ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 24

Homework 10 (Graded - Due on Dec.8, 2014)

Information Theory and Coding
Nov. 25, 2014

Problem 1. (35 pts) Suppose we have a source that produces an independent and identically distributed sequence $U_{1} U_{2} \ldots$ according to p_{U}. We design a source coder in the following fashion:

- generate $M=2^{n R}$ sequences
$U(1)=U(1)_{1} \ldots U(1)_{n}$
\vdots
$U(M)=U(M)_{1} \ldots U(M)_{n}$
by drawing $\left\{U(m)_{i}: 1 \leq i \leq n, 1 \leq m \leq M\right\}$ independently according to p_{U}.
- encode $U_{1} \ldots U_{n}$ as follows:
if there exists m such that $U_{1} \ldots U_{n}=U(m)$ send the $\log _{2} M=n R$ bit representation of m else declare encoding failure.
(a) (10 pts) Conditioned on $U^{n}=u^{n}$, what is the probability that $U(1) \neq U^{n}$?
(b) (10 pts) Conditioned on $U^{n}=u^{n}$, what is the probability of encoding failure?
(c) (10 pts) Show that \mathbb{P} ("failure" $\left.\mid u^{n} \in \mathcal{T}_{\epsilon}^{n}\left(p_{U}\right)\right) \leq \exp \left(-2^{n R+n H(U)(1+\epsilon)}\right)$.

Hint: $(1-x)^{M} \leq \exp (-M x)$
(d) (5 pts) Show that if $R>H(U)$ then \mathbb{P} (error) $\rightarrow 0$ as n gets large.

Problem 2. (30 pts) Let $h_{2}(p)=-p \log p-(1-p) \log (1-p)$ denote the binary entropy function defined on the interval $\left[0, \frac{1}{2}\right]$. Note that on this interval h_{2} is a bijection, so its inverse $h_{2}^{-1}:[0,1] \longrightarrow\left[0, \frac{1}{2}\right]$ is well defined. Define $p * q=p(1-q)+q(1-p)$ and let \oplus be the XOR operation.

Suppose X_{1} and X_{2} are two binary independent random variables with $H\left(X_{1}\right)=h_{2}\left(p_{1}\right)$, $H\left(X_{2}\right)=h_{2}\left(p_{2}\right)$, where $0 \leq p_{1}, p_{2} \leq \frac{1}{2}$.
(a) (5 pts) Show that $H\left(X_{1} \oplus X_{2}\right)=h_{2}\left(p_{1} * p_{2}\right)$.
(b) (5 pts) Suppose that $\left(X_{1}, Y\right)$ is independent of X_{2}, where Y is a random variable in \mathcal{Y}. For every $y \in \mathcal{Y}$, let $0 \leq p_{1}(y) \leq \frac{1}{2}$ be such that $H\left(X_{1} \mid Y=y\right)=h_{2}\left(p_{1}(y)\right)$. We again assume that $H\left(X_{2}\right)=h_{2}\left(p_{2}\right)$ and $0 \leq p_{2} \leq \frac{1}{2}$.
Show that $H\left(X_{1} \mid Y\right)=\sum_{y} h_{2}\left(p_{1}(y)\right) q(y), H\left(X_{1} \oplus X_{2} \mid Y\right)=\sum_{y} h_{2}\left(p_{2} * p_{1}(y)\right) q(y)$, where $q(y)=\mathbb{P}_{Y}(y)$ for every $y \in \mathcal{Y}$.
(c) (10 pts) Show that for every $0 \leq p_{2} \leq \frac{1}{2}$, the mapping $f:[0,1] \longrightarrow \mathbb{R}$ defined as $f(h)=h_{2}\left(p_{2} * h_{2}^{-1}(h)\right)$ is convex.
Hint: The graph of $f(h)$ can be drawn by the parametric curve $p \rightarrow\left(h_{2}(p), h_{2}\left(p_{2} * p\right)\right)$ so it is enough to show that $p \rightarrow \frac{\frac{\partial}{\partial p} h_{2}\left(p_{2} * p\right)}{\frac{\partial}{\partial p} h_{2}(p)}$ is increasing in $0 \leq p \leq 1 / 2$.
(d) (5 pts) Suppose $H\left(X_{1} \mid Y\right)=h_{2}\left(p_{1}\right), H\left(X_{2}\right)=h_{2}\left(p_{2}\right)$. Show that $H\left(X_{1} \oplus X_{2} \mid Y\right) \geq$ $h\left(p_{1} * p_{2}\right)$.
(e) (5 pts) Suppose (X_{1}, Y_{1}) is independent of $\left(X_{2}, Y_{2}\right)$ and $H\left(X_{1} \mid Y_{1}\right)=h_{2}\left(p_{1}\right), H\left(X_{2} \mid Y_{2}\right)=$ $h_{2}\left(p_{2}\right)$. Show that $H\left(X_{1} \oplus X_{2} \mid Y_{1}, Y_{2}\right) \geq h\left(p_{1} * p_{2}\right)$.

