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Problem 1. Since we have 10 questions and 4 possible answers for each question in total we
can have 410 different answer sheets (using the product rule). Therefore, if we have 2× 410 + 1
students, using the pigeonhole principle we can conclude that there are at least three identical
answer sheets.

Problem 2. First of all you can simply check that the answer is obviously wrong because(
26
3

)
×
(
49
2

)
>
(
52
5

)
which represents the total number of possible ways we can pick a 5-cards

hand.
Now to see why the answer is wrong consider one possible 5-cards hand consisting of the A,

K, Q, J, and 10 of say hearts. This hand is being counted at least twice. It is being counted once
by picking A, K, and Q in first

(
26
3

)
choices and then J and 10 among the remaining

(
49
2

)
cards

and another time by considering 10, J, and Q in first
(
26
3

)
choices and then K and A among the

remaining
(
49
2

)
.

The correct way of counting the number of 5-card hands containing at least 3 red cards is as
follows: Our 5-card hands can contain 3, 4, or 5 red cards. Hence the total number of desired
5-card hands is (

26

3

)
×
(

26

2

)
+

(
26

4

)
×
(

26

1

)
+

(
26

5

)
.

Problem 3.

(a) Clearly, Ei ⊂ E for any i ∈ {0, 1, · · · , n}. Therefore E0 ∪ E1 ∪ · · · ∪ En ⊂ E. Also,
E ⊂ E0∪E1∪· · ·∪En, because every string has a number of 1’s which is an integer between
0 and n. Consequently, E = E0 ∪ E1 ∪ · · · ∪ En.

(b) Counting the bit strings with exactly i 1’s is equivalent to counting the ways in which one
can choose the positions of these i 1’s. These are the combinations of i elements from a class
of n without replacement. Therefore, Ei =

(
n
i

)
.

(c) |Ei ∩Ej | = 0 for i 6= j, because a binary string cannot have simultaneously i and j 1’s with
i 6= j.

(d) The number of binary strings of length n, i.e., the cardinality of E, is equal to 2n. In
addition, |E| =

∑n
i=0 |Ei|, because the sets Ei for i ∈ {0, 1, · · · , n} are pairwise disjoint by

point (c). Using this last equation and the result of point (b), we obtain that

2n = |E| =
n∑

i=0

|Ei| =
n∑

i=0

(
n

i

)
.
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Problem 4.

(a) Recall that

(
m

n

)
=

m!

n!(m− n)!
. Then, for any m ≥ 1 and any 1 ≤ n ≤ m− 1,

(
m− 1

n

)
+

(
m− 1

n− 1

)
=

(m− 1)!

n!(m− 1− n)!
+

(m− 1)!

(n− 1)!(m− n)!

=
(m− 1)!(m− n+ n)

n!(m− n)!
=

m!

n!(m− n)!
=

(
m

n

)
.

(b) The total number of ways we can pick m balls and color them black is
(
m
n

)
. The other way

for counting this is to consider a particular ball, if we decide to color this black, we need
to color n − 1 other balls among remaining m − 1 to as well for which have

(
m−1
n−1

)
ways.

Otherwise, i.e., if we leave that particular ball white, we need to pick n among remaining
m− 1 to color. This can be done in

(
m−1
n−1

)
ways.

(c) Base Step. For n = 0,

n∑
i=0

(
n

i

)
= 1 and 2n = 1.

Inductive Step. Assume that

n∑
i=0

(
n

i

)
= 2n. Then, using the identity (2) and the induc-

tion hypothesis, we obtain that

n+1∑
i=0

(
n+ 1

i

)
=

(
n+ 1

0

)
+

(
n+ 1

n+ 1

)
+

n−1∑
i=0

(
n+ 1

i+ 1

)
= 2 +

n−1∑
i=0

(
n

i

)
+

n−1∑
i=0

(
n

i+ 1

)

=

(
n

n

)
+

(
n

0

)
+

n−1∑
i=0

(
n

i

)
+

n∑
i=1

(
n

i

)
= 2

n∑
i=0

(
n

i

)
= 2 · 2n = 2n+1.

Problem 5.

(a) an = an−1/1.03 with initial condition a0 = 1.

(b) a20 = 1/1.0320 ≈ 0.55.

(c) In general, an = 1/1.03n. Then,

an ≤ 0.1⇐⇒ n ≥ log 10

log 1.03
= 77.9.

Therefore, after 78 years the purchasing power is ≤ 0.1.

(d) If the inflation is ten percent annually, the recursion is bn = bn−1/1.1 with initial condition
b0 = 1. Since b20 ≈ 0.15 and a80 = 0.09, then it is better to suffer from an inflation of ten
percent annually for 20 years, because in this case the purchasing power is higher.

Problem 6.

(a) The following passages are sufficient to prove the claim:

4an−1− 3an−2 = 4 · (α3n−1 + β)− 3 · (α3n−2 + β) = α(4 · 3n−1− 3n−1) + β = α3n + β = an.
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(b) Note that a0 = α+ β and a1 = 3α+ β. Then, by solving the system{
α+ β = π

3α+ β = π + 3
√

2
,

we obtain that {
α = 3

√
2

2

β = π − 3
√
2

2

.

Hence, the solution of the recurrence is an = 3
√
2

2 3n + π − 3
√
2

2 .

(c) Let G(x) :=
∑∞

n=0 anx
n and note that for any k ∈ N, xkG(x) =

∑∞
n=k an−kx

n. Then,

G(x)− 4xG(x) + 3x2G(x) =

∞∑
n=0

anx
n − 4

∞∑
n=1

an−1x
n + 3

∞∑
n=2

an−2x
n

= (a0 + a1x− 4a0x) +

∞∑
n=2

(an − 4an−1 + 3an−2)xn

Since the recurrence implies an − 4an−1 + 3an−2 = 0, plugging in the values of a0 = π and
a1 = π + 3

√
2 we get

G(x)[1− 4x+ 3x2] = [π + (3
√

2− 3π)x] ⇐⇒ G(x) =
π + 3(

√
2− π)x

1− 4x+ 3x2

Decomposing G(x) into partial fractions we get

G(x) =
π − 3

√
2/2

1− x
+

3
√

2/2

1− 3x

Using the power series we have

G(x) = (π − 3
√

2/2)

∞∑
n=0

xn + 3
√

2/2

∞∑
n=0

3nxn

which implies that the solution of the recursion is

an = (π − 3
√

2

2
) +

3
√

2

2
3n.
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