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Problem 1.

(a) The set of divisors of 6 is {1, 2, 3, 6}. Thus, 6 has 4 divisors.

(b) The set of divisors of 36 is {1, 2, 3, 4, 6, 9, 12, 18, 36}. Hence, 36 has 9 divisors.

(c) In general, if d divides m, the prime factorization of d must contain the same prime factors
each of them with at most the same power as in the factorization of m. More precisely, the
prime factorization of d should be in the form of

d =

k∏
i=1

pβi

i , 0 ≤ βi ≤ αi,∀i = 1, . . . , k.

Therefore, we can enumerate all the divisors of m by enumerating all the possible choices
for β1, . . . , βk. We have 1 +α1 choices for β1 (it can be picked from the set {0, 1, 2, . . . , α1}),
1 + α2 choices for β2 and so on. Thus, the number of divisors of m is

k∏
i=1

(1 + αi).

Problem 2.

(a) The first coin/bill deposited can be one of three currencies in hand: There are an−1 ways to
pay if the sequence begins with a $1 coin; there are also an−1 ways to pay if the sequence
begins with a $1 bill; and there are an−2 ways to pay if the sequence begins with a $2 bill.
Thus we can write the recursion

an = 2an−1 + an−2, for n ≥ 2.

The initial conditions are a0 = 1 (there is only one way to pay nothing) and a1 = 2 (1 dollar
can be paid either by coin or by bill).

(b) Let F (x) =
∑∞
n=0 anx

n be the generating function associated to the sequence an and note
that xkF (x) =

∑∞
n=k an−kx

n. We thus have

F (x)− 2xF (x)− x2F (x) =

∞∑
n=0

anx
n − 2

∞∑
n=0

an−1x
n −

∞∑
n=0

an−2x
n

= a0 + a1x− 2a0x+

∞∑
n=2

(an − 2an−1 − an−2)xn

= 1 + 2x− 2x = 1.
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Consequently,

F (x) =
1

1− 2x− x2

=
1/2
√

2

1 +
√

2 + x
− 1/2

√
2

1−
√

2 + x

=
1

2
√

2 + 4
× 1

1 + x
1+
√
2

− 1

2
√

2− 4
× 1

1 + x
1−
√
2

=
1

2
√

2 + 4

∞∑
n=0

(
− 1

1 +
√

2

)n
xn − 1

2
√

2− 4

∞∑
n=0

(
− 1

1−
√

2

)n
xn

=
1

4
(2−

√
2)

∞∑
n=0

(1−
√

2)nxn +
1

4
(2 +

√
2)

∞∑
n=0

(1 +
√

2)nxn.

Hence the sequence an is

an =
1

4
(2 +

√
2)(1 +

√
2)n +

1

4
(2−

√
2)(1−

√
2)n

Remark. Observe that the solution of the recursion is in the form αpn + βqn where p and
q are the inverses of the roots of the denominator of the generating function, that is, the
roots of the polynomial r2 − 2r − 1 = 0 (this is obtained by replacing x with 1/r in the
denominator of F (x)). This equation is called the characteristic function of the recursion
and is obtained by first rewriting the recursion an+2 = 2an+1 + an (shifting the indices so
that the smallest index in the recurrence relationship is n) and then replacing an+k by rk,
k = 0, 1, . . . . After finding the roots we then solve for α and β using the initial conditions.

(c) Suppose we choose to use n1 $1 coins, n2 $1 bills, and n3 $2 bills. Then bn is the number of
solutions of

n1 + n2 + 2n3 = n, n1, n2, n3 ∈ N≥0.

It is not difficult to see that bn is the coefficient of xn in

G(x) = (1 + x+ x2 + . . . )(1 + x+ x2 + . . . )(1 + x2 + x4 + . . . ) =
1

(1− x)2
1

1− x2
.

In fact, we will get xn in the result of the multiplication of the three polynomials whenever
we multiply monomials xn1 , xn2 and x2n3 such that n1 + n2 + 2n3 = n from the three
polynomials respectively. Hence, the coefficient of xn is equal to the number of different
ways we can pick such monomials from the three polynomials.