Problem 3. (35 pts) Fix $0<\delta<1$ and let (U, V) be a random pair in $\mathcal{U} \times \mathcal{V}$. For each $u^{n} \in \mathcal{U}^{n}$ and each $a \in \mathcal{U}$, let $n_{a}\left(u^{n}\right)$ be the number of appearances of a in the sequence u^{n}. Similarly, for each $u^{n} \in \mathcal{U}^{n}, v^{n} \in \mathcal{V}^{n}, a \in \mathcal{U}$ and $b \in \mathcal{V}$ let $n_{a, b}\left(u^{n}, v^{n}\right)$ be the number of appearances of (a, b) in $\left(u^{n}, v^{n}\right)$. Recall that for every $\delta>0, u^{n} \in \mathcal{T}_{\delta}^{n}\left(p_{U}\right)$ if and only if $\mathbb{P}_{U}(a)(1-\delta) \leq \frac{n_{a}\left(u^{n}\right)}{n} \leq \mathbb{P}_{U}(a)(1+\delta)$ for every $a \in \mathcal{U}$. Similarly, $\left(u^{n}, v^{n}\right) \in \mathcal{T}_{\delta}^{n}\left(p_{U, V}\right)$ if and only if $\mathbb{P}_{U, V}(a, b)(1-\delta) \leq \frac{n_{a, b}\left(u^{n}, v^{n}\right)}{n} \leq \mathbb{P}_{U, V}(a, b)(1+\delta)$ for every $a \in \mathcal{U}$ and $b \in \mathcal{V}$. Throughout this problem we fix $u^{n} \in \mathcal{T}_{\delta}^{n}\left(p_{U}\right)$.
(a) (10 pts) Show that if

$$
\begin{equation*}
n_{a}\left(u^{n}\right) \mathbb{P}_{V \mid U}(b \mid a)(1-\delta) \leq n_{a, b}\left(u^{n}, v^{n}\right) \leq n_{a}\left(u^{n}\right) \mathbb{P}_{V \mid U}(b \mid a)(1+\delta) \tag{1}
\end{equation*}
$$

for every $a \in \mathcal{U}$ and $b \in \mathcal{V}$, then $\left(u^{n}, v^{n}\right) \in \mathcal{T}_{3 \delta}^{n}\left(p_{U, V}\right)$.
(b) (10 pts) Show that for n large enough, there are at least $\prod_{a \in \mathcal{U}}\left[(1-\delta) 2^{n_{a}\left(u^{n}\right)(H(V \mid U=a)-\delta)}\right]$ sequences v^{n} which satisfy (1) for every $a \in \mathcal{U}$ and every $b \in \mathcal{V}$. Hint: Recall that for any random variable X, we have $\left|\mathcal{T}_{\delta}^{n}\left(p_{X}\right)\right| \geq(1-\delta) 2^{n[H(X)-\delta]}$.
(c) (5 pts) Deduce that for n large enough, the number of sequences $v^{n} \in \mathcal{V}^{n}$ satisfying $\left(u^{n}, v^{n}\right) \in \mathcal{T}_{3 \delta}^{n}\left(p_{U, V}\right)$ is at least $(1-\delta)^{|\mathcal{U}|} 2^{n[H(V \mid U)-(\log |\mathcal{U}|+1) \delta]}$.

Now let V_{1}, \ldots, V_{n} be n independent random variables in \mathcal{V} which have the same distribution as V.
(d) (5 pts) Show that if $\left(u^{n}, v^{n}\right) \in \mathcal{T}_{3 \delta}^{n}\left(p_{U, V}\right)$, then $\mathbb{P}_{V^{n}}\left(v^{n}\right) \geq 2^{-n[H(V)+3 \delta]}$.
(e) (5 pts) Deduce that $\mathbb{P}\left[\left(u^{n}, V^{n}\right) \in \mathcal{T}_{3 \delta}^{n}\left(p_{U, V}\right)\right] \geq(1-\delta)^{|\mathcal{U}|} 2^{-n[I(U ; V)+(\log |\mathcal{U}|+4) \delta]}$.

