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Problem 1.

a) The multiplicative inverse of 7 modulo 11 exists (and is equal to 8). The multiplicative inverse
of 6 modulo 8 doesn’t exist. The multiplicative inverse of 5 modulo 8 exists (and is equal to
5).

b) Let x be the multiplicative inverse of a modulo b. That is, ax ≡ 1 (mod b) or equivalently,

ax = bk + 1 for some integer k

which is equivalent to
ax− bk = 1.

Take y := −k and recall that Bézout Lemma states that every integer of the form ax + by is
a multiple of the greatest common divisor of a and b, d := gcd(a, b). Consequently, we can
find an integer x such that ax ≡ 1 (mod b) if and only if gcd(a, b) = 1.

Swapping the roles of a and b we can conclude that gcd(a, b) = 1 is also a necessary and
sufficient condition for existence of the multiplicative inverse of b modulo a.

For the previous examples we can check that

• gcd(7, 11) = 1 hence the multiplicative inverse of 7 modulo 11 exists.

• gcd(6, 8) = 2 6= 1 hence the multiplicative inverse of 6 modulo 8 doesn’t exist.

• gcd(5, 8) = 1 hence the multiplicative inverse of 5 modulo 8 exists.

c) Recall the Euclid Algorithm to find the greatest common divisor of two numbers a and b. At
each step k = 0, 1, . . . , the algorithm finds the quotient qk and remainder rk such that

rk−2 = qkrk−1 + rk,

starting with r−2 := a and r−1 := b. In other words, the algorithm produces a sequence of
quotients and reminders as:

a = q0b + r0 (at step k = 0)

b = q1r0 + r1 (at step k = 1)

r0 = q2r1 + r2 (at step k = 2)

r1 = q3r2 + r3 (at step k = 3)

...

and terminates at some step N when rN = 0. The last non-zero remainder is d := gcd(a, b).
That is,

rN−3 = qN−1rN−2 + d (at step k = N − 1)

rN−2 = qNd + 0 (at step k = N)
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Rewriting the equation of step N − 1, we have

d = rN−3 − qN−1rN−2.

Now, we can use the equation for step N − 2 to write rN−2 = rN−4 − qN−2rN−3 and replace
this in the above equation to get:

d = (1 + qN−1qN−2)rN−3 − qN−1rN−4

We can again use the equation for step N−3 and write rN−3 = rN−5−qN−3rN−4 and replace
rN−3 in the above equation to get:

d = (1 + qN−1qN−2)rN−5 − (qN−3 + qN−1qN−2qN−3 + qN−1)rN−4

Continuing this procedure up to very first step k = 0, we will be able to write d as a linear
combination of r−2 = a and r−1 = b:

d = sa− tb

Now, if d = gcd(a, b) = 1, we have found numbers s and t such that

sa = 1 + bt

which means s is the multiplicative inverse of a modulo b: sa ≡ 1 (mod b).

d) i. Running the Euclid algorithm on the pair of integers 148 and 57 we have

148 = 2× 57 + 34,

57 = 1× 34 + 23,

34 = 1× 23 + 11,

23 = 2× 11 + 1,

(note that we have not written down the very last trivial step). Hence, starting from the
last equation and going back to top, we will have

1 = 23− 2× 11

= 23− 2× (34− 1× 23)

= 3× 23− 2× 34

= 3× (57− 1× 34)− 2× 34

= 3× 57− 5× 34

= 3× 57− 5× (148− 2× 57)

= 13× 57− 5× 148

which shows 13× 57 ≡ 1 (mod 148).

ii. Running the Euclid algorithm on the pair of integers 341 and 123 we have

341 = 2× 123 + 95,

123 = 1× 95 + 28,

95 = 3× 28 + 11,

28 = 2× 11 + 6,

11 = 1× 6 + 5,

6 = 1× 5 + 1.
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Thus,

1 = 6− 1× 5

= 6− 1× (11− 1× 6)

= 2× 6− 1× 11

= 2× (28− 2× 11)− 1× 11

= 2× 28− 5× 11

= 2× 28− 5× (95− 3× 28)

= 17× 28− 5× 95

= 17× (123− 95)− 5× 95

= 17× 123− 22× 95

= 17× 123− 22× (341− 2× 123)

= 61× 123− 22× 341

which shows 61× 123 ≡ 1 (mod 341).

iii. Running the Euclid algorithm on the pair of integers 921 and 257 we have

921 = 3× 257 + 150,

257 = 1× 150 + 107,

150 = 1× 107 + 43,

107 = 2× 43 + 21,

43 = 2× 21 + 1.

Therefore,

1 = 43− 2× 21

= 43− 2× (107− 2× 43)

= 5× 43− 2× 107

= 5× (150− 1× 107)− 2× 107

= 5× 150− 7× 107

= 5× 150− 7× (257− 1× 150)

= 12× 150− 7× 257

= 12× (921− 3× 257)− 7× 257

= 12× 921− 43× 257

Hence, −43×257 ≡ 1 (mod 921) which means the multiplicative inverse of 257 is −43 ≡
878 (mod 921).

