ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 17
Midterm Solutions

Information Theory and Coding
Oct. 28, 2014

Problem 1.

(a) Since C is a function of $(T, K), H(C \mid T, K)=0$. Similarly, $H(T \mid C, K)=0$.
(b) Expanding $H(C T \mid K)$ by the chain rule in two ways we find $H(C \mid K)+H(T \mid C K)=$ $H(T \mid K)+H(C \mid T K)$. From (a) it follows that $H(C \mid K)=H(T \mid K)$.
(c) From (b) and that conditioning reduces entropy $H(C) \geq H(C \mid K)=H(T \mid K)=H(T)$ where the last equality is because T and K are independent.
(d) As C is a function of T and K we have $H(C \mid T) \leq H(T, K \mid T)=H(K \mid T) \leq H(K)$. Note that the assumption that T and K is independent is not necessary for this conclusion.
(e) From (c) we have $H(C) \geq H(T)$, and from (d) we have $H(K) \geq H(C \mid T)$. Moreover, we have $H(C \mid T)=H(T)$ from the independence of C and T, Consequently $H(K) \geq$ $H(C) \geq H(T)$.

Problem 2.

(a) The words of \mathcal{D}_{n} are $\left(w_{i}=b^{i-1} a, i=1, \ldots, n\right)$ and $w_{n+1}=b^{n}$. Consider an infinite sequence $u_{1} u_{2} \ldots$. Denote by $k=0,1, \ldots$ be the number of b 's at the beginning of $u_{1} u_{2} \ldots$. If $k<n$ the sequence $u_{1} u_{2} \ldots$ is parsed as $w_{k+1} \ldots$, and if $k \geq n$ the sequence is parsed as $w_{n+1} \ldots$. Thus the dictionary is valid. Also, the prefixes of any w_{i} are of the form b^{j} with $j<n$. Since no dictionary word is of the form b^{j} with a j stricty less than n the dictionary is prefix free.
(b) Since the source is memoryless and since the dictionary is valid and prefix free we know that ($W_{i}, i=1,2, \ldots$) are i.i.d., so it is sufficient to consider the statistics of $W=W_{1}$. Note that length (W) is never strictly larger than n and for $i=1, \ldots, n$, length $(W) \geq i$ if and only if $U_{1} U_{2} \ldots$ start with b^{i-1}. Thus

$$
\operatorname{Pr}(\operatorname{length}(W) \geq i)= \begin{cases}(1-p)^{i-1} & 1 \leq i \leq n \\ 0 & i>n\end{cases}
$$

Thus $E[\operatorname{length}(W)]=\sum_{i=1}^{n}(1-p)^{i-1}=\left[1-(1-p)^{n}\right] / p$.
(c) We know that $H(W)=H(U) E[\operatorname{length}(W)]$. Since $H(U)=h_{2}(p)=p \log \frac{1}{p}+(1-$ p) $\log \frac{1}{1-p}$, we find $H(W)=h_{2}(p) \frac{1-(1-p)^{n}}{p}$.
(d) The Huffman code \mathcal{C}_{n} for W has the required property.
(e) Parsing the sequence $U_{1} U_{2} \ldots$ using \mathcal{D}_{n} and encoding the words by \mathcal{C}_{n} will yield a scheme that uses

$$
\frac{E\left[\text { length }\left(\mathcal{C}_{n}(W)\right]\right.}{E[\operatorname{length}(W)]} \quad \text { bits/letter. }
$$

As
$\frac{E\left[\operatorname{length}\left(\mathcal{C}_{n}(W)\right]\right.}{E[\operatorname{length}(W)]} \leq \frac{H(W)+1}{E[\operatorname{length}(W)]}=H(U)+\frac{1}{E[\operatorname{length}(W)]}=H(U)+\frac{p}{1-(1-p)^{n}}$
and since as n gets large $(1-p)^{n} \rightarrow 0$, we see that we can make the number of bits per letter as close to $H(U)+p$ as desired by taking a large enough n.

Problem 3.

(a) The number of binary sequences of length n that have a given substring of length $m \leq n$ is 2^{n-m} : for each of the $n-m$ positions outside the substring we have 2 choices. Consequenty the number of words in A_{j} that have $C(i)$ as an initial substring (prefix) is $2^{l_{j}-l_{i}}$ and similarly for the number of words that have $C(i)$ as a suffix.
(b) The words removed in (*) and ($* *$) are precisely those discussed in (a). As some of those may have been removed in a prior step, and since the words in ($*$) and ($* *$) may overlap, the number of words removed is at most $2 \cdot 2^{l_{j}-l_{i}}=2^{l_{j}-l_{i}+1}$.
(c) The number of words removed from A_{i} at the time we test $A_{i} \neq \emptyset$ is at most

$$
\sum_{m=1}^{i-1} 2^{l_{i}-l_{m}+1}=2^{l_{i}} 2 \sum_{m=1}^{i-1} 2^{-l_{m}}<2^{l_{i}}
$$

since $\sum_{m=1}^{i-1} 2^{-l_{m}}<\sum_{m=1}^{k} 2^{-l_{m}} \leq \frac{1}{2}$. As the initial size of A_{i} was $2^{l_{i}}$ we see that A_{i} is not empty at the time of the test, and thus the algorithm will not fail.
(d) We know from (c) that algorithm will not fail. Since $\mathcal{C}(i)$ is chosen from A_{i} it is of length l_{i}. Also, steps $(*)$ and $(* *)$ ensure that $\mathcal{C}(i)$ is neither a prefix nor a suffix of $\mathcal{C}(j)$ for $j>i$. On the other hand since $l_{1} \leq \cdots \leq l_{k}, \mathcal{C}(i)$ can not be a prefix or suffix of $\mathcal{C}(j)$ for $j<i$ either. So the returned code is fix-free.
(e) Choosing $l(u)=\left\lceil\log \frac{1}{p(u)}\right\rceil+1$ yields

$$
\log \frac{1}{p(u)}+1 \leq l_{i} \leq \log \frac{1}{p(u)}+2
$$

The right hand side inequality ensures $E[l(U)] \leq H(U)+2$, whereas the left hand side inequality ensures $2^{-l(u)} \leq p(u) / 2$ and thus $\sum_{u} 2^{-l(u)} \leq 1 / 2$ and consequently the existence of a fix-free code \mathcal{C} with these lengths.

