Solution to Problem Set 7

Date: 31.10.2014
Not graded

Problem 1.

a) The multiplicative inverse of 7 modulo 11 exists (and is equal to 8). The multiplicative inverse of 6 modulo 8 doesn't exist. The multiplicative inverse of 5 modulo 8 exists (and is equal to 5).
b) Let x be the multiplicative inverse of a modulo b. That is, $a x \equiv 1(\bmod b)$ or equivalently,

$$
a x=b k+1 \quad \text { for some integer } k
$$

which is equivalent to

$$
a x-b k=1
$$

Take $y:=-k$ and recall that Bézout Lemma states that every integer of the form ax $+b y$ is a multiple of the greatest common divisor of a and $b, d:=\operatorname{gcd}(a, b)$. Consequently, we can find an integer x such that $a x \equiv 1(\bmod b)$ if and only if $\operatorname{gcd}(a, b)=1$.
Swapping the roles of a and b we can conclude that $\operatorname{gcd}(a, b)=1$ is also a necessary and sufficient condition for existence of the multiplicative inverse of b modulo a.
For the previous examples we can check that

- $\operatorname{gcd}(7,11)=1$ hence the multiplicative inverse of 7 modulo 11 exists.
- $\operatorname{gcd}(6,8)=2 \neq 1$ hence the multiplicative inverse of 6 modulo 8 doesn't exist.
- $\operatorname{gcd}(5,8)=1$ hence the multiplicative inverse of 5 modulo 8 exists.
c) Recall the Euclid Algorithm to find the greatest common divisor of two numbers a and b. At each step $k=0,1, \ldots$, the algorithm finds the quotient q_{k} and remainder r_{k} such that

$$
r_{k-2}=q_{k} r_{k-1}+r_{k}
$$

starting with $r_{-2}:=a$ and $r_{-1}:=b$. In other words, the algorithm produces a sequence of quotients and reminders as:

$$
\begin{aligned}
a & =q_{0} b+r_{0} & & (\text { at step } k=0) \\
b & =q_{1} r_{0}+r_{1} & & (\text { at step } k=1) \\
r_{0} & =q_{2} r_{1}+r_{2} & & (\text { at step } k=2) \\
r_{1} & =q_{3} r_{2}+r_{3} & & (\text { at step } k=3)
\end{aligned}
$$

$$
\vdots
$$

and terminates at some step N when $r_{N}=0$. The last non-zero remainder is $d:=\operatorname{gcd}(a, b)$. That is,

$$
\begin{array}{lr}
r_{N-3}=q_{N-1} r_{N-2}+d & (\text { at step } k=N-1) \\
r_{N-2}=q_{N} d+0 & (\text { at step } k=N)
\end{array}
$$

Rewriting the equation of step $N-1$, we have

$$
d=r_{N-3}-q_{N-1} r_{N-2} .
$$

Now, we can use the equation for step $N-2$ to write $r_{N-2}=r_{N-4}-q_{N-2} r_{N-3}$ and replace this in the above equation to get:

$$
d=\left(1+q_{N-1} q_{N-2}\right) r_{N-3}-q_{N-1} r_{N-4}
$$

We can again use the equation for step $N-3$ and write $r_{N-3}=r_{N-5}-q_{N-3} r_{N-4}$ and replace r_{N-3} in the above equation to get:

$$
d=\left(1+q_{N-1} q_{N-2}\right) r_{N-5}-\left(q_{N-3}+q_{N-1} q_{N-2} q_{N-3}+q_{N-1}\right) r_{N-4}
$$

Continuing this procedure up to very first step $k=0$, we will be able to write d as a linear combination of $r_{-2}=a$ and $r_{-1}=b$:

$$
d=s a-t b
$$

Now, if $d=\operatorname{gcd}(a, b)=1$, we have found numbers s and t such that

$$
s a=1+b t
$$

which means s is the multiplicative inverse of a modulo $b: s a \equiv 1(\bmod b)$.
d) i. Running the Euclid algorithm on the pair of integers 148 and 57 we have

$$
\begin{aligned}
148 & =2 \times 57+34 \\
57 & =1 \times 34+23 \\
34 & =1 \times 23+11 \\
23 & =2 \times 11+1
\end{aligned}
$$