Problem 2.

a) The cardinality of An and the number of terms on the left hand side of (1) is (n + 1)n. By
the uniqueness of the factorization, for each element m of An, the term 1/m appears in the
expansion of the product on the left. Thus, the expansion of this product is a rearrangement
of the finite sum on the right.

b) Recall that for any a 6= 1,
n∑

i=0

ai =
1− an+1

1− a
.
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Hence,

1 +
1

pj
+ . . . +

1

pnj
=

n∑
i=0

1

pij
=

1− 1
pn+1
j

1− 1
pj

≤ 1

1− 1
pj

=
pj

pj − 1
= 1 +

1

pj − 1

c) Using (1), we obtain that ln
∑

m∈An

1

m
= ln

n∏
i=1

n∑
j=0

1

pji
. Since ln(·) is a monotonous function,

using point b), we have that

ln

n∏
i=1

n∑
j=0

1

pnj
≤ ln

n∏
i=1

(
1 +

1

pi − 1

)
=

n∑
i=1

ln

(
1 +

1

pi − 1

)
.

We can check that for x ≥ 0, ln(1 + x) ≤ x.1 As a result,

n∑
i=1

ln

(
1 +

1

pi − 1

)
≤

n∑
i=1

1

pi − 1

Putting all these results together, we obtain
n∑

i=1

1

pi − 1
≥ ln

∑
m∈An

1

m
.

d) {1, . . . , n} ⊆ An because for all j ∈ {1, . . . , n}, the unique factorization of j contains only
primes from {p1, . . . , pn} as pn ≥ n. Also the multiplicity of each prime needs to be at most
n, since pn+1

i ≥ 2n+1 > n.

This proves that

ln
∑

m∈An

1

m
≥ ln

n∑
m=1

1

m
.

As concerns the left hand side, note that for j ≥ 2,

1

pj − 1
≤ 1

pj−1
.

In addition, if j = 1, then
1

p1 − 1
=

1

2− 1
= 1.

Hence

n∑
j=1

1

pj − 1
≤ 1 +

n∑
j=2

1

pj−1
= 1 +

n−1∑
j=1

1

pj
.

e) We already know that

n∑
j=1

1

j
≥ ln(n) ≥ ln(n− 1) Hence using the upper-bound of (2),

n−1∑
j=1

1

pj
≥ ln(ln(n− 1))− 1

which shows
∑n

j=1
1
pj

= Ω(log log n).

Problem 3.

1Define f(x) = ln(x + 1) and g(x) = x. Then g(0) = f(0) = 0 and g′(x) = 1 >
1

1 + x
= f ′(x) for any x ≥ 0.

Consequently f(x) ≤ g(x) for any x ≥ 0.
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a) Base Step: The claim clearly holds for n = 1, 22 − 1 = 3 | 3.

Induction Step: Assume 22n − 1 | 3. That is 22n = 3k + 1 for some integer k. Then
22(n+1) − 1 = 22n × 4− 1 = 12k + 4− 1 = 12k + 3 | 3.

b) Base Step: The claim clearly holds for n = 1, (a− b) | (a− b).

Induction Step: Assume (an−bn) | (a−b). We can always write an+1−bn+1 = an+1−anb+
anb− bn = an(a− b) + (an − bn)b | (a− b) because of the assumption (an − bn) | (a− b)
(and also the base case (a− b) | (a− b)).

Problem 4.

Base Step: Any shape in C1 is clearly cool. No matter which square is missing, any shape in
C1 can be tiled using a single L-shaped tile:

Induction Step: Assume that any shape in Cn is cool. In other words, we can tile a 2n × 2n

grid using L-shaped tiles leaving one empty 1×1 square no matter which square is missing.
We shall show that any shape in Cn+1 is cool, namely, that we can tile a 2n+1 × 2n+1 grid
using L-shaped tiles leaving one empty 1 × 1 square no matter which square is missing.
The 2n+1 × 2n+1 grid consists of four 2n × 2n grids placed side by side. The square that
we want to be empty is hence in one of these four 2n × 2n sub-grids. Assume without loss
of generality this is the bottom right grid:

2n

2n

2n 2n

By the induction assumption, we can tile this sub-grid leaving the desired square empty:

2n

2n

2n 2n

Furthermore, again using the induction assumption, we can tile each of the three remaining
2n × 2n grids using L-shaped tiles leaving the closest square to the center empty:
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2n

2n

2n 2n

This leaves us with a single L-shaped untiled area in the center which can be tiled using
an additional L-shaped tile:

2n

2n

2n 2n

Hence, any shape in Cn+1 is cool.

Problem 5. Suppose n = 35 and we are proving the claim for n + 1 = 36. 36 is not prime but
36 = 3×12. By the induction hypothesis 12 has a prime factorization 12 = p1p2p3 and 3 is prime
hence 36 = 3p1p2p3. However, 36 = 4× 9 as well and by the induction hypothesis we again have
4 = q1q2 and 9 = r1r2, thus 36 = q1q2r1r2 as well. The question is how we know that 3, p1, p2,
and p3 are the same prime numbers as q1, q2, r1, and r2 (up to a permutation)? They indeed
are, but this does not follow from the induction hypothesis. This is called a breakdown error. If
we try to show that something is unique and we break it down (as we broke down n + 1 = rs)
we need to argue that nothing changes if we break it down a different way (i.e. n + 1 = tu).
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