By using partial fraction expansion, there are numbers α, β, γ, and δ such that

G(x) =
α

1− x
+

β

(1− x)2
+

γ

(1− x)3
+

δ

1 + x

=
α(1− x)2(1 + x) + β(1− x2) + γ(1 + x) + δ(1− x)3

(1− x)3(1 + x)
.

Setting the polynomial in the numerator equal to 1 we obtain the system of equations
α+ β + γ + δ = 1

−α+ γ − 3δ = 0

−α− β + 3δ = 0

α− δ = 0

,

whose solution (by elimination, for example) gives α = δ = 1/8, β = 1/4 and γ = 1/2.
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We retrieve

G(x) =
1/8

1− x
+

1/4

(1− x)2
+

1/2

(1− x)3
+

1/8

1 + x

=
1

8

∞∑
n=0

xn +
1

4

∞∑
n=0

(n+ 1)xn +
1

2

∞∑
n=0

(
n+ 2

2

)
xn +

1

8

∞∑
n=0

(−1)nxn

=

∞∑
n=0

xn
(

1

8
((−1)n + 1) +

1

4
(n+ 1) +

1

2

(
n+ 2

2

))
,

from where we can read off each coefficient. So the answer is

bn =
1

8
((−1)n + 1) +

1

4
(n+ 1) +

1

2

(
n+ 2

2

)
=

⌈
(n+ 3)(n+ 1)

4

⌉
.

Problem 3. We know from the course that if F (x) is the generating function associated with
the sequence an and bn =

∑n
i=0 ai, then the generating function of the sequence bn, which we

denote by G(x), is

G(x) =
F (x)

1− x
.

(a) an = Θ
(
( 1
2 )n
)

means the closest root of the denominator (aka pole) of F (x) to the origin is
x∗ = 2. In other words,

F (x) =
P (x)

(1− 1
2x)Q̃(x)

where all roots of Q̃(x) have absolute value bigger than 2. Therefore,

G(x) =
F (x)

1− x
=

P (x)

(1− x)(1− 1
2x)Q̃(x)

has a pole x∗ = 1 which is the closest pole to the origin. As a consequence we can conclude
that

bn = Θ(1).

(b) Repeating the same argument, we know that

F (x) =
P (x)

(1− 2x)Q̃(x)

has the pole with the smallest magnitude x∗ = 1
2 (i.e. the roots of Q̃(x) all have magnitude

bigger than 1
2 ). Consequently,

G(x) =
P (x)

(1− x)(1− 2x)Q̃(x)

still has its smallest-magnitude pole at x∗ = 1
2 . This means

bn = Θ(2n).

Problem 4. Let G(x) =
∑∞
n=0 bnx

n be the generating function associated to bn.
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(a)

G(x) =

∞∑
n=0

(2an − an+1)xn

= 2

∞∑
n=0

anx
n −

∞∑
n=0

an+1x
n

= 2F (x)− x−1
∞∑
n=0

an+1x
n+1

= 2F (x)− x−1
( ∞∑
n=0

anx
n − a0

)
= 2F (x)− x−1 (F (x)− a0)

=

(
2− 1

x

)
F (x) +

a0
x
.

(b)

G(x) =

∞∑
n=0

nanx
n

= x

∞∑
n=0

nanx
n−1

= x
∂

∂x

{ ∞∑
n=0

anx
n

}
= xF ′(x)

(c)

G(x) = b0 +

∞∑
n=1

an
n
xn

= b0 +

∞∑
n=0

an+1

n+ 1
xn+1

= b0 +

∞∑
n=0

∫ x

0

an+1t
ndt

= b0 +

∫ x

0

∞∑
n=0

an+1t
ndt

= b0 +

∫ x

0

t−1
∞∑
n=0

an+1t
n+1dt

= b0 +

∫ x

0

t−1

( ∞∑
n=0

ant
n − a0

)
dt

= b0 +

∫ x

0

t−1 (F (t)− a0) dt

= a0 +

∫ x

0

F (t)− a0
t

dt
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Problem 5.

