Discrete Structures

Problem Set 5

Date: 17.10.2014

Not graded

Problem 1. Use the definition of big-*O* to prove that:

- a) $\pi n^4 + 10n^3 + 10^{10}n^2 + 10^{10^{10}}n$ is $O(n^4)$.
- b) $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + (n-1) \cdot n$ is $O(n^3)$.
- c) $1^{2014} + 2^{2014} + 3^{2014} + \dots + n^{2014}$ is $O(n^{2015})$.
- d) $[n + \sqrt{7}] \cdot |n^2 \sqrt{2}| + [n^4 + \sqrt{3}]$ is $O(n^4)$.

Problem 2. Suppose you have two different algorithms for solving a problem. To solve a problem of size n, the first algorithm uses exactly $n\sqrt{n}$ operations and the second algorithm uses exactly $n^2 \log n$ operations. As n grows, which algorithm uses fewer operations?

Problem 3. Consider the following algorithm:

Algorithm 1	
Require: n: positive integer	
1: $t \leftarrow 0$	
2: for $i = 1$ to n^2 do	
3: for $j = 1$ to i do	
4: $t \leftarrow (it+jt+1)^2$	

How many additions are performed as a function of n? First, write the exact formula and, then, provide a Θ approximation.

Problem 4. For each of the following tasks, find a function f(n) such that the required number of operations is $\Theta(f(n))$.

- a) Compute the sum of the elements of a vector of length n.
- b) Multiply an $n \times n$ matrix with a vector of length n.
- c) Multiply an $n \times n$ matrix with an $n \times n$ matrix.
- d) Multiply an $n \times \lfloor \sqrt{n} \rfloor$ matrix with an $\lfloor \sqrt{n} \rfloor \times n$ matrix.

Problem 5. Write whether each of the following statements is **True** or **False**:

a)
$$\frac{1}{n^2}$$
 is $\Omega\left(\frac{1}{n^2}\right)$.

- b) For any $a, b \in \mathbb{R}$ s.t. $a < b, \frac{1}{n^a}$ is $o\left(\frac{1}{n^b}\right)$.
- c) $\log(1+n)$ is $O(\sqrt{n})$.

- d) $n^4 4^n$ is $o\left(\frac{1}{n^5}5^n\right)$.
- e) 2^{n^2} is $O(4^n 3^{n \log n})$.

f)
$$\frac{n!}{2^n}$$
 is $\Omega(2^n)$.

g) $(n!!)^2$ is $\Omega(n!)$, where n!! denotes the *semifactorial* of n defined as follows: if n is even, n!! is the product of all the strictly positive even integers smaller or equal than n. if n is odd, then n!! is the product of all strictly positive odd integers smaller or equal than n.

Problem 6. Find all pairs of functions in the following list that are of the same order: $n^2 + \log n, \ 2^n + 3^n, \ 100n^3 + n^2, \ n^2 + 2^n, \ n^2 + n^3, \ 3n^3 + 2^n.$