
Discrete Structures EPFL, Fall 2014

Solution to Problem Set 13
Date: 12.12.2014 Not graded

Problem 1.

(a) Since the bet is doubled every time, the first loss is of 1 franc, the second loss in a row is of

2 francs, and, in general, the i-th loss in a row is of 2i−1 francs. As 255 =
∑7

i=0 2i, you walk
away broke if you lose exactly 8 times in a row. This happens with probability plose = 2−8,
since the coin flips are independent. Therefore, with probability plose, you lose 255 francs.

At the i-th turn, you bet 2i−1 francs and you have already lost
∑i−2

j=0 2j = 2i−1 − 1 francs.
Hence, whenever you win, you win exactly 1 franc. Since the probability of winning is
1− plose, the expected value won is plose · (−255) + (1− plose) · 1 = 0.

(b) If you have an infinite supply of money, it is not possible to become broke, so plose = 0.

The computation of the expected value is a bit subtle and it depends on what we exactly
mean with “infinite supply of money”.

Indeed, for any finite amount of money, we have that the expected value won is 0 by using
the same argument of part (a). Hence, if we take the limit in which the amount of money
at disposal tends to infinity, we have that the expected value won is 0.

On the other hand, if we have an infinite amount of money, we cannot lose. In addition, no
matter at what point we win, we always win 1 franc. Hence, the expected value won is 1
franc.

Problem 2.

(a) The probability of picking the very easy question is clearly
1

3
.

(b) Suppose that the very easy question was picked initially. Then, it is in the student’s box

and this happens with probability
1

3
. Otherwise, if a very hard question was picked initially,

then the easy question is in the remaining box, and this happens with probability
2

3
. Hence,

you should exchange the original box, because the probability that the very easy question is

in the unpicked box is equal to
2

3
. The reason why the probabilities change is that revealing

a box with a very hard question gives the student some extra information about the other
boxes.

Another way to see the same result is the following. Suppose without loss of generality that
box 1 is chosen at the beginning. Then, the ETA opens box 2. Denote by Ai the event that
the very easy question is in box i, with i ∈ {1, 2, 3}, and by B the event that the ETA opens
box 2. The probability that the very easy question is in the unpicked box can be computed
as follows,

P(A3|B) =
P(B|A3)P(A3)

P(B|A3)P(A3) + P(B|A1)P(A1) + P(B|A2)P(A2)
.

Clearly, P(A1) = P(A2) = P(A3) =
1

3
. Since box 1 is chosen at the beginning, if the very

easy question is in box 3, the ETA must open box 2. Then, P(B|A3) = 1. If the very easy
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question is in box 1, the ETA can open either box 2 or box 3. Hence, P(B|A2) =
1

2
. If the

very easy question were in box 2, then the ETA would not have opened that box! Therefore,

P(B|A2) = 0. As a result, we obtain P(A3|B) =
2

3
.

This problem is a form of the well-known Monty Hall problem.
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Problem 3.

(a) Note that P(X = 0) = P(X = 1) = 1/2, because the coin whose outcome is encoded by X
is fair. Then,

P(Z = 0)
(a)
= P(X = 0, Y = 0) + P(X = 1, Y = 1)

(b)
= P(X = 0) · P(Y = 0) + P(X = 1) · P(Y = 1)

(c)
=

1

2
· P(Y = 0) +

1

2
· P(Y = 1)

=
1

2
(P(Y = 0) + P(Y = 1)) =

1

2
,

where (a) uses that Z is 0 if and only if X = Y and that the events {X = 0, Y = 0} and
{X = 1, Y = 1} are clearly disjoint, (b) uses the independence of X and Y , and (c) uses
that P(X = 0) = P(X = 1) = 1/2, P(Y = 0) = p, and P(Y = 1) = 1− p.

Hence, P(Z = 0) = P(Z = 1) = 1/2, and the proof of the first part is complete.

(b) Let i ∈ {0, 1, · · · , q − 1}. Then,

P(Z = i)
(a)
=

i∑
j=0

P(X = i− j, Y = j) +

q−1∑
j=i+1

P(X = q + i− j, Y = j)

(b)
=

i∑
j=0

P(X = i− j)P(Y = j) +

q−1∑
j=i+1

P(X = q + i− j)P(Y = j)

(c)
=

1

q
·
q−1∑
j=0

P(Y = j)

=
1

q
,

where (a) uses that Z = i if and only if X + Y = i (mod q), (b) uses the independence of
X and Y , (c) uses that X takes the values in {0, 1, . . . , q − 1} with equal probability of 1

q .

This suffices to prove the claim.

