Discrete Structures EPFL, Fall 2014

Solution to Problem Set 7
Date: 31.10.2014 Not graded

Problem 1.

a) The multiplicative inverse of 7 modulo 11 exists (and is equal to 8). The multiplicative inverse
of 6 modulo 8 doesn’t exist. The multiplicative inverse of 5 modulo 8 exists (and is equal to
5).

b) Let x be the multiplicative inverse of @ modulo b. That is, az =1 (mod b) or equivalently,
axr =bk +1 for some integer k
which is equivalent to
axr — bk = 1.

Take y := —k and recall that Bézout Lemma states that every integer of the form ax + by is
a multiple of the greatest common divisor of a and b, d := ged(a,b). Consequently, we can
find an integer x such that ax =1 (mod b) if and only if ged(a,b) = 1.

Swapping the roles of a and b we can conclude that ged(a,b) = 1 is also a necessary and
sufficient condition for existence of the multiplicative inverse of b modulo a.

For the previous examples we can check that

e gcd(7,11) = 1 hence the multiplicative inverse of 7 modulo 11 exists.
e gcd(6,8) = 2 # 1 hence the multiplicative inverse of 6 modulo 8 doesn’t exist.

e gcd(5,8) = 1 hence the multiplicative inverse of 5 modulo 8 exists.

c¢) Recall the Euclid Algorithm to find the greatest common divisor of two numbers a and b. At
each step kK =0,1,..., the algorithm finds the quotient g, and remainder r; such that

Tk—2 = qkTk—1 + Tk,

starting with r_s := a and r_; := b. In other words, the algorithm produces a sequence of
quotients and reminders as:

a = qob + 1o (at step k= 0)
b=aqro+r (at step k =1)
To = q2T1 + T2 (at step k = 2)
TL=q3r2+ 13 (at step k = 3)

and terminates at some step N when ry = 0. The last non-zero remainder is d := ged(a, b).
That is,

TN-3 =(qN-1"N-2 1+ d (at step k=N — 1)
TN—2 =gNd+0 (at step k = N)



d)

Rewriting the equation of step N — 1, we have
d=rN_3—qN_1TN_2.

Now, we can use the equation for step N — 2 to write ry_o = ry_4 — gv_27Nn_3 and replace
this in the above equation to get:

d=(14+gn-1gN-2)"N-3 — qN—-1TN—4

We can again use the equation for step N —3 and write ry_3 = ry_5—qn_37~n_4 and replace
rny—s in the above equation to get:

d=1+gn-_1gn-2)"n—5 — (qN—-3 + N—1gN—2qN—-3 + qN—1)TN—4

Continuing this procedure up to very first step k = 0, we will be able to write d as a linear
combination of r_o = a and r_1 = b:

d=sa—tb

Now, if d = ged(a,b) = 1, we have found numbers s and ¢ such that
sa=1+bt
which means s is the multiplicative inverse of @ modulo b: sa =1 (mod b).
i. Running the Euclid algorithm on the pair of integers 148 and 57 we have

148 = 2 x 57 + 34,
57 =1 x 34 + 23,
34=1x23+11,
23=2x11+1,

(note that we have not written down the very last trivial step). Hence, starting from the
last equation and going back to top, we will have

1=23-2x11

=23 —-2x (34—1x23)
=3x23—-2x34
=3x(57—1x34)—2x34
=3xb7T—-5x34

=3 x57—5x (148 —2 x 57)
=13 x57—5 x 148

which shows 13 x 57 =1 (mod 148).
ii. Running the Euclid algorithm on the pair of integers 341 and 123 we have

341 = 2 x 123 + 95,
123 =1 x 95 + 28,
95 = 3 x 28 + 11,

28 =2 x 11 + 6,
11=1x64+5,
6=1x5+1.



Thus,

1=6-1x5
=6—-1x(11-1x6)
=2x6—-1x11
=2x(28—2x11)—1x11
=2x28-5x11
=2x28—5x (95 —3 x28)
=17x28—-5x%x95

=17 x (123 - 95) — 5 x 95
=17 x 123 — 22 x 95

=17 x 123 — 22 x (341 — 2 x 123)
=61 x 123 — 22 x 341

which shows 61 x 123 =1 (mod 341).
iii. Running the Euclid algorithm on the pair of integers 921 and 257 we have

921 = 3 x 257 + 150,
257 = 1 x 150 + 107,
150 = 1 x 107 + 43,
107 = 2 x 43 + 21,
43 =2x21+1.