(note that we have not written down the very last trivial step). Hence, starting from the last equation and going back to top, we will have

$$
\begin{aligned}
1 & =23-2 \times 11 \\
& =23-2 \times(34-1 \times 23) \\
& =3 \times 23-2 \times 34 \\
& =3 \times(57-1 \times 34)-2 \times 34 \\
& =3 \times 57-5 \times 34 \\
& =3 \times 57-5 \times(148-2 \times 57) \\
& =13 \times 57-5 \times 148
\end{aligned}
$$

which shows $13 \times 57 \equiv 1(\bmod 148)$.
ii. Running the Euclid algorithm on the pair of integers 341 and 123 we have

$$
\begin{aligned}
341 & =2 \times 123+95, \\
123 & =1 \times 95+28, \\
95 & =3 \times 28+11, \\
28 & =2 \times 11+6, \\
11 & =1 \times 6+5, \\
6 & =1 \times 5+1 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
1 & =6-1 \times 5 \\
& =6-1 \times(11-1 \times 6) \\
& =2 \times 6-1 \times 11 \\
& =2 \times(28-2 \times 11)-1 \times 11 \\
& =2 \times 28-5 \times 11 \\
& =2 \times 28-5 \times(95-3 \times 28) \\
& =17 \times 28-5 \times 95 \\
& =17 \times(123-95)-5 \times 95 \\
& =17 \times 123-22 \times 95 \\
& =17 \times 123-22 \times(341-2 \times 123) \\
& =61 \times 123-22 \times 341
\end{aligned}
$$

which shows $61 \times 123 \equiv 1(\bmod 341)$.
iii. Running the Euclid algorithm on the pair of integers 921 and 257 we have

$$
\begin{aligned}
921 & =3 \times 257+150, \\
257 & =1 \times 150+107, \\
150 & =1 \times 107+43, \\
107 & =2 \times 43+21, \\
43 & =2 \times 21+1 .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
1 & =43-2 \times 21 \\
& =43-2 \times(107-2 \times 43) \\
& =5 \times 43-2 \times 107 \\
& =5 \times(150-1 \times 107)-2 \times 107 \\
& =5 \times 150-7 \times 107 \\
& =5 \times 150-7 \times(257-1 \times 150) \\
& =12 \times 150-7 \times 257 \\
& =12 \times(921-3 \times 257)-7 \times 257 \\
& =12 \times 921-43 \times 257
\end{aligned}
$$

Hence, $-43 \times 257 \equiv 1(\bmod 921)$ which means the multiplicative inverse of 257 is $-43 \equiv$ $878(\bmod 921)$.

Problem 2.

a) The cardinality of \mathcal{A}_{n} and the number of terms on the left hand side of (1) is $(n+1)^{n}$. By the uniqueness of the factorization, for each element m of \mathcal{A}_{n}, the term $1 / m$ appears in the expansion of the product on the left. Thus, the expansion of this product is a rearrangement of the finite sum on the right.
b) Recall that for any $a \neq 1$,

$$
\sum_{i=0}^{n} a^{i}=\frac{1-a^{n+1}}{1-a}
$$

Hence,

$$
1+\frac{1}{p_{j}}+\ldots+\frac{1}{p_{j}^{n}}=\sum_{i=0}^{n} \frac{1}{p_{j}^{i}}=\frac{1-\frac{1}{p_{j}^{n+1}}}{1-\frac{1}{p_{j}}} \leq \frac{1}{1-\frac{1}{p_{j}}}=\frac{p_{j}}{p_{j}-1}=1+\frac{1}{p_{j}-1}
$$

c) Using (1), we obtain that $\ln \sum_{m \in \mathcal{A}_{n}} \frac{1}{m}=\ln \prod_{i=1}^{n} \sum_{j=0}^{n} \frac{1}{p_{i}^{j}}$. Since $\ln (\cdot)$ is a monotonous function, using point b), we have that

$$
\ln \prod_{i=1}^{n} \sum_{j=0}^{n} \frac{1}{p_{j}^{n}} \leq \ln \prod_{i=1}^{n}\left(1+\frac{1}{p_{i}-1}\right)=\sum_{i=1}^{n} \ln \left(1+\frac{1}{p_{i}-1}\right)
$$

We can check that for $x \geq 0, \ln (1+x) \leq x .{ }^{1}$ As a result,

$$
\sum_{i=1}^{n} \ln \left(1+\frac{1}{p_{i}-1}\right) \leq \sum_{i=1}^{n} \frac{1}{p_{i}-1}
$$

Putting all these results together, we obtain $\sum_{i=1}^{n} \frac{1}{p_{i}-1} \geq \ln \sum_{m \in \mathcal{A}_{n}} \frac{1}{m}$.
d) $\{1, \ldots, n\} \subseteq \mathcal{A}_{n}$ because for all $j \in\{1, \ldots, n\}$, the unique factorization of j contains only primes from $\left\{p_{1}, \ldots, p_{n}\right\}$ as $p_{n} \geq n$. Also the multiplicity of each prime needs to be at most n, since $p_{i}^{n+1} \geq 2^{n+1}>n$.
This proves that

$$
\ln \sum_{m \in \mathcal{A}_{n}} \frac{1}{m} \geq \ln \sum_{m=1}^{n} \frac{1}{m}
$$

