ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 30
Information Theory and Coding
Final Exam

4 problems, 100 points
3 hours
4 sheets (8 pages) of notes allowed

Good Luck!

Please write your name on each sheet of your answers

Please write the solution of each problem on a separate sheet

Problem 1. (25 pts) Suppose that $\left\{U_{i}\right\}$ is a stationary stochastic process with $U_{i} \in\{0,1\}$. Let $p_{i}=\operatorname{Pr}\left(U_{i}=0\right), a_{i}=\operatorname{Pr}\left(U_{i+1}=1 \mid U_{i}=0\right), b_{i}=\operatorname{Pr}\left(U_{i+1}=0 \mid U_{i}=1\right)$.
(a) (5 pts) Show that $p_{i+1}=p_{i}\left(1-a_{i}\right)+\left(1-p_{i}\right) b_{i}$.
(b) (5 pts) Show that the quantities p_{i}, a_{i}, b_{i} do not change with i.
(c) (5 pts) Show that the entropy rate of the process U is upper bounded by

$$
p h_{2}(a)+(1-p) h_{2}(b)
$$

where $h_{2}(t)=-t \log _{2}(t)-(1-t) \log _{2}(1-t)$ is the binary entropy function.
(d) (5 pts) Given $a, b \in[0,1]$, show that among all binary-valued stationary stochastic processes with $P\left(U_{i+1}=1 \mid U_{i}=0\right)=a$ and $P\left(U_{i+1}=0 \mid U_{i}=1\right)=b$, the Markov processes has the highest entropy rate.
(e) (5 pts) Suppose $\left\{U_{i}\right\}$ is a binary-valued stationary process for which every 1 is immediately followed by a 0 . Show that the largest possible entropy rate for such a process is equal to $\max _{a \in[0,1]} \frac{h_{2}(a)}{1+a}$.

Problem 2. (20 points) Given a discrete memoryless channel W and an input distribution Q let P denote the output distribution induced by Q, i.e., $P(y)=\sum_{x} Q(x) W(y \mid x)$. Let Q^{*} be a capacity achieving input distribution and let P^{*} be the corresponding output distribution. Let C denote the capacity of W.
(a) (5 pts) Show that

$$
\sum_{x, y} Q^{*}(x) W(y \mid x) \log \frac{W(y \mid x)}{P(y)} \geq \sum_{x, y} Q^{*}(x) W(y \mid x) \log \frac{W(y \mid x)}{P^{*}(y)}
$$

[Hint: express the difference of left and right sides as a divergence]
(b) (5 pts) Show that

$$
\max _{x} \sum_{y} W(y \mid x) \log \frac{W(y \mid x)}{P(y)} \geq C
$$

(c) (5 pts) What is the value of $\max _{x} \sum_{y} W(y \mid x) \log \frac{W(y \mid x)}{P^{*}(y)}$?
[Hint: use the Kuhn-Tucker conditions on the capacity achieving distribution.]
(d) (5 pts) Show that the channel capacity can be found as the value of a minimization:

$$
C=\min _{Q} \max _{x} \sum_{y} W(y \mid x) \log \frac{W(y \mid x)}{P(y)} .
$$

Problem 3. (35 points) The Z-channel with crossover probability p (denoted $\mathrm{Z}(p)$) is a channel with input $\mathcal{X}=\{0,1\}$, output alphabet $\mathcal{Y}=\{0,1\}$ and

$$
P(0 \mid 0)=1, \quad P(1 \mid 1)=1-p, \quad P(0 \mid 1)=p .
$$

Say that an input symbol x and an output symbol y are incompatible if $x=0$ and $y=1$, otherwise, say that they are compatible.
(a) (5 pts) Let X and \tilde{X} be i.i.d. with $P(X=0)=1 / 2$. Suppose X is transmitted over a $\mathrm{Z}(p)$ and Y is the channel output. Find the probability that \tilde{X} and Y are compatible; call this value $\alpha(p)$. Find the probability that \tilde{X} and Y are compatible, conditional on $Y=1$; call this number by $\beta(p))$.

Say that a sequence $\left(x_{1}, \ldots, x_{n}\right)$ of input symbols and $\left(y_{1}, \ldots, y_{n}\right)$ of output symbols are compatible if x_{i} and y_{i} are compatible for every $i=1, \ldots, n$.
(b) (5 pts) Let $X_{1}, \ldots, X_{n}, \tilde{X}_{1}, \ldots, \tilde{X}_{n}$ be i.i.d. as in (a). Suppose $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$ is transmitted over a $\mathrm{Z}(p)$ and $Y^{n}=\left(Y_{1}, \ldots, Y_{n}\right)$ is the channel output. What is the probability that \tilde{X}^{n} and Y^{n} are compatible? Express your answer in terms of n and $\alpha(p)$.
(c) (5 pts) Under the same assumptions as in (b), what is the probability that \tilde{X}^{n} and Y^{n} are compatible, conditional on Y^{n} containing k 1's. Express your answer in terms of k and $\beta(p)$.

Suppose we construct a random code with M codewords of blocklength n

$$
X^{n}(1), \ldots, X^{n}(M)
$$

by choosing each $X_{i}(m)$ independently, each distributed as in (a). To communicate the message m, the transmitter sends $X^{n}(m)$ over a $\mathrm{Z}(p)$. Upon receiving the channel output Y^{n}, the receiver declares \hat{m} if \hat{m} is the only message for which $X^{n}(\hat{m})$ and Y^{n} are compatible. If there is no such \hat{m} the receiver declares 0 .
(d) (10 pts) Use (b) to show that reliable communication over $\mathrm{Z}(p)$ is possible as long as the communication rate R is less than $R_{0}=-\log \alpha(p)$.
(e) (10 pts) Use (c) to show that reliable communication over $\mathrm{Z}(p)$ is possible as long as the communication rate R is less than $R_{1}=-\frac{1-p}{2} \log \beta(p)$. [Hint: first argue that the number of 1's in Y^{n} will be close to $n \frac{1-p}{2}$ with high probability.]

Problem 4. (20 points) Suppose that \mathcal{C} is a binary linear code with $M=2^{k}$ codewords with blocklength n.
(a) (5 pts) For $i=1, \ldots, n$, let Z_{i} be the number of codewords $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{C}$ for which $x_{i}=0$. Show that for each i either $Z_{i}=M$ or $Z_{i}=M / 2$.
(b) (5 pts) Suppose X^{n} is the input of memoryless channel W, and Y^{n} is the channel output. Show that

$$
I\left(X^{n} ; Y^{n}\right) \leq \sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right)
$$

with equality if and only if $\left(Y_{1}, \ldots, Y_{n}\right)$ are independent.
(c) (5 pts) Suppose X^{n} is chosen uniformly from the binary linear code \mathcal{C} and sent over a binary input channel W, and Y^{n} is the channel output. Show that for each i, either $I\left(X_{i} ; Y_{i}\right)=0$ or $I\left(X_{i} ; Y_{i}\right)=I(W)$ where $I(W)$ is the 'symmetric capacity' of W.
[Note: The symmetric capacity of a channel W is the mutual information $I(X ; Y)$ with X being a uniform input and Y being the output.]
(d) (5 pts) Show that for a binary input memoryless channel W, reliable communication is not possible at rates above $I(W)$ by using linear codes.

