{\prime} \mid U\right)=H\left(V^{\prime}\right)-H\left(U \oplus Z^{\prime} \mid U\right)=H\left(V^{\prime}\right)-H\left(Z^{\prime} \mid U\right)=$ $H\left(V^{\prime}\right)-H\left(Z^{\prime}\right)=1-h_{2}(p)$, where $h_{2}(p)=p \log \frac{1}{p}+(1-p) \log \frac{1}{1-p}$.
$-I\left(U ; W^{\prime}\right)=0$ since U and W^{\prime} are independent.
Since $0<p<\frac{1}{2}, h_{2}(p)<1$ and $1-h_{2}(p)>0$. Therefore, $I(U ; V)>I(U ; W)$ and $I\left(U ; V^{\prime}\right)>I\left(U ; W^{\prime}\right)$.
(c) By computing the joint probability distribution of $\left(V, Z, Z^{\prime}\right)$, we can see that V is independent of $\left(Z, Z^{\prime}\right)$, which implies that V is independent of $Z \oplus Z^{\prime}$. We have:

$$
\begin{aligned}
I\left(U ; V V^{\prime}\right) & =H\left(V, V^{\prime}\right)-H\left(V, V^{\prime} \mid U\right)=H\left(V, V^{\prime} \oplus V\right)-H\left(U \oplus Z, U \oplus Z^{\prime} \mid U\right) \\
& =H\left(V, Z \oplus Z^{\prime}\right)-H\left(Z, Z^{\prime}\right) \stackrel{(*)}{=} H(V)+H\left(Z \oplus Z^{\prime}\right)-H(Z)-H\left(Z^{\prime}\right) \\
& \stackrel{(* *)}{=} 1+h_{2}(2 p(1-p))-2 h_{2}(p) .
\end{aligned}
$$

(*) follows from the fact that V is independent of $Z \oplus Z^{\prime}$ and that Z is independent of Z^{\prime}. $(* *)$ follows from the fact that $H\left(Z \oplus Z^{\prime}\right)=h_{2}(2 p(1-p))$ (since $\mathbb{P}\left[Z \oplus Z^{\prime}=\right.$ $1]=2 p(1-p))$ and $H(Z)=H\left(Z^{\prime}\right)=h_{2}(p)$.
On the other hand, we have:

$$
\begin{aligned}
I\left(U ; W W^{\prime}\right) & =I\left(U ; W, W \oplus W^{\prime}\right)=I(U ; W, U) \\
& =I(U ; U)+I(U ; W \mid U)=H(U)+0=1
\end{aligned}
$$

In order to see that $I\left(U ; V V^{\prime}\right)<I\left(U ; W W^{\prime}\right)$, notice that $H(Z)+H\left(Z^{\prime}\right)=H\left(Z, Z^{\prime}\right)=$ $H\left(Z, Z \oplus Z^{\prime}\right)=H\left(Z \oplus Z^{\prime}\right)+H\left(Z \mid Z \oplus Z^{\prime}\right)$. Therefore, $H\left(Z \oplus Z^{\prime}\right) \leq H(Z)+H\left(Z^{\prime}\right)$ with equality if and only if $H\left(Z \mid Z \oplus Z^{\prime}\right)=0$. Now notice that for every $a, b \in\{0,1\}$, $\mathbb{P}\left[Z=a, Z \oplus Z^{\prime}=b\right]=\mathbb{P}\left[Z=a, Z^{\prime}=a \oplus b\right]=\mathbb{P}[Z=a] \mathbb{P}\left[Z^{\prime}=a \oplus b\right]>0$. This implies that for every $a, b \in\{0,1\}, \mathbb{P}\left[Z=a \mid Z \oplus Z^{\prime}=b\right]>0$. Therefore, conditioned on $Z \oplus Z^{\prime}, Z$ is not deterministic and so $H\left(Z \mid Z \oplus Z^{\prime}\right)>0$. We conclude that $H\left(Z \oplus Z^{\prime}\right)<H(Z)+H\left(Z^{\prime}\right)$ which implies that $1+H\left(Z \oplus Z^{\prime}\right)-H(Z)-H\left(Z^{\prime}\right)<1$ and $I\left(U ; V V^{\prime}\right)<I\left(U ; W W^{\prime}\right)$.

Problem 4.

(a) By using the inequality $\ln x \leq x-1$ for $x>0$, we get:

$$
p \log \frac{p+q}{2 p}+q \log \frac{p+q}{2 q} \leq \frac{p}{\ln 2}\left(\frac{p+q}{2 p}-1\right)+\frac{q}{\ln 2}\left(\frac{p+q}{2 q}-1\right)=0 .
$$

Therefore, $p \log \frac{1}{p}+p \log \frac{p+q}{2}+q \log \frac{1}{q}+q \log \frac{p+q}{2} \leq 0$, from which we conclude that $\frac{1}{2}\left(p \log \frac{1}{p}+q \log \frac{1}{q}\right) \leq \frac{p+q}{2} \log \frac{2}{p+q}$.
(b) We have:

$$
\begin{aligned}
H(r) & =\sum_{u \in \mathcal{U}} r(u) \log \frac{1}{r(u)}=\sum_{u \in \mathcal{U}} \frac{p(u)+q(u)}{2} \log \frac{2}{p(u)+q(u)} \\
& \stackrel{(*)}{\geq} \sum_{u \in \mathcal{U}} \frac{1}{2}\left(p(u) \log \frac{1}{p(u)}+q(u) \log \frac{1}{q(u)}\right) \\
& =\frac{1}{2}\left(\sum_{u \in \mathcal{U}} p(u) \log \frac{1}{p(u)}\right)+\frac{1}{2}\left(\sum_{u \in \mathcal{U}} q(u) \log \frac{1}{q(u)}\right)=\frac{1}{2} H(p)+\frac{1}{2} H(q),
\end{aligned}
$$

where ($*$) follows from (a).