As concerns the left hand side, note that for $j \geq 2$,

$$
\frac{1}{p_{j}-1} \leq \frac{1}{p_{j-1}}
$$

In addition, if $j=1$, then

$$
\frac{1}{p_{1}-1}=\frac{1}{2-1}=1
$$

Hence $\sum_{j=1}^{n} \frac{1}{p_{j}-1} \leq 1+\sum_{j=2}^{n} \frac{1}{p_{j-1}}=1+\sum_{j=1}^{n-1} \frac{1}{p_{j}}$.
e) We already know that $\sum_{j=1}^{n} \frac{1}{j} \geq \ln (n) \geq \ln (n-1)$ Hence using the upper-bound of (2),

$$
\sum_{j=1}^{n-1} \frac{1}{p_{j}} \geq \ln (\ln (n-1))-1
$$

which shows $\sum_{j=1}^{n} \frac{1}{p_{j}}=\Omega(\log \log n)$.

Problem 3.

[^0]a) Base Step: The claim clearly holds for $n=1,2^{2}-1=3 \mid 3$.

Induction Step: Assume $2^{2 n}-1 \mid 3$. That is $2^{2 n}=3 k+1$ for some integer k. Then $2^{2(n+1)}-1=2^{2 n} \times 4-1=12 k+4-1=12 k+3 \mid 3$.
b) Base Step: The claim clearly holds for $n=1,(a-b) \mid(a-b)$.

Induction Step: Assume $\left(a^{n}-b^{n}\right) \mid(a-b)$. We can always write $a^{n+1}-b^{n+1}=a^{n+1}-a^{n} b+$ $a^{n} b-b^{n}=a^{n}(a-b)+\left(a^{n}-b^{n}\right) b \mid(a-b)$ because of the assumption $\left(a^{n}-b^{n}\right) \mid(a-b)$ (and also the base case $(a-b) \mid(a-b))$.

Problem 4.

Base Step: Any shape in \mathcal{C}_{1} is clearly cool. No matter which square is missing, any shape in \mathcal{C}_{1} can be tiled using a single L-shaped tile:

Induction Step: Assume that any shape in \mathcal{C}_{n} is cool. In other words, we can tile a $2^{n} \times 2^{n}$ grid using L-shaped tiles leaving one empty 1×1 square no matter which square is missing. We shall show that any shape in \mathcal{C}_{n+1} is cool, namely, that we can tile a $2^{n+1} \times 2^{n+1}$ grid using L-shaped tiles leaving one empty 1×1 square no matter which square is missing. The $2^{n+1} \times 2^{n+1}$ grid consists of four $2^{n} \times 2^{n}$ grids placed side by side. The square that we want to be empty is hence in one of these four $2^{n} \times 2^{n}$ sub-grids. Assume without loss of generality this is the bottom right grid:

By the induction assumption, we can tile this sub-grid leaving the desired square empty:

Furthermore, again using the induction assumption, we can tile each of the three remaining $2^{n} \times 2^{n}$ grids using L-shaped tiles leaving the closest square to the center empty:

This leaves us with a single L-shaped untiled area in the center which can be tiled using an additional L-shaped tile:

Hence, any shape in \mathcal{C}_{n+1} is cool.

Problem 5. Suppose $n=35$ and we are proving the claim for $n+1=36$. 36 is not prime but $36=3 \times 12$. By the induction hypothesis 12 has a prime factorization $12=p_{1} p_{2} p_{3}$ and 3 is prime hence $36=3 p_{1} p_{2} p_{3}$. However, $36=4 \times 9$ as well and by the induction hypothesis we again have $4=q_{1} q_{2}$ and $9=r_{1} r_{2}$, thus $36=q_{1} q_{2} r_{1} r_{2}$ as well. The question is how we know that $3, p_{1}, p_{2}$, and p_{3} are the same prime numbers as q_{1}, q_{2}, r_{1}, and r_{2} (up to a permutation)? They indeed are, but this does not follow from the induction hypothesis. This is called a breakdown error. If we try to show that something is unique and we break it down (as we broke down $n+1=r s$) we need to argue that nothing changes if we break it down a different way (i.e. $n+1=t u$).

[^0]: ${ }^{1}$ Define $f(x)=\ln (x+1)$ and $g(x)=x$. Then $g(0)=f(0)=0$ and $g^{\prime}(x)=1>\frac{1}{1+x}=f^{\prime}(x)$ for any $x \geq 0$. Consequently $f(x) \leq g(x)$ for any $x \geq 0$.

