ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 16
Information Theory and Coding
Midterm Exam

3 problems, 95 points
3 hours
2 sheets (4 pages) of notes allowed

Good Luck!

Please write your name on each sheet of your answers

Please write the solution of each problem on a separate sheet

Problem 1. (30 points) Consider an encryption system, where the encoder and the decoder share a secret key $K \in \mathcal{K}$. The plaintext $T \in \mathcal{T}$ is encrypted by the encoder f to obtain the ciphertext $C \in \mathcal{C}$ (i.e., $C=f(T, K)$). The plaintext T can be recovered from the ciphertext C by using the decoder g (i.e., $T=g(C, K)$). Let \mathcal{T}, \mathcal{C} and \mathcal{K} denote the alphabets of T, C and K. The mappings $f: \mathcal{T} \times \mathcal{K} \longrightarrow \mathcal{C}$ and $g: \mathcal{C} \times \mathcal{K} \longrightarrow \mathcal{T}$ are deterministic functions.
a) (5 pts) What are the values of $H(C \mid T, K)$ and $H(T \mid C, K)$?
b) (5 pts) Show that $H(C \mid K)=H(T \mid K)$.
c) (5 pts) Suppose that the key K is independent of T. Show that $H(C) \geq H(T)$.
d) (10 pts) Under the same assumption show that $H(C \mid T) \leq H(K)$.
e) (5 pts) Assume that K is independent of T and that C is independent of T. Show that $H(K) \geq H(T)$.

Problem 2. (30 points) Let $\mathcal{U}=\{a, b\}$ and $\left\{U_{i}: i \geq 0\right\}$ be an i.i.d. process with

$$
U_{i}= \begin{cases}a & \text { with probability } p \\ b & \text { with probability } 1-p\end{cases}
$$

where $p>0$. Consider the dictionary $\mathcal{D}_{n}=\{a, b a, b b a, \ldots, \underbrace{b \ldots b}_{n-1} a, \underbrace{b \ldots b}_{n}\}$. Suppose that U_{1}, U_{2}, \ldots is parsed into a sequence of words W_{1}, W_{2}, \ldots from \mathcal{D}_{n}.
a) (5 pts) Show that \mathcal{D}_{n} is a valid prefix-free dictionary.
b) (10 pts) Show that $\mathbb{E}\left[\right.$ length $\left.\left(W_{i}\right)\right]=\frac{1-(1-p)^{n}}{p}$. Hint: $\sum_{j=0}^{n-1} x^{j}=\frac{1-x^{n}}{1-x}$.
c) (5 pts) Calculate $H\left(W_{i}\right)$.
d) (5 pts) Show that there exists a uniquely decodable code $\mathcal{C}_{n}: \mathcal{D}_{n} \rightarrow\{0,1\}^{*}$ such that $\mathbb{E}\left[\right.$ length $\left.\left(\mathcal{C}_{n}\left(W_{i}\right)\right)\right] \leq H(W)+1$.
e) (5 pts) Show that for any $\epsilon>0$ there exists n and a coding scheme based on \mathcal{D}_{n} and \mathcal{C}_{n} which can encode U_{1}, U_{2}, \ldots using on average at most $H(U)+p+\epsilon$ bits/letter.

Problem 3. (35 pts) Recall that s is a prefix of t if t is of the form $t=s v$, the concatenation of s and v for some string v. Similarly we say s is a suffix of t if $t=v s$. E.g., the suffixes of "banana" are "a", "na", "ana", "nana, "anana" and "banana".

A code \mathcal{C} is said to be a fix-free code if and only if no codeword is the prefix or the suffix of any other codeword. Let l_{1}, \ldots, l_{k} be k integers satisfying $l_{1} \leq \ldots \leq l_{k}$. Consider the following algorithm:

- Initialize $A_{i}=\{0,1\}^{l_{i}}$ as the set of available codewords of length l_{i} for every

$$
1 \leq i \leq k
$$

for $i=1 \ldots k$ do
if $A_{i} \neq \emptyset$ then

- Pick $\mathcal{C}(i) \in A_{i}$. for $j=i \ldots k$ do
- (*) Remove from A_{j} all the words which start with $\mathcal{C}(i)$.
- (**) Remove from A_{j} all the words which end with $\mathcal{C}(i)$.
end
else
- Algorithm failure.
end

end

- Return $\mathcal{C}=\{\mathcal{C}(i): 1 \leq i \leq k\}$.
(a) (10 pts) For every $1 \leq i \leq k$ and every $i \leq j \leq k$, show that the number of words in A_{j} that start with $\mathcal{C}(i)$ is $2^{l_{j}-l_{i}}$, and that the number of words in A_{j} that end with $\mathcal{C}(i)$ is $2^{l_{j}-l_{i}}$.
(b) (5 pts) Show that the number of words that are removed from A_{j} in $(*)$ and $(* *)$ is at most $2^{l_{j}-l_{i}+1}$.
(c) (5 pts) Show that if $\sum_{i=1}^{k} 2^{-l_{i}} \leq \frac{1}{2}$, then the algorithm does not fail.
(d) (5 pts) Show that if $\sum_{i=1}^{k} 2^{-l_{i}} \leq \frac{1}{2}$, then the returned code \mathcal{C} is fix-free and that the lengths of its codewords are l_{1}, \ldots, l_{k}.
(e) (10 pts) Let U be a random variable taking values in an alphabet \mathcal{U}. Show that there exists a fix-free code $\mathcal{C}: \mathcal{U} \longrightarrow\{0,1\}^{*}$ such that $H(U) \leq \mathbb{E}[\operatorname{length}(\mathcal{C}(U))] \leq H(U)+2$.