(a) The probability that a fair coin lands Heads in a single trial is 1
2 . As the 2n trials are

independent and in each of them the probability of obtaining Heads is 1
2 , the probability of

having 2n Heads is 1
22n .

Another way to see the result is the following. There are 22n possible outcomes which are
all equiprobable. Only 1 consists of 2n Heads. Hence, the required probability is 1

22n .

(b) There are 22n possible outcomes which are all equiprobable. In
(
2n
2

)
of them, we obtain 2

Tails. Hence, the required probability is
(2n

2 )
22n .

(c) Generalizing the argument above, we have that the probability of observing k Tails is given
by

pk =

(
2n
k

)
22n

.

We should bet on k∗ such that pk attains its maximum at k∗. Let us consider the ratio pk+1

pk
.

After some simplifications, we obtain

pk + 1

pk
=

2n− k
k + 1

≥ 1 ⇐⇒ k ≤ n− 1

2
.

Recalling that k and n are integers, we deduce that pk+1 ≥ pk for k < n and that pk+1 ≤ pk
for k ≥ n. Hence, pk attains its maximum when k∗ = n and you should bet on n Tails.

(d) The probability of getting Heads is 1− 1
3 = 2

3 . As the 2n trials are independent and in each

of them the probability of obtaining Heads is 2
3 , the probability of having 2n Heads is

(
2
3

)2n
.

In addition, in
(
2n
2

)
cases, we obtain 2 Tails and each of these cases occurs with probability(

2
3

)2n−2 × ( 13)2. Hence, the probability of getting 2 Tails out of 2n trials is
22n−2(2n

2 )
32n .

Problem 6.

(a) The probability of getting a sum equal to 2 is p1q1. This probability is also equal to 1
11 ,

since the sum of the outcomes is uniform in {2, 3, · · · , 12}. Therefore,

p1q1 =
1

11
. (1)

(b) The probability of getting a sum equal to 12 is p6q6. This probability is also equal to 1
11 ,

since the sum of the outcomes is uniform in {2, 3, · · · , 12}. Therefore,

p6q6 =
1

11
.

(c)
a+ b

2
≥
√
ab ⇐⇒ a+ b ≥ 2

√
ab ⇐⇒ (a+ b)2 ≥ 4ab,

where the last ⇐⇒ is allowed because a and b are non-negative and, therefore, their sum
is non-negative. In addition,

(a+ b)2 − 4ab = (a− b)2 ≥ 0,

which is enough to prove the desired inequality.
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(d) Let s be the probability that the sum of the outcomes of the two dice is 7. Then,

s = p1q6 + p2q5 + p3q4 + p4q3 + p5q2 + p6q1 ≥ p1q6 + p6q1 =
1

11

(
p1
p6

+
p6
p1

)
,

where the last equality comes from points (a) and (b). Using part (c), we also obtain that

p1
p6

+
p6
p1
≥ 2

√
p1
p6
· p6
p1

= 2.

Consequently, s ≥ 2
11 . In addition, s must be equal to 1

11 , because the sum of the outcomes
is uniform in {2, 3, · · · , 12}, from which we obtain a contradiction.

(e) The generating function of the sum of independent random variables is the product of the
individual generating functions, i.e., s(x) = p(x)q(x). In addition, using the fact that the
sum of outcomes is uniform in {2, 3, · · · , 12}, we obtain that

s(x) =
1

11

12∑
i=2

xi =
1

11
· x2 · x

11 − 1

x− 1
.

The polynomial x11−1
x−1 has no real roots. Indeed, the fact that x = 1 is not a root can be

easily checked by euclidean division. In addition, x = 1 is the only real root of x11 − 1. On
the other hand, p(x) is equal to x times a polynomial of odd degree and the same reasoning
applies to q(x). Hence, s(x) = p(x)q(x) has two roots in 0 plus two other real roots, which
is a contradiction.

6


