ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 16	Information Theory and Coding
Midterm Exam	Oct. 28, 2014

3 problems, 95 points3 hours2 sheets (4 pages) of notes allowed

Good Luck!

PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS

Please write the solution of each problem on a separate sheet

PROBLEM 1. (30 points) Consider an encryption system, where the encoder and the decoder share a secret key $K \in \mathcal{K}$. The plaintext $T \in \mathcal{T}$ is encrypted by the encoder f to obtain the ciphertext $C \in \mathcal{C}$ (i.e., C = f(T, K)). The plaintext T can be recovered from the ciphertext C by using the decoder g (i.e., T = g(C, K)). Let \mathcal{T}, \mathcal{C} and \mathcal{K} denote the alphabets of T, C and K. The mappings $f : \mathcal{T} \times \mathcal{K} \longrightarrow \mathcal{C}$ and $g : \mathcal{C} \times \mathcal{K} \longrightarrow \mathcal{T}$ are deterministic functions.

- a) (5 pts) What are the values of H(C|T, K) and H(T|C, K)?
- b) (5 pts) Show that H(C|K) = H(T|K).
- c) (5 pts) Suppose that the key K is independent of T. Show that $H(C) \ge H(T)$.
- d) (10 pts) Under the same assumption show that $H(C|T) \leq H(K)$.
- e) (5 pts) Assume that K is independent of T and that C is independent of T. Show that $H(K) \ge H(T)$.

PROBLEM 2. (30 points) Let $\mathcal{U} = \{a, b\}$ and $\{U_i : i \ge 0\}$ be an i.i.d. process with

$$U_i = \begin{cases} a & \text{with probability } p, \\ b & \text{with probability } 1 - p, \end{cases}$$

where p > 0. Consider the dictionary $\mathcal{D}_n = \{a, ba, bba, \dots, \underbrace{b \dots ba}_{n-1}, \underbrace{b \dots b}_{n}\}$. Suppose that U_1, U_2, \dots is parsed into a sequence of words W_1, W_2, \dots from \mathcal{D}_n .

- a) (5 pts) Show that \mathcal{D}_n is a valid prefix-free dictionary.
- b) (10 pts) Show that $\mathbb{E}[\text{length}(W_i)] = \frac{1-(1-p)^n}{p}$. Hint: $\sum_{j=0}^{n-1} x^j = \frac{1-x^n}{1-x}$.
- c) (5 pts) Calculate $H(W_i)$.
- d) (5 pts) Show that there exists a uniquely decodable code $C_n : \mathcal{D}_n \to \{0,1\}^*$ such that $\mathbb{E}[\operatorname{length}(\mathcal{C}_n(W_i))] \leq H(W) + 1$.
- e) (5 pts) Show that for any $\epsilon > 0$ there exists n and a coding scheme based on \mathcal{D}_n and \mathcal{C}_n which can encode U_1, U_2, \ldots using on average at most $H(U) + p + \epsilon$ bits/letter.

PROBLEM 3. (35 pts) Recall that s is a prefix of t if t is of the form t = sv, the concatenation of s and v for some string v. Similarly we say s is a *suffix* of t if t = vs. E.g., the suffixes of "banana" are "a", "na", "ana", "nana, "anana" and "banana".

A code C is said to be a *fix-free code* if and only if no codeword is the prefix or the suffix of any other codeword. Let l_1, \ldots, l_k be k integers satisfying $l_1 \leq \ldots \leq l_k$. Consider the following algorithm:

- Initialize $A_i = \{0, 1\}^{l_i}$ as the set of available codewords of length l_i for every $1 \le i \le k$. for $i = 1 \dots k$ do if $A_i \ne \emptyset$ then - Pick $C(i) \in A_i$. for $j = i \dots k$ do - (*) Remove from A_j all the words which start with C(i). - (**) Remove from A_j all the words which end with C(i). end else - Algorithm failure. end

- Return
$$\mathcal{C} = \{\mathcal{C}(i) : 1 \le i \le k\}.$$

- (a) (10 pts) For every $1 \le i \le k$ and every $i \le j \le k$, show that the number of words in A_j that start with $\mathcal{C}(i)$ is $2^{l_j-l_i}$, and that the number of words in A_j that end with $\mathcal{C}(i)$ is $2^{l_j-l_i}$.
- (b) (5 pts) Show that the number of words that are removed from A_j in (*) and (**) is at most $2^{l_j-l_i+1}$.
- (c) (5 pts) Show that if $\sum_{i=1}^{k} 2^{-l_i} \leq \frac{1}{2}$, then the algorithm does not fail.
- (d) (5 pts) Show that if $\sum_{i=1}^{k} 2^{-l_i} \leq \frac{1}{2}$, then the returned code C is fix-free and that the lengths of its codewords are l_1, \ldots, l_k .
- (e) (10 pts) Let U be a random variable taking values in an alphabet \mathcal{U} . Show that there exists a fix-free code $\mathcal{C} : \mathcal{U} \longrightarrow \{0,1\}^*$ such that $H(U) \leq \mathbb{E}[\text{length}(\mathcal{C}(U))] \leq H(U)+2$.