Solution to Graded Problem Set 6

Problem 1. By using the same technique seen in class to bound n !, we have that

$$
\sum_{i=2}^{n} \frac{1}{i \log i}-\frac{1}{2 \log 2}=\sum_{i=3}^{n} \frac{1}{i \log i} \leq \int_{2}^{n} \frac{1}{x \log x} d x \leq \sum_{i=2}^{n-1} \frac{1}{i \log i} \leq \sum_{i=2}^{n} \frac{1}{i \log i}
$$

The upper and lower bounds are represented in the Figure below.

(a) Upper bound

(b) Lower bound

Figure 1: The black curve is the function $f(x)=\frac{1}{x \log x}$, the blue rectangles are an upper bound and the red rectangles are a lower bound.

A simple calculation shows that

$$
\int_{2}^{n} \frac{1}{x \log x} d x=\log \log n-\log \log 2 .
$$

Hence,

$$
\begin{equation*}
\log \log n-\log \log 2 \leq \sum_{i=2}^{n} \frac{1}{i \log i} \leq \log \log n-\log \log 2+\frac{1}{2 \log 2} \tag{1}
\end{equation*}
$$

Note that $\log \log 2<0$. Then, $\log \log n-\log \log 2 \geq \log \log n$, and, therefore, the lower bound in (1) gives that $\sum_{i=2}^{n} \frac{1}{i \log i}$ is $\Omega(\log \log n)$ (one suitable choice of the witnesses is $C=1$ and $k=2$). As $-\log \log 2+\frac{1}{2 \log 2}<2$ and $\log \log n>2$ for $n>e^{e^{2}}$, the upper bound in (1) gives that $\sum_{i=2}^{n} \frac{1}{i \log i}$ is $O(\log \log n)$ (one suitable choice of the witnesses is $C=2$ and $k=e^{e^{2}}$). Therefore, $\sum_{i=2}^{n} \frac{1}{i \log i}$ is $\Theta(\log \log n)$.

Problem 2.

a) For any f and g which attain only positive values, we have that

$$
\frac{f(n)+g(n)}{2} \leq \max \{f(n), g(n)\} \leq f(n)+g(n) \quad \forall n \in \mathbb{N}
$$

The lower bound allows us to prove that $\max \{f(n), g(n)\}$ is $\Omega(f(n)+g(n))$ (one suitable choice of the witnesses is $C=1 / 2$ and $k=0$). The upper bound allows us to prove that $\max \{f(n), g(n)\}$ is $O(f(n)+g(n)$) (one suitable choice of the witnesses is $C=1$ and $k=0$).
b) The statement is false. For example, take $f(n)=n+1$ and $g(n)=1$. Then,

$$
\min \{f(n), g(n)\}=1 \quad \forall n \geq 0
$$

Clearly, $n+2$ is not $\Theta(1)$, because $n+2$ is not $O(1)$.

Problem 3.

a) True. Indeed, $2^{n+1}=2 \cdot 2^{n}$. Hence, if we take $C=2$ and $k=0$, we have that $2^{n+1} \leq C 2^{n}$ for any $n \geq k$. By definition, this implies the desired result.
b) False. Note that

$$
\frac{2^{2 n}}{2^{n}}=2^{n}
$$

Suppose that there exist C and k s.t. $2^{2 n} \leq C 2^{n}$ for any $n \geq k$. Then, $2^{n} \leq C$, but eventually 2^{n} goes to $+\infty$, which means that we cannot find such C. As a result, $2^{\overline{2 n}}$ is not $O\left(2^{n}\right)$.
c) False. Pick $f(x)=2 x, g(x)=x$, and $h(x)=2^{x}$. Then, clearly $f(n)$ is $O(g(n))$, but, according to the previous point, $h(f(x))$ is not $O(h(g(x)))$.

Problem 4.

a) False. 3 is prime, 5 is prime, but $3+5$ is not prime.
b) False. $-\sqrt{2}$ and $\sqrt{2}$ are irrational numbers, but $-\sqrt{2}+\sqrt{2}=0$, which is a rational number.
c) False. $1 / 2$ is a non-zero rational number, but $(1 / 2)^{1 / 2}=\sqrt{2} / 2$ is irrational.
d) False. $f(17)=17^{2}$ is not prime.
e) True. Both p and q are odd. Hence, $p q+1$ is an even number, which implies that it cannot be prime.

Problem 5.

a) $7 \times 8=56 \equiv 1(\bmod 11)$. Hence the multiplicative inverse of 7 modulo 11 is 8 .
b) Does not exist. The multiplicative inverse of a modulo m exists if and only if a and m are coprime (i.e. if $\operatorname{gcd}(a, m)=1$) but $\operatorname{gcd}(6,8)=2$.
c) $5 \times 5=25 \equiv 1(\bmod 8)$. Hence the multiplicative inverse of 5 modulo 8 is 5 itself (note that in this case since 5 and 8 are coprime the multiplicative inverse exists).
d) We want to find m such that $6^{m} \mid 73$! but $6^{m+1} \nmid 73$!. Suppose the prime factorization of 73 ! is $73!=2^{\alpha} \times 3^{\beta} \times$ other prime factors. Since $6^{m}=2^{m} \times 3^{m} 6^{m}$ divides $73!$ if and only if $m \leq \min \{\alpha, \beta\}$. So, by setting $m=\min \{\alpha, \beta\}, 6^{m} \mid 73!$ but $6^{m+1} \nmid 73!$.
We first compute β : There are $\left\lfloor\frac{73}{3}\right\rfloor=24$ multiples of $3,\left\lfloor\frac{73}{9}\right\rfloor=8$ multiples of 9 and $\left\lfloor\frac{73}{27}\right\rfloor=2$ multiples of 27 in $\{1,2, \ldots, 73\}$. Thus $\beta=24+8+2=34$.
Now, it is easy to see that $\alpha \geq \beta$ since there are at least 36 even numbers in $\{1,2, \ldots, 73\}$. Thus, $\min \{\alpha, \beta\}=34$.
Therefore, the answer to the question is $m=34.6^{34} \mid 73$! but $6^{35} \nmid 73$!.
e) Since 17 and $9 \nmid 17,9^{17-1}=9^{16} \equiv 1(\bmod 17)$. Since $123456789 \equiv 5(\bmod 16)$,

$$
9^{123456789}=9^{16} \times 9^{16} \times \cdots \times 9^{16} \times 9^{5} \equiv 9^{5} \quad(\bmod 17)
$$

thus

$$
9^{123456789} \equiv 9^{5} \equiv 8 \quad(\bmod 17)
$$

Problem 6. The proof is by contradiction. Suppose that there exists only a finite number of primes. Let's say that there are K primes, namely $p_{1}<p_{2}<\cdots<p_{K}$. Consider the number

$$
\bar{n}=\prod_{i}^{K} p_{i}+1
$$

The remainder of the division of \bar{n} by p_{i} is 1 for any $i \in\{1, \cdots, K\}$. Hence, $p_{i} \nmid \bar{n}$. This implies that \bar{n} is coprime with p_{i} for any $i \in\{1, \cdots, K\}$.

By assumption, $p_{1}, p_{2}, \cdots, p_{K}$ are all the prime numbers. Therefore, \bar{n} is coprime with all the prime numbers, which means that it is a prime number itself. As a result, we have found another prime number different from $p_{1}, p_{2}, \cdots, p_{K}$. This is a contradiction.

Note that, in general, if you take the product of some primes and you add 1 , you will not necessarily obtain a prime number. Indeed, the result is only coprime with the prime numbers that you choose to multiply!

