ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 14

Information Theory and Coding
Homework 6
October 21, 2014

Problem 1. Let the alphabet be $\mathcal{X}=\{a, b\}$. Consider the infinite sequence $X_{1}^{\infty}=$ abababababababab......
(a) What is the compressibility of $\rho\left(X_{1}^{\infty}\right)$ using finite-state machines (FSM) as defined in class? Justify your answer.
(b) Design a specific FSM, call it M, with at most 4 states and as low a $\rho_{\mathrm{M}}\left(X_{1}^{\infty}\right)$ as possible. What compressibility do you get?
(c) Using only the result in point (a) but no specific calculations, what is the compressibility of X_{1}^{∞} under the Lempel-Ziv algorithm, i.e., what is $\rho_{\mathrm{LZ}}\left(X_{1}^{\infty}\right)$?
(d) Re-derive your result from point (c) but this time by means of an explicit computation.

Problem 2. From the notes on the Lempel-Ziv algorithm, we know that the maximum number of distinct words c a string of length n can be parsed into satisfies

$$
n>c \log _{K}\left(c / K^{3}\right)
$$

where K is the size of the alphabet the letters of the string belong to. This inequality lower bounds n in terms of c. We will now show that n can also be upper bounded in terms of c.
(a) Show that, if $n \geq \frac{1}{2} m(m-1)$, then $c \geq m$.
(b) Find a sequence for which the bound in (a) is met with equality.
(c) Show now that $n<\frac{1}{2} c(c+1)$.

Problem 3. Let U_{1}, U_{2}, \ldots be the letters generated by a memoryless source with alphabet \mathcal{U}, i.e., U_{1}, U_{2}, \ldots are i.i.d. random variables taking values in the alphabet \mathcal{U}. Suppose the distribution p_{U} of the letters is known to be one of the two distributions, p_{1} or p_{2}. That is, either
(i) $\operatorname{Pr}\left(U_{i}=u\right)=p_{1}(u)$ for all $u \in \mathcal{U}$ and $i \geq 1$, or
(ii) $\operatorname{Pr}\left(U_{i}=u\right)=p_{2}(u)$ for all $u \in \mathcal{U}$ and $i \geq 1$.

Let $K=|\mathcal{U}|$ be the number of letters in the alphabet \mathcal{U}, let $H_{1}(U)$ denote the entropy of U under (i), and $H_{2}(U)$ denote the entropy of U under (ii). Let $p_{j, \min }=\min _{u \in \mathcal{U}} p_{j}(u)$ be the probability of the least likely letter under distribution p_{j}. For a word $w=u_{1} u_{2} \ldots u_{n}$, let $p_{j}(w)=\prod_{i=1}^{n} p_{j}\left(u_{i}\right)$ be its probability under the distribution p_{j}, define $p_{j}($ empty string $)=$ 1. Let $\hat{p}(w)=\max _{j=1,2} p_{j}(w)$.
(a) Given a positive integer α, let \mathcal{S} be a set of α words w with largest $\hat{p}(\cdot)$. Show that \mathcal{S} forms the intermediate nodes of a K-ary tree \mathcal{T} with $1+(K-1) \alpha$ leaves. [Hint: if $w \in \mathcal{S}$ what can we say about its prefixes?]

Let \mathcal{W} be the leaves of the tree \mathcal{T}, by part (a) they form a valid, prefix-free dictionary for the source. Let $H_{1}(W)$ and $H_{2}(W)$ be the entropy of the dictionary words under distributions p_{1} and p_{2}.
(b) Let $Q=\min _{v \in \mathcal{S}} \hat{p}(v)$. Show that for any $w \in \mathcal{W}, \hat{p}(w) \leq Q$.
(c) Show that for $j=1,2, H_{j}(W) \geq \log (1 / Q)$.
(d) Let \mathcal{W}_{1} be the set of leaves w such that $p_{1}($ parent of $w) \geq p_{2}($ parent of $w)$. Show that $\left|\mathcal{W}_{1}\right| Q p_{1, \text { min }} \leq 1$.
(e) Show that $|\mathcal{W}| \leq \frac{1}{Q}\left(1 / p_{1, \text { min }}+1 / p_{2, \text { min }}\right)$.
(f) Let $E_{j}[\operatorname{length}(W)]$ denote the expected length of a dictionary word under distribution j. The variable-to-fixed-length code based on the dictionary constructed above emits

$$
\rho_{j}=\frac{\lceil\log |\mathcal{W}|\rceil}{E_{j}[\operatorname{length}(W)]} \quad \text { bits per source letter }
$$

if the distribution of the source is p_{j}. Show that

$$
\rho_{j}<H_{j}(U)+\frac{1+\log \left(1 / p_{1, \min }+1 / p_{2, \min }\right)}{E_{j}[\operatorname{length}(W)]} .
$$

(Hint: relate $\log |\mathcal{W}|$ to $H_{j}(W)$ and recall that $H_{j}(W)=H_{j}(U) E_{j}[\operatorname{length}(W)]$.)
(g) Show that as α gets larger, this method compresses the source to its entropy for both the assumptions (i), (ii) given above.

