ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 31
Solutions to Final Exam

Problem 1.
(a)

$$
\begin{aligned}
p_{i+1} & =\operatorname{Pr}\left(U_{i+1}=0\right)=\operatorname{Pr}\left(U_{i+1}=0, U_{i}=0\right)+\operatorname{Pr}\left(U_{i+1}=0, U_{i}=1\right) \\
& =\operatorname{Pr}\left(U_{i+1}=0 \mid U_{i}=0\right) \operatorname{Pr}\left(U_{i}=0\right)+\operatorname{Pr}\left(U_{i+1}=0 \mid U_{i}=1\right) \operatorname{Pr}\left(U_{i}=1\right) \\
& =\operatorname{Pr}\left(U_{i+1}=0 \mid U_{i}=0\right) \operatorname{Pr}\left(U_{i}=0\right)+\operatorname{Pr}\left(U_{i+1}=0 \mid U_{i}=1\right) \operatorname{Pr}\left(U_{i}=1\right) \\
& =\left(1-a_{i}\right) p_{i}+b_{i}\left(1-p_{i}\right) .
\end{aligned}
$$

(b) By stationarity p_{i} does not change with i. Also by stationarity $P\left(U_{i+1}=1, U_{i}=0\right)=$ $a_{i} p_{i}$ does not change with i, thus a_{i} does not change with i. Similar reasoning holds for b_{i}.
(c) For stationary processes the entropy rate is given by $\lim _{i} H\left(U_{i} \mid U^{i-1}\right)$, and we also know that the sequence in the limit is monotone non-increasing. In particular, $H\left(U_{2} \mid U_{1}\right)$ is an upper bound on the entropy rate. Furthermore $H\left(U_{2} \mid U_{1}=0\right)=h_{2}(a)$, $H\left(U_{2} \mid U_{1}=1\right)=h_{2}(b)$, and thus $H\left(U_{2} \mid U_{1}\right)=p h_{2}(a)+(1-p) h_{2}(b)$.
(d) For a Markov process, the entropy rate equals $H\left(U_{2} \mid U_{1}\right)$, so the upper bound in (c) is the exact value. Thus, among all processes with the same transition probabilities the Markov process has the largest entropy rate.
(e) For such a process we see that $b=1$, and from part (a) we find that $p=1 /(1+a)$. By (c) and (d) we find that the maximal entropy rate for a given value of the parameter a is $h_{2}(a) /(1+a)$. It only remains to maximize this quantity to over the choice of a to find the maximal entropy rate. (Using standard tools of calculus it is easy to show that the maximum is achieved when $a=(3-\sqrt{5}) / 2$.)

Problem 2.

(a) The difference between the left and right sides is

$$
\sum_{x, y} Q^{*}(x) W(y \mid x) \log \frac{P^{*}(y)}{P(y)}=\sum_{y} P^{*}(y) \log \frac{P^{*}(y)}{P(y)}=D\left(P^{*} \| P\right) \geq 0
$$

(b) The left hand side of (a), is upper bounded by $\max _{x} \sum_{y} W(y \mid x) \log \frac{W(y \mid x)}{P(y)}$ whereas the right hand side of (a) equals C.
(c) The Kuhn-Tucker conditions for a capacity achieving input distribution Q^{*} were derived in class to be

$$
\sum_{y} W(y \mid x) \log \frac{W(y \mid x)}{P^{*}(y)} \leq C, \quad \text { for all } x
$$

with equality whenever $Q^{*}(x)>0$. Consequently, $\max _{x} \sum_{y} W(y \mid x) \log \frac{W(y \mid x)}{P^{*}(y)}=C$.
(d) With $f(Q)=\max _{x} \sum_{y} W(y \mid x) \log \frac{W(y \mid x)}{P(y)}$, from (b) we see that $f(Q) \geq C$ and that $f\left(Q^{*}\right)=C$. Thus $C=\min _{Q} f(Q)$.

Problem 3.

(a) Note that $Y=1$ if and only if $X=1$ and the channel does not flip. Thus, $\operatorname{Pr}(Y=$ $1)=(1-p) / 2$. An incompatibility between \tilde{X} and Y occurs if only if $\tilde{X}=0$ and $Y=1$. Since these two events are independent $\alpha(p)=1-(1-p) / 4=(3+p) / 4$. Furthermore, since \tilde{X} and Y are indpendent, conditining on Y does not change the distribution of \tilde{X}; Thus $\beta(p)=1 / 2$.
(b) Since $\left(\tilde{X}_{i}, Y_{i}\right)$ are i.i.d., and since for each $i\left(\tilde{X}_{i}, Y_{i}\right)$ is compatible with probability $\alpha(p)$, we see that \tilde{X}^{n} and Y^{n} will be compatible with probability $\alpha(p)^{n}$.
(c) Without loss of generality assume that $Y_{1}=\cdots=Y_{k}=1$ and the remaining Y_{i} 's are 0 . Since when $Y_{i}=0$ any value of \tilde{X}_{i} is compatible, we see that \tilde{X}^{n} is compatible with \tilde{Y}^{n} if and only if $\tilde{X}_{1}=\ldots=\tilde{X}_{k}=1$. By the independence of \tilde{X}^{n} from Y^{n}, this event has probability $\beta(p)^{k}=2^{-k}$.
(d) Since for the correct message $m, X^{n}(m)$ is always compatible with Y^{n}, the receiver will make an error if and only if one of the $M-1$ incorrect messages is compatible with Y^{n}. By (b) for each of these incorrect messages the probability of being compatible with Y^{n} is $\alpha(p)^{n}$, and by the union bound the error probability is upper bounded by

