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Problem 1. Let {fi : R → R}1≤i≤n be a set of convex functions on R and ci ≥ 0 for all
i ∈ {1, 2, . . . , n}.

(a) Show that the function f : x 7→
∑n

i=1 cifi(x) is convex.

(b) Show that the function g : (x1, x2, . . . , xn) 7→
∑n

i=1 cifi(xi) is convex.

Problem 2. Let {fi(x)}i∈I be a set of convex real-valued functions defined over D. As-
suming that f(x) = supi∈I fi(x) is finite for all x ∈ D, show that f(x) is convex.

Problem 3. Let f : U → R be a convex function on U and assume that there exists
a, b ∈ R such that a ≤ f(x) ≤ b for all x ∈ U . Let h be an increasing convex function
defined on the interval [a, b]. Show that the function g = h ◦ f is convex on U .

Problem 4. A function f(v) is defined on a convex region R of a vector space. Show that
f(v) is convex iff the function f(λv1 + (1− λ)v2) is a convex function of λ, 0 ≤ λ ≤ 1, for
all v1, v2 ∈ R.

Problem 5. Suppose Z is uniformly distributed on [−1, 1], and X is a random variable,
independent of Z, constrainted to take values in [−1, 1]. What distribution for X maximizes
the entropy of X + Z? What distribution of X maximizes the entropy of XZ?

Problem 6. Show that among all non-negative random variables with mean λ the expo-
nential random variable has the largest differential entropy. Hint: let p(x) = e−x/λ/λ be
the density of the exponential random variable and let q(x) be some other density with
mean λ. Consider D(q‖p) and mimic the proof in the class for the maximal entropy of the
Gaussian.

Problem 7. Consider an additive noise channel with input x ∈ R, and output

Y = x+ Z

where Z is a real random variable independent of the input x, has zero mean and variance
equal to σ2.

In this problem we prove in two different ways that the Gaussian channel has the
smallest capacity among all additive noise channels of a given noise variance. Let Nσ2

denote the Gaussian density with zero mean and variance σ2.
First Method: Let X be a Gaussian random variable with zero-mean and variance P .

Let NP denote its density NP (x) = 1√
2πσ2

e−
x2

2σ2 .

(a) Show that
I(X;Y ) = H(X)−H(X − αY |Y )

for any α ∈ R.

(b) Observe that

H(X − αY ) ≤ 1

2
log 2πeE((X − αY )2)

for any α ∈ R.



(c) Deduce from (a) and (b) that

I(X;Y ) ≥ H(X)− 1

2
log 2πeE((X − αY )2)

for any α ∈ R.

(d) Show that

E((X − αY )2) ≥ σ2P

σ2 + P

with equality if and only if α = P
P+σ2 .

(e) Deduce from (c) and (d) that

I(X;Y ) ≥ 1

2
log

(
1 +

P

σ2

)
and conclude that the Gaussian channel has the smallest capacity among all additive
noise channels of a given noise variance.

Second Method:

(a) Denote the input probability density by pX . Verify that

I(X;Y ) =

∫∫
pX(x)pZ(y − x) ln

pZ(y − x)

pY (y)
dxdy nats.

where pY is the probability density of the output when the input has density pX .

(b) Now set pX = NP . Verify that

1
2

ln
(
1 + P/σ2

)
=

∫∫
pX(x)pZ(y − x) ln

Nσ2(y − x)

NP+σ2(y)
dxdy.

(c) Still with pX = NP , show that

1
2

ln(1 + P/σ2)− I(X;Y ) ≤ 0.

[Hint: use (a) and (b) and ln t ≤ t− 1.]

(d) Show that an additive noise channel with noise variance σ2 and input power P has
capacity at least 1

2
log2(1 + P/σ2) bits per channel use. Conclude that the Gaussian

channel has the smallest capacity among all additive noise channels of a given noise
variance.
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