ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 8	Information Theory and Coding
Homework 4 (Graded - Due on Oct. 20, 2014)	Oct. 07, 2014

PROBLEM 1. (20 pts)

- (a) (10 pts) Let U be a random variable taking values in the alphabet \mathcal{U} , and let f be a mapping from \mathcal{U} to \mathcal{V} . Show that $H(f(U)) \leq H(U)$.
- (b) (10 pts) Let U and V be two random variables taking values in the alphabets \mathcal{U} and \mathcal{V} respectively, and let f be a mapping from \mathcal{V} to \mathcal{W} . Show that $H(U|V) \leq H(U|f(V))$.

PROBLEM 2. (15 pts)

(a) (10 pts) Let U and \hat{U} be two random variables taking values in the same alphabet \mathcal{U} , and let $p_e = \mathbb{P}[U \neq \hat{U}]$. Show that $H(U|\hat{U}) \leq h(p_e) + p_e \log(|\mathcal{U}| - 1)$, where $h(p) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$. Hint: use the random variable $W \in \{0,1\}$ defined by

$$W = \begin{cases} 1 \text{ if } U \neq \hat{U}, \\ 0 \text{ otherwise.} \end{cases}$$

(b) (5 pts) Let U and V be two random variables taking values in the alphabets \mathcal{U} and \mathcal{V} respectively, and let f be a mapping from \mathcal{V} to \mathcal{U} . Define $p_e = \mathbb{P}[U \neq f(V)]$. Show that $H(U|V) \leq h(p_e) + p_e \log(|\mathcal{U}| - 1)$.

PROBLEM 3. (20 pts) Let U and W be two independent random variables uniformly distributed in $\{0, 1\}$, and $W' = U \oplus W$. Moreover, Z and Z' are two independent Bernoulli(p)random variables in $\{0, 1\}$, where $p \in (0, \frac{1}{2})$. We also assume that Z and Z' are independent from U and W. Define $V = U \oplus Z$ and $V' = U \oplus Z'$.

- (a) (5 pts) Show that $U \Leftrightarrow V \Leftrightarrow W$ and $U \Leftrightarrow V' \Leftrightarrow W'$ are Markov chains. Deduce that $I(U;V) \ge I(U;W)$ and $I(U;V') \ge I(U;W')$.
- (b) (5 pts) Compute I(U; V), I(U; W), I(U; V') and I(U; W'). Deduce that I(U; V) > I(U; W) and I(U; W) > I(U; W').
- (c) (10 pts) Compute I(U; VV') and I(U; WW'). Deduce that I(U; VV') < I(U; WW').

PROBLEM 4. (15 pts)

- (a) (10 pts) Show that for every $p, q \ge 0$, we have $\frac{1}{2}\left(p\log\frac{1}{p} + q\log\frac{1}{q}\right) \le \frac{p+q}{2}\log\frac{2}{p+q}$.
- (b) (5 pts) The entropy H(U) of a random variable U is a function of the distribution p_U of the random variable. Denote by h(p) the entropy of a random variable with distribution p, i.e., $h(p) = \sum_{u \in \mathcal{U}} p(u) \log \frac{1}{p(u)}$. Let p and q be two probability distributions on the same alphabet \mathcal{U} , and let r be the probability distribution on \mathcal{U} defined by $r(u) = \frac{p(u) + q(u)}{2}$ for every $u \in \mathcal{U}$. Show that $H(r) \ge \frac{1}{2}H(p) + \frac{1}{2}H(q)$.

PROBLEM 5. (30 pts) Consider a source U with alphabet \mathcal{U} and suppose that we know that the true distribution of U is either P_1 or P_2 . Define $S = \sum_{u \in \mathcal{U}} \max\{P_1(u), P_2(u)\}$.

- (a) (10 pts) Show that $S \leq 2$ and give a necessary and sufficient condition for equality.
- (b) (5 pts) Show that there exists a prefix-free code where the length of the codeword associated to each symbol $u \in \mathcal{U}$ is $l(u) = \left\lceil \log_2 \frac{S}{\max\{P_1(u), P_2(u)\}} \right\rceil$.
- (c) (5 pts) Show that the average length \overline{l} (using the true distribution) of the code constructed in (b) satisfies $H(U) \leq \overline{l} < H(U) + \log S + 1 \leq H(U) + 2$.

Now assume that the true distribution of U is one of k distributions P_1, \ldots, P_k .

(d) (10 pts) Show that there exists a prefix-free code satisfying $H(U) \leq \overline{l} < H(U) + \log_2 S + 1 \leq H(U) + \log_2 k + 1$, where $S = \sum_{u \in \mathcal{U}} \max\{P_1(u), \dots, P_k(u)\}.$