(c) Since q is a prime number, for any i ∈ {1, · · · , q − 1}, there exists mi ∈ {1, · · · , q − 1} s.t.
i ·mi ≡ 1 (mod q). In words, for any i, mi is the multiplicative inverse of i modulo q. Then,
for any i ∈ {1, · · · , q − 1},

P(Z = i)
(a)
=

q−1∑
j=0

P(X = j, Y = mj)

(b)
=

q−1∑
j=0

P(X = j)P(Y = mj)

(c)
=

1

q
·
q−1∑
j=0

P(Y = mj)

=
1

q
,

where (a) uses that Z = i if and only if X · Y = i (mod q) and the fact that, for any
j ∈ {0, 1, · · · , q − 1}, mj is the unique integer in {0, 1, · · · , q − 1} s.t. j ·mj ≡ 1 (mod q),
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(b) uses the independence of X and Y , (c) uses that X takes the values in {0, 1, . . . , q − 1}
with equal probability of 1

q . In addition,

P(Z = 0) = 1−
q−1∑
i=1

P(Z = i) =
1

q
.

As a result, Z still has uniform distribution in {0, 1, · · · , q − 1}.

Problem 4.

(a) Let x be the unique integer in {0, 1, · · · , q − 1} s.t. x ≡ c− b (mod q). Then,

P(Y = b, Z = c) = P(Z = c | Y = b) · P(Y = b)

(a)
= P(X + Y = c | Y = b) · P(Y = b)

(b)
= P(X = x | Y = b) · P(Y = b)

(c)
= P(X = x) · P(Y = b)

(d)
=

1

q
· P(Y = b)

(e)
= P(Z = c) · P(Y = b),

where (a) uses the definition of Z, (b) uses the definition of x, (c) uses the independence of
X and Y , (d) uses that X takes values in {0, 1, · · · , q − 1} with equal probability, and (e)
uses that Z takes values in {0, 1, · · · , q − 1} with equal probability (which has been proved
in Problem 3, part (b)).

As a result, for any b, c ∈ {0, 1, . . . , q− 1} the events {Y = b} and {Z = c} are independent.

(b) The proof is identical to the one of part (a). Let y be the unique integer in {0, 1, · · · , q− 1}
s.t. y ≡ c− a (mod q). Then,

P(X = a, Z = c) = P(Z = c | X = a) · P(X = a)

(a)
= P(X + Y = c | X = a) · P(X = a)

(b)
= P(Y = y | X = a) · P(X = a)

(c)
= P(Y = y) · P(X = a)

(d)
=

1

q
· P(X = a)

(e)
= P(Z = c) · P(X = a),

where (a) uses the definition of Z, (b) uses the definition of y, (c) uses the independence of
X and Y , (d) uses that Y takes values in {0, 1, · · · , q − 1} with equal probability, and (e)
uses that Z takes values in {0, 1, · · · , q − 1} with equal probability.

(c) It is clearly not possible that the events {X = a} ∩ {Y = b} and {Z = c} are independent.
Indeed, given X and Y , the value of Z is uniquely determined. More formally, pick b s.t.
P(Y = b) 6= 0. Set a = 0 and c ∈ {0, 1, · · · , q − 1} s.t. c ≡ b − 1 (mod q). Then, since X
and Z take values in {0, 1, · · · , q − 1} with equal probability, we have that

P(X = a) · P(Y = b) · P(Z = c) 6= 0,
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while, since Z = X + Y (mod q), we also have that

P(X = a, Y = b, Z = c) = 0.

Therefore, P(X = a) · P(Y = b) · P(Z = c) 6= P(X = a, Y = b, Z = c) and the events
{X = a} ∩ {Y = b} and {Z = c} are not independent.

Problem 5. Let us denote by A the event that urn 1 is chosen and by B the event that the
token is blue. Then, we are required to compute the conditional probability P(A|B). By Bayes
theorem we obtain that

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|A)P(A)
,

where A denotes the complementary event to A, i.e., the event that urn 2 is chosen. Now, all the

probabilities in the previous formula can be easily computed: P(A) =
1

3
, P(A) =

2

3
, P(B|A) =

1

5
,

and P(B|A) =
4

5
. Hence, we conclude that P(A|B) =

1

9
.

Problem 6.

(a) Let F be the event of getting the flu and V be the event of being vaccinated. Given any
event A, let Ā denote the complement event of A. Then, from the text of the problem we
deduce that

P(V ) = 0.17,

P(F | V̄ ) = 0.12,

P(F | V ) = 0.02.

Consequently, the probability of getting the flu is given by

P(F ) = P(F | V̄ ) · P(V̄ ) + P(F | V ) · P(V )

= P(F | V̄ ) · (1− P(V )) + P(F | V ) · P(V )

= 0.12 · 0.83 + 0.02 · 0.17 = 0.103.

(b) In order to evaluate the probability that a person that has the flu was vaccinated, we use
Bayes law:

P(V | F ) =
P(F | V ) · P(V )

P(F )
=

0.02 · 0.17

0.103
≈ 0.033.
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