ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 31	Information Theory and Coding
Solutions to Final Exam	Jan. 22, 2015

PROBLEM 1.

(a)

$$p_{i+1} = \Pr(U_{i+1} = 0) = \Pr(U_{i+1} = 0, U_i = 0) + \Pr(U_{i+1} = 0, U_i = 1)$$

= $\Pr(U_{i+1} = 0|U_i = 0) \Pr(U_i = 0) + \Pr(U_{i+1} = 0|U_i = 1) \Pr(U_i = 1)$
= $\Pr(U_{i+1} = 0|U_i = 0) \Pr(U_i = 0) + \Pr(U_{i+1} = 0|U_i = 1) \Pr(U_i = 1)$
= $(1 - a_i)p_i + b_i(1 - p_i).$

- (b) By stationarity p_i does not change with *i*. Also by stationarity $P(U_{i+1} = 1, U_i = 0) = a_i p_i$ does not change with *i*, thus a_i does not change with *i*. Similar reasoning holds for b_i .
- (c) For stationary processes the entropy rate is given by $\lim_i H(U_i|U^{i-1})$, and we also know that the sequence in the limit is monotone non-increasing. In particular, $H(U_2|U_1)$ is an upper bound on the entropy rate. Furthermore $H(U_2|U_1 = 0) = h_2(a)$, $H(U_2|U_1 = 1) = h_2(b)$, and thus $H(U_2|U_1) = ph_2(a) + (1-p)h_2(b)$.
- (d) For a Markov process, the entropy rate equals $H(U_2|U_1)$, so the upper bound in (c) is the exact value. Thus, among all processes with the same transition probabilities the Markov process has the largest entropy rate.
- (e) For such a process we see that b = 1, and from part (a) we find that p = 1/(1+a). By (c) and (d) we find that the maximal entropy rate for a given value of the parameter a is $h_2(a)/(1+a)$. It only remains to maximize this quantity to over the choice of a to find the maximal entropy rate. (Using standard tools of calculus it is easy to show that the maximum is achieved when $a = (3 \sqrt{5})/2$.)

Problem 2.

(a) The difference between the left and right sides is

$$\sum_{x,y} Q^*(x)W(y|x)\log\frac{P^*(y)}{P(y)} = \sum_y P^*(y)\log\frac{P^*(y)}{P(y)} = D(P^*||P) \ge 0.$$

- (b) The left hand side of (a), is upper bounded by $\max_{x} \sum_{y} W(y|x) \log \frac{W(y|x)}{P(y)}$ whereas the right hand side of (a) equals C.
- (c) The Kuhn-Tucker conditions for a capacity achieving input distribution Q^* were derived in class to be

$$\sum_{y} W(y|x) \log \frac{W(y|x)}{P^*(y)} \le C, \quad \text{for all } x$$

with equality whenever $Q^*(x) > 0$. Consequently, $\max_x \sum_y W(y|x) \log \frac{W(y|x)}{P^*(y)} = C$.

(d) With $f(Q) = \max_x \sum_y W(y|x) \log \frac{W(y|x)}{P(y)}$, from (b) we see that $f(Q) \ge C$ and that $f(Q^*) = C$. Thus $C = \min_Q f(Q)$.

Problem 3.

- (a) Note that Y = 1 if and only if X = 1 and the channel does not flip. Thus, $\Pr(Y = 1) = (1-p)/2$. An incompatibility between \tilde{X} and Y occurs if only if $\tilde{X} = 0$ and Y = 1. Since these two events are independent $\alpha(p) = 1 (1-p)/4 = (3+p)/4$. Furthermore, since \tilde{X} and Y are independent, conditining on Y does not change the distribution of \tilde{X} ; Thus $\beta(p) = 1/2$.
- (b) Since (\tilde{X}_i, Y_i) are i.i.d., and since for each i (\tilde{X}_i, Y_i) is compatible with probability $\alpha(p)$, we see that \tilde{X}^n and Y^n will be compatible with probability $\alpha(p)^n$.
- (c) Without loss of generality assume that $Y_1 = \cdots = Y_k = 1$ and the remaining Y_i 's are 0. Since when $Y_i = 0$ any value of \tilde{X}_i is compatible, we see that \tilde{X}^n is compatible with \tilde{Y}^n if and only if $\tilde{X}_1 = \ldots = \tilde{X}_k = 1$. By the independence of \tilde{X}^n from Y^n , this event has probability $\beta(p)^k = 2^{-k}$.
- (d) Since for the correct message m, Xⁿ(m) is always compatible with Yⁿ, the receiver will make an error if and only if one of the M-1 incorrect messages is compatible with Yⁿ. By (b) for each of these incorrect messages the probability of being compatible with Yⁿ is α(p)ⁿ, and by the union bound the error probability is upper bounded by