Therefore,

1=43-2x21

=43 -2 x (107 — 2 x 43)
=5x43 -2 x 107

=5x (150 — 1 x 107) — 2 x 107
=5 x 150 — 7 x 107

=5x 150 — 7 x (257 — 1 x 150)
=12 x 150 — 7 x 257

=12 x (921 — 3 x 257) — 7 x 257
=12 x 921 — 43 x 257

Hence, —43 x 257 = 1 (mod 921) which means the multiplicative inverse of 257 is —43 =
878 (mod 921).

Problem 2.

a) The cardinality of A,, and the number of terms on the left hand side of (1) is (n + 1)". By
the uniqueness of the factorization, for each element m of A, the term 1/m appears in the
expansion of the product on the left. Thus, the expansion of this product is a rearrangement
of the finite sum on the right.

b) Recall that for any a # 1,
n+1



Hence,
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We already know that Z - (n) > In(n — 1) Hence using the upper-bound of (2),
=

which shows >°7_, -+ = Q(loglogn).

Problem 3.

IDefine f(x) = In(z + 1) and g(x) = x. Then g(0) = f(0) =0 and g'(z) = 1 > % = f'(z) for any z > 0.

Consequently f(z) < g(z) for any = > 0.



a) Base Step: The claim clearly holds for n = 1,22 —1 =3 3.
Induction Step: Assume 22" — 1 | 3. That is 2°" = 3k + 1 for some integer k. Then
22t 1 =920 x4 - 1=12k+4—-1=12k+3|3. O
b) Base Step: The claim clearly holds for n =1, (a — b) | (a — b).

Induction Step: Assume (a”—b") | (a—b). We can always write a" 1 —p" 1 = "1 —gnp+
ab—b" =a"(a—b)+ (a" —b™")b | (a — b) because of the assumption (a™ —b") | (a —b)
(and also the base case (a —b) | (a — b)). O

Problem 4.

Base Step: Any shape in C; is clearly cool. No matter which square is missing, any shape in
C; can be tiled using a single L-shaped tile:

Induction Step: Assume that any shape in C,, is cool. In other words, we can tile a 2" x 2"
grid using L-shaped tiles leaving one empty 1 x 1 square no matter which square is missing.
We shall show that any shape in C,, 1 is cool, namely, that we can tile a 2"+ x 27+1 orid
using L-shaped tiles leaving one empty 1 X 1 square no matter which square is missing.
The 27+ x 27+1 grid consists of four 2" x 2™ grids placed side by side. The square that
we want to be empty is hence in one of these four 2™ x 2™ sub-grids. Assume without loss
of generality this is the bottom right grid:

2n 2n

By the induction assumption, we can tile this sub-grid leaving the desired square empty:

2n 2n

Furthermore, again using the induction assumption, we can tile each of the three remaining
2™ x 2™ grids using L-shaped tiles leaving the closest square to the center empty:



]
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This leaves us with a single L-shaped untiled area in the center which can be tiled using
an additional L-shaped tile:

on
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Hence, any shape in C, 11 is cool. O

Problem 5. Suppose n = 35 and we are proving the claim for n + 1 = 36. 36 is not prime but
36 = 3 x 12. By the induction hypothesis 12 has a prime factorization 12 = ppop3 and 3 is prime
hence 36 = 3p1p2p3. However, 36 = 4 x 9 as well and by the induction hypothesis we again have
4 = qi1q2 and 9 = 7179, thus 36 = q1g2r172 as well. The question is how we know that 3, py, po,
and ps are the same prime numbers as qi, gz, 71, and r3 (up to a permutation)? They indeed
are, but this does not follow from the induction hypothesis. This is called a breakdown error. If
we try to show that something is unique and we break it down (as we broke down n + 1 = rs)
we need to argue that nothing changes if we break it down a different way (i.e. n+ 1 = tu).



