Solution to Problem Set 12

Date: 5.12.2014
Not graded

Problem 1.

(a) The set of divisors of 6 is $\{1,2,3,6\}$. Thus, 6 has 4 divisors.
(b) The set of divisors of 36 is $\{1,2,3,4,6,9,12,18,36\}$. Hence, 36 has 9 divisors.
(c) In general, if d divides m, the prime factorization of d must contain the same prime factors each of them with at most the same power as in the factorization of m. More precisely, the prime factorization of d should be in the form of

$$
d=\prod_{i=1}^{k} p_{i}^{\beta_{i}}, \quad 0 \leq \beta_{i} \leq \alpha_{i}, \forall i=1, \ldots, k
$$

Therefore, we can enumerate all the divisors of m by enumerating all the possible choices for $\beta_{1}, \ldots, \beta_{k}$. We have $1+\alpha_{1}$ choices for β_{1} (it can be picked from the set $\left\{0,1,2, \ldots, \alpha_{1}\right\}$), $1+\alpha_{2}$ choices for β_{2} and so on. Thus, the number of divisors of m is

$$
\prod_{i=1}^{k}\left(1+\alpha_{i}\right)
$$

Problem 2.

(a) The first coin/bill deposited can be one of three currencies in hand: There are a_{n-1} ways to pay if the sequence begins with a $\$ 1$ coin; there are also a_{n-1} ways to pay if the sequence begins with a $\$ 1$ bill; and there are a_{n-2} ways to pay if the sequence begins with a $\$ 2$ bill. Thus we can write the recursion

$$
a_{n}=2 a_{n-1}+a_{n-2}, \quad \text { for } n \geq 2 .
$$

The initial conditions are $a_{0}=1$ (there is only one way to pay nothing) and $a_{1}=2$ (1 dollar can be paid either by coin or by bill).
(b) Let $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the generating function associated to the sequence a_{n} and note that $x^{k} F(x)=\sum_{n=k}^{\infty} a_{n-k} x^{n}$. We thus have

$$
\begin{aligned}
F(x)-2 x F(x)-x^{2} F(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}-2 \sum_{n=0}^{\infty} a_{n-1} x^{n}-\sum_{n=0}^{\infty} a_{n-2} x^{n} \\
& =a_{0}+a_{1} x-2 a_{0} x+\sum_{n=2}^{\infty}\left(a_{n}-2 a_{n-1}-a_{n-2}\right) x^{n} \\
& =1+2 x-2 x=1 .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
F(x) & =\frac{1}{1-2 x-x^{2}} \\
& =\frac{1 / 2 \sqrt{2}}{1+\sqrt{2}+x}-\frac{1 / 2 \sqrt{2}}{1-\sqrt{2}+x} \\
& =\frac{1}{2 \sqrt{2}+4} \times \frac{1}{1+\frac{x}{1+\sqrt{2}}}-\frac{1}{2 \sqrt{2}-4} \times \frac{1}{1+\frac{x}{1-\sqrt{2}}} \\
& =\frac{1}{2 \sqrt{2}+4} \sum_{n=0}^{\infty}\left(-\frac{1}{1+\sqrt{2}}\right)^{n} x^{n}-\frac{1}{2 \sqrt{2}-4} \sum_{n=0}^{\infty}\left(-\frac{1}{1-\sqrt{2}}\right)^{n} x^{n} \\
& =\frac{1}{4}(2-\sqrt{2}) \sum_{n=0}^{\infty}(1-\sqrt{2})^{n} x^{n}+\frac{1}{4}(2+\sqrt{2}) \sum_{n=0}^{\infty}(1+\sqrt{2})^{n} x^{n} .
\end{aligned}
$$

Hence the sequence a_{n} is

$$
a_{n}=\frac{1}{4}(2+\sqrt{2})(1+\sqrt{2})^{n}+\frac{1}{4}(2-\sqrt{2})(1-\sqrt{2})^{n}
$$