$$(M-1)\alpha(p)^n < 2^{nR}\alpha(p)^n = 2^{n(R+\log\alpha(p))}$$

which approaches zero as long as $R < R_0 = -\log \alpha(p)$.

(e) Let us compute the error probability conditional on the number of 1's, K, in Y^n . By (c), conditional on K = k, each of incorrect codewords has a probability $\beta(p)^k$ of being compatible with Y^n , so, using the union bound, the probability of error, conditional on k 1's in Y^n is upper bounded by

$$(M-1)\beta(p)^k < 2^{nR}\beta(p)^k$$

Also note that Y_i are i.i.d., with $\Pr(Y_i = 1) = (1 - p)/2$. Consequently, by the law of large numbers for any q < (1 - p)/2, we have $\Pr(K < nq) \to 0$. We can now write

$$Pr(Error) = Pr(Error|K < nq) Pr(K < nq) + Pr(Error|K \ge nq) Pr(K \ge nq)$$

$$\leq Pr(K < nq) + Pr(Error|K \ge nq).$$

The first term decays to zero with increasing n as long as q < (1-p)/2, and by the computation before, the second term, $\Pr(\text{Error}|K > nq)$ is upper bounded by $2^{n(R+q\log\beta(p))}$ which decays to zero as long as $R < -q\log\beta(p)$. Consequently whenever $R < R_1 = -\frac{1-p}{2}\log\beta(p) = \frac{1-p}{2}\log 2$, the error probability will approach zero with increasing n. Problem 4.

- (a) If $Z_i = M$ there is nothing to prove. Otherwise there is a codework \mathbf{x}' for which $\mathbf{x}'_i = 1$. Note now that for any codeword \mathbf{x} , by the linearity of C, $\mathbf{x}' + \mathbf{x}$ is also a codeword, and thus the map $\mathbf{x} \to \mathbf{x} + \mathbf{x}'$ is a bijection from C to C. Furthermore because $\mathbf{x}'_i = 1$, this bijection flips the *i*'th component of \mathbf{x} . Consequently there are as many codewords with $\mathbf{x}_i = 0$ as with $\mathbf{x}_i = 1$, and so $Z_i = M/2$.
- (b) Note that $I(X^n; Y^n) = H(Y^n) H(Y^n|X^n)$. By the channel being memoryless $H(Y^n|X^n) = \sum_i H(Y_i|X_i)$. On the other hand, $H(Y^n) \leq \sum_i H(Y_i)$ with equality if and only if $\{Y_i\}$ are independent. Thus,

$$I(X^{n}; Y^{n}) \leq \sum_{i} H(Y_{i}) - H(Y_{i}|X_{i}) = \sum_{i} I(X_{i}; Y_{i}).$$

- (c) With X^n chosen uniformly from \mathcal{C} , by (a) we see that for each *i* either $\Pr(X_i = 0) = 1$ (in which case $I(X_i; Y_i) = 0$) or $\Pr(X_i = 0) = 1/2$, (in which case $I(X_i; Y_i) = I(W)$.
- (d) By (b) and (c) we see that $I(X^n; Y^n) \leq nI(W)$. Suppose now reliable communication were possible at a rate R using linear codes. Thus for any $\epsilon > 0$, there is a linear code with error probability at most $\epsilon > 0$, and rate at least R. By Fano's inequality, the mutual information between the input message and the decoded message is at least $nR(1-\epsilon) - h_2(\epsilon)$. By the data processing theorem

$$nR(1-\epsilon) - h_2(\epsilon) \le I(X^n; Y^n) \le nI(W),$$

and thus $R \leq I(W) + \epsilon + \frac{1}{n}h_2(\epsilon)$. Since this is true for every $\epsilon > 0$ and since $h_2(\epsilon) \to 0$ as $\epsilon \to 0$ we see that $R \leq I(W)$.