$$
(M-1) \alpha(p)^{n}<2^{n R} \alpha(p)^{n}=2^{n(R+\log \alpha(p))}
$$

which approaches zero as long as $R<R_{0}=-\log \alpha(p)$.
(e) Let us compute the error probability conditional on the number of 1's, K, in Y^{n}. By (c), conditional on $K=k$, each of incorrect codewords has a probability $\beta(p)^{k}$ of being compatible with Y^{n}, so, using the union bound, the probability of error, conditional on k 1's in Y^{n} is upper bounded by

$$
(M-1) \beta(p)^{k}<2^{n R} \beta(p)^{k}
$$

Also note that Y_{i} are i.i.d., with $\operatorname{Pr}\left(Y_{i}=1\right)=(1-p) / 2$. Consequently, by the law of large numbers for any $q<(1-p) / 2$, we have $\operatorname{Pr}(K<n q) \rightarrow 0$. We can now write

$$
\begin{aligned}
\operatorname{Pr}(\text { Error }) & =\operatorname{Pr}(\text { Error } \mid K<n q) \operatorname{Pr}(K<n q)+\operatorname{Pr}(\text { Error } \mid K \geq n q) \operatorname{Pr}(K \geq n q) \\
& \leq \operatorname{Pr}(K<n q)+\operatorname{Pr}(\text { Error } \mid K \geq n q) .
\end{aligned}
$$

The first term decays to zero with increasing n as long as $q<(1-p) / 2$, and by the computation before, the second term, $\operatorname{Pr}(\operatorname{Error} \mid K>n q)$ is upper bounded by $2^{n(R+q \log \beta(p))}$ which decays to zero as long as $R<-q \log \beta(p)$. Consequently whenever $R<R_{1}=-\frac{1-p}{2} \log \beta(p)=\frac{1-p}{2} \log 2$, the error probability will approach zero with increasing n.

Problem 4.

(a) If $Z_{i}=M$ there is nothing to prove. Otherwise there is a codework \mathbf{x}^{\prime} for which $\mathbf{x}_{i}^{\prime}=1$. Note now that for any codeword \mathbf{x}, by the linearity of $\mathcal{C}, \mathbf{x}^{\prime}+\mathbf{x}$ is also a codeword, and thus the map $\mathrm{x} \rightarrow \mathrm{x}+\mathrm{x}^{\prime}$ is a bijection from \mathcal{C} to \mathcal{C}. Furthermore because $\mathbf{x}_{i}^{\prime}=1$, this bijection flips the i 'th component of \mathbf{x}. Consequently there are as many codewords with $\mathbf{x}_{i}=0$ as with $\mathbf{x}_{i}=1$, and so $Z_{i}=M / 2$.
(b) Note that $I\left(X^{n} ; Y^{n}\right)=H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right)$. By the channel being memoryless $H\left(Y^{n} \mid X^{n}\right)=\sum_{i} H\left(Y_{i} \mid X_{i}\right)$. On the other hand, $H\left(Y^{n}\right) \leq \sum_{i} H\left(Y_{i}\right)$ with equality if and only if $\left\{Y_{i}\right\}$ are independent. Thus,

$$
I\left(X^{n} ; Y^{n}\right) \leq \sum_{i} H\left(Y_{i}\right)-H\left(Y_{i} \mid X_{i}\right)=\sum_{i} I\left(X_{i} ; Y_{i}\right) .
$$

(c) With X^{n} chosen uniformly from \mathcal{C}, by (a) we see that for each i either $\operatorname{Pr}\left(X_{i}=0\right)=1$ (in which case $I\left(X_{i} ; Y_{i}\right)=0$) or $\operatorname{Pr}\left(X_{i}=0\right)=1 / 2$, (in which case $I\left(X_{i} ; Y_{i}\right)=I(W)$.
(d) By (b) and (c) we see that $I\left(X^{n} ; Y^{n}\right) \leq n I(W)$. Suppose now reliable communication were possible at a rate R using linear codes. Thus for any $\epsilon>0$, there is a linear code with error probability at most $\epsilon>0$, and rate at least R. By Fano's inequality, the mutual information between the input message and the decoded message is at least $n R(1-\epsilon)-h_{2}(\epsilon)$. By the data processing theorem

$$
n R(1-\epsilon)-h_{2}(\epsilon) \leq I\left(X^{n} ; Y^{n}\right) \leq n I(W),
$$

and thus $R \leq I(W)+\epsilon+\frac{1}{n} h_{2}(\epsilon)$. Since this is true for every $\epsilon>0$ and since $h_{2}(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$ we see that $R \leq I(W)$.