Remark. Observe that the solution of the recursion is in the form $\alpha p^{n}+\beta q^{n}$ where p and q are the inverses of the roots of the denominator of the generating function, that is, the roots of the polynomial $r^{2}-2 r-1=0$ (this is obtained by replacing x with $1 / r$ in the denominator of $F(x)$). This equation is called the characteristic function of the recursion and is obtained by first rewriting the recursion $a_{n+2}=2 a_{n+1}+a_{n}$ (shifting the indices so that the smallest index in the recurrence relationship is n) and then replacing a_{n+k} by r^{k}, $k=0,1, \ldots$. After finding the roots we then solve for α and β using the initial conditions.
(c) Suppose we choose to use $n_{1} \$ 1$ coins, $n_{2} \$ 1$ bills, and $n_{3} \$ 2$ bills. Then b_{n} is the number of solutions of

$$
n_{1}+n_{2}+2 n_{3}=n, \quad n_{1}, n_{2}, n_{3} \in \mathbb{N}_{\geq 0}
$$

It is not difficult to see that b_{n} is the coefficient of x^{n} in

$$
G(x)=\left(1+x+x^{2}+\ldots\right)\left(1+x+x^{2}+\ldots\right)\left(1+x^{2}+x^{4}+\ldots\right)=\frac{1}{(1-x)^{2}} \frac{1}{1-x^{2}}
$$

In fact, we will get x^{n} in the result of the multiplication of the three polynomials whenever we multiply monomials $x^{n_{1}}, x^{n_{2}}$ and $x^{2 n_{3}}$ such that $n_{1}+n_{2}+2 n_{3}=n$ from the three polynomials respectively. Hence, the coefficient of x^{n} is equal to the number of different ways we can pick such monomials from the three polynomials.
By using partial fraction expansion, there are numbers α, β, γ, and δ such that

$$
\begin{aligned}
G(x) & =\frac{\alpha}{1-x}+\frac{\beta}{(1-x)^{2}}+\frac{\gamma}{(1-x)^{3}}+\frac{\delta}{1+x} \\
& =\frac{\alpha(1-x)^{2}(1+x)+\beta\left(1-x^{2}\right)+\gamma(1+x)+\delta(1-x)^{3}}{(1-x)^{3}(1+x)} .
\end{aligned}
$$

Setting the polynomial in the numerator equal to 1 we obtain the system of equations

$$
\left\{\begin{array}{l}
\alpha+\beta+\gamma+\delta=1 \\
-\alpha+\gamma-3 \delta=0 \\
-\alpha-\beta+3 \delta=0 \\
\alpha-\delta=0
\end{array}\right.
$$

whose solution (by elimination, for example) gives $\alpha=\delta=1 / 8, \beta=1 / 4$ and $\gamma=1 / 2$.

We retrieve

$$
\begin{aligned}
G(x) & =\frac{1 / 8}{1-x}+\frac{1 / 4}{(1-x)^{2}}+\frac{1 / 2}{(1-x)^{3}}+\frac{1 / 8}{1+x} \\
& =\frac{1}{8} \sum_{n=0}^{\infty} x^{n}+\frac{1}{4} \sum_{n=0}^{\infty}(n+1) x^{n}+\frac{1}{2} \sum_{n=0}^{\infty}\binom{n+2}{2} x^{n}+\frac{1}{8} \sum_{n=0}^{\infty}(-1)^{n} x^{n} \\
& =\sum_{n=0}^{\infty} x^{n}\left(\frac{1}{8}\left((-1)^{n}+1\right)+\frac{1}{4}(n+1)+\frac{1}{2}\binom{n+2}{2}\right),
\end{aligned}
$$

from where we can read off each coefficient. So the answer is

$$
b_{n}=\frac{1}{8}\left((-1)^{n}+1\right)+\frac{1}{4}(n+1)+\frac{1}{2}\binom{n+2}{2}=\left\lceil\frac{(n+3)(n+1)}{4}\right\rceil .
$$

Problem 3. We know from the course that if $F(x)$ is the generating function associated with the sequence a_{n} and $b_{n}=\sum_{i=0}^{n} a_{i}$, then the generating function of the sequence b_{n}, which we denote by $G(x)$, is

$$
G(x)=\frac{F(x)}{1-x} .
$$

(a) $a_{n}=\Theta\left(\left(\frac{1}{2}\right)^{n}\right)$ means the closest root of the denominator (aka pole) of $F(x)$ to the origin is $x^{*}=2$. In other words,

