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Problem 1. In the last exercise session you were asked some questions about multiplicative
inverses and (most likely ,) you solved them by trial and error. However, this week you have
learned in class more powerful techniques that allow you to solve this kind of problems system-
atically!

a) Let us start from the exercises in Problem Set 6. You were asked to find the multiplicative
inverse of 7 modulo 11, the multiplicative inverse of 6 modulo 8, and the multiplicative inverse
of 5 modulo 8. In which cases such a multiplicative inverse did actually exist?

b) Pick a, b ∈ N. Find a necessary and sufficient condition for the existence of the multiplicative
inverse of a modulo b. Then, find a necessary and sufficient condition also for the existence
of the multiplicative inverse of b modulo a. Check that these conditions are consistent with
the result of point a).

c) Pick a, b ∈ N s.t. the multiplicative inverse of a modulo b exists. Describe an algorithm that
finds it.

d) Apply the algorithm of point c) to find

i. the multiplicative inverse of 57 modulo 148.

ii. the multiplicative inverse of 123 modulo 341.

iii. the multiplicative inverse of 257 modulo 921.

Problem 2. In this problem we will show, by steps, that
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It is very important that you work the details of each step!
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b) Use the sum of the geometric series to show that the left hand side of the equation above is
upper bounded by (
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c) Take the natural logarithm on both sides of (1) and, using b), show that
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d) After proving that {1, . . . , n} ⊆ An, use it to show that
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e) Conclude, using an estimate on the growth rate of
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proved in class, that
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Ω(log log n).

Problem 3. Use mathematical induction (in its original or strong form) to show the following:

a) 22n − 1 is divisible by 3 for any integer n ≥ 1.

b) Let a, b ∈ N. Then, an − bn is divisible by a− b for any integer n ≥ 1.

Problem 4. Let Cn denote a 2n × 2n grid of 22n squares arranged in 2n rows and 2n columns.
We say that a grid is eco-friendly if one of its squares is missing, since in that square it is possible
to plant a tree. We also say that a grid is cool if it can be tiled, namely, completely covered
without overlapping, with L-shaped tiles occupying exactly 3 squares, like this:

Prove that, for any integer n ≥ 1, any eco-friendly grid Cn is cool.

Problem 5. Consider the following theorem.

Theorem. Every integer > 1 has a unique prime factorization.
The result is true (as you have seen in class), but the following “proof” by induction is not

correct. Where is the flaw?

Proof. By strong induction. Let P (n) be the statement that n has a unique factorization. We
prove P (n) for any n > 1.

Base step, n = 2. P (2) is clearly true.

Induction step: Assume P (2), · · · , P (n). We want to prove P (n + 1).
If n+1 is prime, then we are done. If not, it factors somehow. Suppose n+1 = r ·s for some

r, s > 1. By the induction hypothesis, r has a unique factorization
∏

i pi and s has a unique
prime factorization

∏
j qj . Thus,

∏
i pi
∏

j qj is a prime factorization of n+ 1. In addition, since
the factorization of both r and s is unique, also the factorization of n + 1 must be unique.
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