ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 20
Information Theory and Coding
Homework 8
November 11, 2014

Problem 1. Channels with memory have higher capacity. Consider a binary symmetric channel with $Y_{i}=X_{i} \oplus Z_{i}$, where \oplus is $\bmod 2$ addition, and $X_{i}, Y_{i} \in\{0,1\}$.

Suppose that $\left\{Z_{i}\right\}$ has constant marginal probabilities $\operatorname{Pr}\left\{Z_{i}=1\right\}=p=1-\operatorname{Pr}\left\{Z_{i}=\right.$ $0\}$, but that $Z_{1}, Z_{2}, \ldots, Z_{n}$ are not necessarily independent. Assume that $\left(Z_{1}, \ldots, Z_{n}\right)$ is independent of the input $\left(X_{1}, \ldots, X_{n}\right)$. Let $C=\log 2-H(p, 1-p)$. Show that

$$
\max _{p_{X_{1}, X_{2}, \ldots, X_{n}}} I\left(X_{1}, X_{2}, \ldots, X_{n} ; Y_{1}, Y_{2}, \ldots, Y_{n}\right) \geq n C
$$

Problem 2. Consider two discrete memoryless channels. The input alphabet, output alphabet, transition probabities and capacity of the k 'th channel is given by $\mathcal{X}_{k}, \mathcal{Y}_{k}, p_{k}$ and C_{k} respectively ($k=1,2$). The channels operate independently. A communication system has access to both channels, that is, the effective channel between the transmitter and receiver has input alphabet $\mathcal{X}_{1} \times \mathcal{X}_{2}$, output alphabet $\mathcal{Y}_{1} \times \mathcal{Y}_{2}$ and transition probabilities $p_{1}\left(y_{1} \mid x_{1}\right) p_{2}\left(y_{2} \mid x_{2}\right)$. Find the capacity of this channel.

Problem 3. Show that a cascade of n identical binary symmetric channels,

$$
X_{0} \rightarrow \mathrm{BSC} \# 1 \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n-1} \rightarrow \mathrm{BSC} \# \mathrm{n} \rightarrow X_{n}
$$

each with raw error probability p, is equivalent to a single BSC with error probability $\frac{1}{2}\left(1-(1-2 p)^{n}\right)$ and hence that $\lim _{n \rightarrow \infty} I\left(X_{0} ; X_{n}\right)=0$ if $p \neq 0,1$. Thus, if no processing is allowed at the intermediate terminals, the capacity of the cascade tends to zero.

Problem 4. Consider a memoryless channel with transition probability matrix $P_{Y \mid X}(y \mid x)$, with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. For a distribution Q over \mathcal{X}, let $I(Q)$ denote the mutual information between the input and the output of the channel when the input distribution is Q. Show that for any two distributions Q and Q^{\prime} over \mathcal{X},

$$
I\left(Q^{\prime}\right) \leq \sum_{x \in \mathcal{X}} Q^{\prime}(x) \sum_{y \in \mathcal{Y}} P_{Y \mid X}(y \mid x) \log \left(\frac{P_{Y \mid X}(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} P_{Y \mid X}\left(y \mid x^{\prime}\right) Q\left(x^{\prime}\right)}\right) .
$$