$$
F(x)=\frac{P(x)}{\left(1-\frac{1}{2} x\right) \tilde{Q}(x)}
$$

where all roots of $\tilde{Q}(x)$ have absolute value bigger than 2 . Therefore,

$$
G(x)=\frac{F(x)}{1-x}=\frac{P(x)}{(1-x)\left(1-\frac{1}{2} x\right) \tilde{Q}(x)}
$$

has a pole $x^{*}=1$ which is the closest pole to the origin. As a consequence we can conclude that

$$
b_{n}=\Theta(1) .
$$

(b) Repeating the same argument, we know that

$$
F(x)=\frac{P(x)}{(1-2 x) \tilde{Q}(x)}
$$

has the pole with the smallest magnitude $x^{*}=\frac{1}{2}$ (i.e. the roots of $\tilde{Q}(x)$ all have magnitude bigger than $\frac{1}{2}$). Consequently,

$$
G(x)=\frac{P(x)}{(1-x)(1-2 x) \tilde{Q}(x)}
$$

still has its smallest-magnitude pole at $x^{*}=\frac{1}{2}$. This means

$$
b_{n}=\Theta\left(2^{n}\right)
$$

Problem 4. Let $G(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ be the generating function associated to b_{n}.
(a)

$$
\begin{aligned}
G(x) & =\sum_{n=0}^{\infty}\left(2 a_{n}-a_{n+1}\right) x^{n} \\
& =2 \sum_{n=0}^{\infty} a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n+1} x^{n} \\
& =2 F(x)-x^{-1} \sum_{n=0}^{\infty} a_{n+1} x^{n+1} \\
& =2 F(x)-x^{-1}\left(\sum_{n=0}^{\infty} a_{n} x^{n}-a_{0}\right) \\
& =2 F(x)-x^{-1}\left(F(x)-a_{0}\right) \\
& =\left(2-\frac{1}{x}\right) F(x)+\frac{a_{0}}{x} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
G(x) & =\sum_{n=0}^{\infty} n a_{n} x^{n} \\
& =x \sum_{n=0}^{\infty} n a_{n} x^{n-1} \\
& =x \frac{\partial}{\partial x}\left\{\sum_{n=0}^{\infty} a_{n} x^{n}\right\} \\
& =x F^{\prime}(x)
\end{aligned}
$$

(c)

$$
\begin{aligned}
G(x) & =b_{0}+\sum_{n=1}^{\infty} \frac{a_{n}}{n} x^{n} \\
& =b_{0}+\sum_{n=0}^{\infty} \frac{a_{n+1}}{n+1} x^{n+1} \\
& =b_{0}+\sum_{n=0}^{\infty} \int_{0}^{x} a_{n+1} t^{n} \mathrm{~d} t \\
& =b_{0}+\int_{0}^{x} \sum_{n=0}^{\infty} a_{n+1} t^{n} \mathrm{~d} t \\
& =b_{0}+\int_{0}^{x} t^{-1} \sum_{n=0}^{\infty} a_{n+1} t^{n+1} \mathrm{~d} t \\
& =b_{0}+\int_{0}^{x} t^{-1}\left(\sum_{n=0}^{\infty} a_{n} t^{n}-a_{0}\right) \mathrm{d} t \\
& =b_{0}+\int_{0}^{x} t^{-1}\left(F(t)-a_{0}\right) \mathrm{d} t \\
& =a_{0}+\int_{0}^{x} \frac{F(t)-a_{0}}{t} \mathrm{~d} t
\end{aligned}
$$

Problem 5.

(a) The probability that a fair coin lands Heads in a single trial is $\frac{1}{2}$. As the $2 n$ trials are independent and in each of them the probability of obtaining Heads is $\frac{1}{2}$, the probability of having $2 n$ Heads is $\frac{1}{2^{2 n}}$.
Another way to see the result is the following. There are $2^{2 n}$ possible outcomes which are all equiprobable. Only 1 consists of $2 n$ Heads. Hence, the required probability is $\frac{1}{2^{2 n}}$.
(b) There are $2^{2 n}$ possible outcomes which are all equiprobable. In $\binom{2 n}{2}$ of them, we obtain 2 Tails. Hence, the required probability is $\frac{\binom{2 n}{2}}{2^{2 n}}$.
(c) Generalizing the argument above, we have that the probability of observing k Tails is given by

$$
p_{k}=\frac{\binom{2 n}{k}}{2^{2 n}} .
$$

We should bet on k^{*} such that p_{k} attains its maximum at k^{*}. Let us consider the ratio $\frac{p_{k+1}}{p_{k}}$. After some simplifications, we obtain

$$
\frac{p_{k}+1}{p_{k}}=\frac{2 n-k}{k+1} \geq 1 \Longleftrightarrow k \leq n-\frac{1}{2}
$$

