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Problem 1.

(a) pi+1 = Pr(Ui+1 = 0) = Pr(Ui+1 = 0, Ui = 0) + Pr(Ui+1 = 0, Ui = 1)

= Pr(Ui+1 = 0|Ui = 0) Pr(Ui = 0) + Pr(Ui+1 = 0|Ui = 1) Pr(Ui = 1)

= Pr(Ui+1 = 0|Ui = 0) Pr(Ui = 0) + Pr(Ui+1 = 0|Ui = 1) Pr(Ui = 1)

= (1− ai)pi + bi(1− pi).

(b) By stationarity pi does not change with i. Also by stationarity P (Ui+1 = 1, Ui = 0) =
aipi does not change with i, thus ai does not change with i. Similar reasoning holds
for bi.

(c) For stationary processes the entropy rate is given by limiH(Ui|U i−1), and we also
know that the sequence in the limit is monotone non-increasing. In particular,
H(U2|U1) is an upper bound on the entropy rate. Furthermore H(U2|U1 = 0) = h2(a),
H(U2|U1 = 1) = h2(b), and thus H(U2|U1) = ph2(a) + (1− p)h2(b).

(d) For a Markov process, the entropy rate equals H(U2|U1), so the upper bound in (c)
is the exact value. Thus, among all processes with the same transition probabilities
the Markov process has the largest entropy rate.

(e) For such a process we see that b = 1, and from part (a) we find that p = 1/(1+a). By
(c) and (d) we find that the maximal entropy rate for a given value of the parameter
a is h2(a)/(1 + a). It only remains to maximize this quantity to over the choice of a
to find the maximal entropy rate. (Using standard tools of calculus it is easy to show
that the maximum is achieved when a = (3−

√
5)/2.)

Problem 2.

(a) The difference between the left and right sides is∑
x,y

Q∗(x)W (y|x) log
P ∗(y)

P (y)
=

∑
y

P ∗(y) log
P ∗(y)

P (y)
= D(P ∗‖P ) ≥ 0.

(b) The left hand side of (a), is upper bounded by max
x

∑
y

W (y|x) log
W (y|x)

P (y)
whereas

the right hand side of (a) equals C.

(c) The Kuhn-Tucker conditions for a capacity achieving input distribution Q∗ were
derived in class to be ∑

y

W (y|x) log
W (y|x)

P ∗(y)
≤ C, for all x

with equality whenever Q∗(x) > 0. Consequently, max
x

∑
y

W (y|x) log
W (y|x)

P ∗(y)
= C.

(d) With f(Q) = maxx
∑

yW (y|x) log W (y|x)
P (y)

, from (b) we see that f(Q) ≥ C and that

f(Q∗) = C. Thus C = minQ f(Q).



Problem 3.

(a) Note that Y = 1 if and only if X = 1 and the channel does not flip. Thus, Pr(Y =
1) = (1 − p)/2. An incompatibility between X̃ and Y occurs if only if X̃ = 0 and
Y = 1. Since these two events are independent α(p) = 1 − (1 − p)/4 = (3 + p)/4.
Furthermore, since X̃ and Y are indpendent, conditining on Y does not change the
distribution of X̃; Thus β(p) = 1/2.

(b) Since (X̃i, Yi) are i.i.d., and since for each i (X̃i, Yi) is compatible with probability
α(p), we see that X̃n and Y n will be compatible with probability α(p)n.

(c) Without loss of generality assume that Y1 = · · · = Yk = 1 and the remaining Yi’s are
0. Since when Yi = 0 any value of X̃i is compatible, we see that X̃n is compatible
with Ỹ n if and only if X̃1 = . . . = X̃k = 1. By the independence of X̃n from Y n, this
event has probability β(p)k = 2−k.

(d) Since for the correct message m, Xn(m) is always compatible with Y n, the receiver
will make an error if and only if one of the M−1 incorrect messages is compatible with
Y n. By (b) for each of these incorrect messages the probability of being compatible
with Y n is α(p)n, and by the union bound the error probability is upper bounded by

(M − 1)α(p)n < 2nRα(p)n = 2n(R+logα(p))

which approaches zero as long as R < R0 = − logα(p).

(e) Let us compute the error probability conditional on the number of 1’s, K, in Y n.
By (c), conditional on K = k, each of incorrect codewords has a probability β(p)k

of being compatible with Y n, so, using the union bound, the probability of error,
conditional on k 1’s in Y n is upper bounded by

(M − 1)β(p)k < 2nRβ(p)k

Also note that Yi are i.i.d., with Pr(Yi = 1) = (1− p)/2. Consequently, by the law of
large numbers for any q < (1− p)/2, we have Pr(K < nq)→ 0. We can now write

Pr(Error) = Pr(Error|K < nq) Pr(K < nq) + Pr(Error|K ≥ nq) Pr(K ≥ nq)

≤ Pr(K < nq) + Pr(Error|K ≥ nq).

The first term decays to zero with increasing n as long as q < (1 − p)/2, and by
the computation before, the second term, Pr(Error|K > nq) is upper bounded by
2n(R+q log β(p)) which decays to zero as long as R < −q log β(p). Consequently whenever
R < R1 = −1−p

2
log β(p) = 1−p

2
log 2, the error probability will approach zero with

increasing n.
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Problem 4.

(a) If Zi = M there is nothing to prove. Otherwise there is a codework x′ for which
x′i = 1. Note now that for any codeword x, by the linearity of C, x′ + x is also a
codeword, and thus the map x → x + x′ is a bijection from C to C. Furthermore
because x′i = 1, this bijection flips the i’th component of x. Consequently there are
as many codewords with xi = 0 as with xi = 1, and so Zi = M/2.

(b) Note that I(Xn;Y n) = H(Y n) − H(Y n|Xn). By the channel being memoryless
H(Y n|Xn) =

∑
iH(Yi|Xi). On the other hand, H(Y n) ≤

∑
iH(Yi) with equality if

and only if {Yi} are independent. Thus,

I(Xn;Y n) ≤
∑
i

H(Yi)−H(Yi|Xi) =
∑
i

I(Xi;Yi).

(c) With Xn chosen uniformly from C, by (a) we see that for each i either Pr(Xi = 0) = 1
(in which case I(Xi;Yi) = 0) or Pr(Xi = 0) = 1/2, (in which case I(Xi;Yi) = I(W ).

(d) By (b) and (c) we see that I(Xn;Y n) ≤ nI(W ). Suppose now reliable communication
were possible at a rate R using linear codes. Thus for any ε > 0, there is a linear code
with error probability at most ε > 0, and rate at least R. By Fano’s inequality, the
mutual information between the input message and the decoded message is at least
nR(1− ε)− h2(ε). By the data processing theorem

nR(1− ε)− h2(ε) ≤ I(Xn;Y n) ≤ nI(W ),

and thus R ≤ I(W )+ε+ 1
n
h2(ε). Since this is true for every ε > 0 and since h2(ε)→ 0

as ε→ 0 we see that R ≤ I(W ).
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