Problem 5.

(a) We have:

$$
\begin{aligned}
S & =\sum_{u \in \mathcal{U}} \max \left\{P_{1}(u), P_{2}(u)\right\} \stackrel{(*)}{\leq} \sum_{u \in \mathcal{U}}\left(P_{1}(u)+P_{2}(u)\right) \\
& =\sum_{u \in \mathcal{U}} P_{1}(u)+\sum_{u \in \mathcal{U}} P_{2}(u)=1+1=2,
\end{aligned}
$$

It is easy to see from $(*)$ that $S=2$ if and only if $\max \left\{P_{1}(u), P_{2}(u)\right\}=P_{1}(u)+P_{2}(u)$ for all $u \in \mathcal{U}$, which is equivalent to say that there is no $u \in \mathcal{U}$ for which we have $P_{1}(u)>0$ and $P_{2}(u)>0$. In other words, $S=2$ if and only if

$$
\left\{u \in \mathcal{U}: P_{1}(u)>0\right\} \cap\left\{u \in \mathcal{U}: P_{2}(u)>0\right\}=\varnothing .
$$

(b) Let $l_{i}=\left\lceil\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}\right\rceil$, and let us compute the Kraft sum:

$$
\sum_{i=1}^{M} 2^{-l_{i}} \leq \sum_{i=1}^{M} 2^{-\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}}=\sum_{i=1}^{M} \frac{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}{S}=1
$$

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the codeword associated to a_{i} is l_{i}.
(c) Since the code constructed in (b) is prefix free, it must be the case that $\bar{l} \geq H(U)$. In order to prove the upper bounds, let P^{*} be the true distribution (which is either P_{1} or P_{2}). It is easy to see that $P^{*}\left(a_{i}\right) \leq \max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}$ for all $1 \leq i \leq M$. We
have:

$$
\begin{aligned}
\bar{l} & =\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot l_{i}=\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left\lceil\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}\right\rceil \\
& <\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(1+\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}\right) \\
& =\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(1+\log S+\log _{2} \frac{1}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}}\right) \\
& =1+\log S+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{\max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}} \\
& \stackrel{(*)}{\leq} 1+\log S+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{P^{*}\left(a_{i}\right)}=H(U)+\log S+1 \leq H(U)+2
\end{aligned}
$$

where the inequality $(*)$ uses the fact that $P^{*}\left(a_{i}\right) \leq \max \left\{P_{1}\left(a_{i}\right), P_{2}\left(a_{i}\right)\right\}$ for all $1 \leq$ $i \leq M$.
(d) Now let $l_{i}=\left\lceil\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}\right\rceil$, and let us compute the Kraft sum:

$$
\sum_{i=1}^{M} 2^{-l_{i}} \leq \sum_{i=1}^{M} 2^{-\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}}=\sum_{i=1}^{M} \frac{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}{S}=1
$$

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the codeword associated to a_{i} is l_{i}. Since the code is prefix free, it must be the case that $\bar{l} \geq H(U)$. In order to prove the upper bounds, let P^{*} be the true distribution (which is either P_{1} or \ldots or $\left.P_{k}\right)$. It is easy to see that $P^{*}\left(a_{i}\right) \leq \max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}$ for all $1 \leq i \leq M$. We have:

$$
\begin{aligned}
\bar{l} & =\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot l_{i}=\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left[\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}\right] \\
& <\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(1+\log _{2} \frac{S}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}\right) \\
& =\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(1+\log _{2} S+\log _{2} \frac{1}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}}\right) \\
& =1+\log _{2} S+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}} \\
& \stackrel{(*)}{\leq} 1+\log _{2} S+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{P^{*}\left(a_{i}\right)}=H(U)+\log _{2} S+1,
\end{aligned}
$$

where the inequality $(*)$ uses the fact that $P^{*}\left(a_{i}\right) \leq \max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\}$ for all $1 \leq i \leq M$. Now notice that $\max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\} \leq \sum_{j=1}^{k} P_{j}\left(a_{i}\right)$ for all $1 \leq i \leq M$. Therefore, we have

$$
S=\sum_{i=1}^{M} \max \left\{P_{1}\left(a_{i}\right), \ldots, P_{k}\left(a_{i}\right)\right\} \leq \sum_{i=1}^{M} \sum_{j=1}^{k} P_{j}\left(a_{i}\right)=\sum_{j=1}^{k} \sum_{i=1}^{M} P_{j}\left(a_{i}\right)=\sum_{j=1}^{k} 1=k .
$$

We conclude that $H(U) \leq \bar{l} \leq H(U)+\log S+1 \leq H(U)+\log k+1$.