Recalling that k and n are integers, we deduce that $p_{k+1} \geq p_{k}$ for $k<n$ and that $p_{k+1} \leq p_{k}$ for $k \geq n$. Hence, p_{k} attains its maximum when $k^{*}=n$ and you should bet on n Tails.
(d) The probability of getting Heads is $1-\frac{1}{3}=\frac{2}{3}$. As the $2 n$ trials are independent and in each of them the probability of obtaining Heads is $\frac{2}{3}$, the probability of having $2 n$ Heads is $\left(\frac{2}{3}\right)^{2 n}$. In addition, in $\binom{2 n}{2}$ cases, we obtain 2 Tails and each of these cases occurs with probability $\left(\frac{2}{3}\right)^{2 n-2} \times\left(\frac{1}{3}\right)^{2}$. Hence, the probability of getting 2 Tails out of $2 n$ trials is $\frac{2^{2 n-2}\binom{2 n}{2}}{3^{2 n}}$.

Problem 6.

(a) The probability of getting a sum equal to 2 is $p_{1} q_{1}$. This probability is also equal to $\frac{1}{11}$, since the sum of the outcomes is uniform in $\{2,3, \cdots, 12\}$. Therefore,

$$
\begin{equation*}
p_{1} q_{1}=\frac{1}{11} \tag{1}
\end{equation*}
$$

(b) The probability of getting a sum equal to 12 is $p_{6} q_{6}$. This probability is also equal to $\frac{1}{11}$, since the sum of the outcomes is uniform in $\{2,3, \cdots, 12\}$. Therefore,

$$
p_{6} q_{6}=\frac{1}{11} .
$$

(c)

$$
\frac{a+b}{2} \geq \sqrt{a b} \Longleftrightarrow a+b \geq 2 \sqrt{a b} \Longleftrightarrow(a+b)^{2} \geq 4 a b
$$

where the last \Longleftrightarrow is allowed because a and b are non-negative and, therefore, their sum is non-negative. In addition,

$$
(a+b)^{2}-4 a b=(a-b)^{2} \geq 0
$$

which is enough to prove the desired inequality.
(d) Let s be the probability that the sum of the outcomes of the two dice is 7 . Then,

$$
s=p_{1} q_{6}+p_{2} q_{5}+p_{3} q_{4}+p_{4} q_{3}+p_{5} q_{2}+p_{6} q_{1} \geq p_{1} q_{6}+p_{6} q_{1}=\frac{1}{11}\left(\frac{p_{1}}{p_{6}}+\frac{p_{6}}{p_{1}}\right)
$$

where the last equality comes from points (a) and (b). Using part (c), we also obtain that

$$
\frac{p_{1}}{p_{6}}+\frac{p_{6}}{p_{1}} \geq 2 \sqrt{\frac{p_{1}}{p_{6}} \cdot \frac{p_{6}}{p_{1}}}=2 .
$$

Consequently, $s \geq \frac{2}{11}$. In addition, s must be equal to $\frac{1}{11}$, because the sum of the outcomes is uniform in $\{2,3, \cdots, 12\}$, from which we obtain a contradiction.
(e) The generating function of the sum of independent random variables is the product of the individual generating functions, i.e., $s(x)=p(x) q(x)$. In addition, using the fact that the sum of outcomes is uniform in $\{2,3, \cdots, 12\}$, we obtain that

$$
s(x)=\frac{1}{11} \sum_{i=2}^{12} x^{i}=\frac{1}{11} \cdot x^{2} \cdot \frac{x^{11}-1}{x-1}
$$

The polynomial $\frac{x^{11}-1}{x-1}$ has no real roots. Indeed, the fact that $x=1$ is not a root can be easily checked by euclidean division. In addition, $x=1$ is the only real root of $x^{11}-1$. On the other hand, $p(x)$ is equal to x times a polynomial of odd degree and the same reasoning applies to $q(x)$. Hence, $s(x)=p(x) q(x)$ has two roots in 0 plus two other real roots, which is a contradiction.

