Solution to Problem Set 5

Date: 17.10.2014

Not graded

Problem 1.

- a) $\pi n^4 + 10n^3 + 10^{10}n^2 + 10^{10^{10}}n = (\pi + \frac{10}{n} + \frac{10^{10}}{n^2} + \frac{10^{10^{10}}}{n^3})n^4 \le 7n^4$ for $n \ge k := \lceil \sqrt[3]{10^{10^{10}}} \rceil$ (since for such *n*'s all the three fractions inside the parenthesis are less than 1).
- b) $1 \cdot 2 + 2 \cdot 3 + \dots + (n-1) \cdot n \le (n-1) \cdot n + (n-1) \cdot n + \dots + (n-1) \cdot n = (n-1)^2 \cdot n \le n^3$.
- c) $1^{2014} + 2^{2014} + \dots + n^{2014} \le n^{2014} + n^{2014} + \dots + n^{2014} = n^{2015}$.
- d) Using the identities $\lfloor x \rfloor \leq x$ and $\lceil x \rceil \leq x + 1$ we can write,

$$\lceil n + \sqrt{7} \rceil \cdot \lfloor n^2 - \sqrt{2} \rfloor + \lceil n^4 + \sqrt{3} \rceil \leq (n + \sqrt{7} + 1)(n^2 - \sqrt{2}) + (n^4 + \sqrt{3})$$

$$= n^4 + n^3 + (\sqrt{7} + 1)n^2 - \sqrt{2}n + (\sqrt{3} - \sqrt{2} - \sqrt{7}\sqrt{2})$$

$$= \left(1 + \frac{1}{n} + \frac{\sqrt{7} + 1}{n^2} - \frac{\sqrt{2}}{n^3} + \frac{\sqrt{3} - \sqrt{2} - \sqrt{7}\sqrt{2}}{n^4}\right) \cdot n^4$$

$$\leq 11n^4, \quad \text{for } n \geq 1.$$

Problem 2. It is clear that the first algorithm uses fewer operations as n grows. In fact it can easily checked that $\lim_{n \to +\infty} \frac{n\sqrt{n}}{n^2 \log n} = \lim_{n \to +\infty} \frac{1}{\sqrt{n} \log n} = 0.$

Problem 3. Each execution of line 4 involves 2 additions. Consequently each round of the inner for loop requires 2i additions. Thus, the total number of additions performed in the algorithm is

$$\sum_{i=1}^{n^2} 2i = 2 \times \frac{1}{2}n^2(n^2+1) = n^2(n^2+1).$$

Furthermore $n^2(n^2+1) = \Theta(n^4)$ because,

$$n^4 \le n^2(n^2 + 1) \le 2n^4$$

for all $n \geq 1$.

Problem 4.

- a) We need n-1 additions to compute the sum of the elements of a length n vectors and $n-1 = \Theta(n)$.
- b) For multiplying each row by the vector, we need n multiplications and n-1 additions. Thus, in total we need n^2 multiplications and n(n-1) additions which means in total $2n^2 n$ operations. $2n^2 n = \Theta(n^2)$.
- c) We need to repeat the task of b) n times. Hence we need $n^3 n^2 = \Theta(n^3)$ operations in total.

d) The result is a $n \times n$ matrix. To compute each element of the result, we need $\lceil \sqrt{n} \rceil$ multiplications and $\lceil \sqrt{n} \rceil - 1$ additions. Thus, in total, we need $n^2(2\lceil \sqrt{n} \rceil - 1) = \Theta(n^2\sqrt{n})$ operations.

Problem 5.

- a) True. $\frac{1}{n^2} \ge \frac{1}{n^2}$ for $n \ge 1$.
- b) False. $\lim_{n \to +\infty} \frac{1/n^a}{1/n^b} = n^{b-a} = +\infty$ (since b > a).
- c) True.

$$\log(1+n) \le \log(2n) = 2\log(\sqrt{2n})$$
$$\le 2\sqrt{2n} = 2\sqrt{2} \cdot \sqrt{n}$$

for $n \geq 1$.

- d) True. $\lim_{n \to +\infty} \frac{n^4 4^n}{\frac{1}{n^5} 5^n} = \lim_{n \to +\infty} n^9 \left(\frac{4}{5}\right)^n = 0.$
- e) False. $\lim_{n \to +\infty} \frac{2^{n^2}}{4^{n}3^{n\log n}} = \lim_{n \to +\infty} 2^{n^2 2n \log_2(3)n\log n} = +\infty$. This means for every $C \ge 0$, there exists $n_0 = n_0(M)$ such that for $n \ge n_0$, $\frac{2^{n^2}}{4^n 3^{n\log n}} \ge C$. That is, $2^{n^2} \ge C4^n 3^{n\log n}$ for $n \ge n_0(C)$. Thus, it is impossible to find k and C such that $2^{n^2} \le C4^n 3^{n\log n}$ for $n \ge k$ (since for $n \ge \max\{k, n_0(C)\}, 2^{n^2} \ge C4^n 3^{n\log n}$).
- f) True. For $n \ge 4$,

$$\frac{n!}{2^n} = \frac{n \times (n-1) \times \dots \times 4 \times 3 \times 2 \times 1}{2^n}$$
$$\geq \frac{4 \times 4 \times \dots \times 4 \times 3 \times 2 \times 1}{2^n} = \frac{4^{n-3} \times 6}{2^n}$$
$$= \frac{4^n}{2^n} \times \frac{6}{64} = \frac{6}{64} 2^n.$$

g) True. For $n \ge 2$,

$$(n!!)^2 = [n \times (n-2) \times (n-4) \times \dots \times 2] \times [n \times (n-2) \times (n-4) \times \dots \times 2]$$

$$\geq [n \times (n-2) \times (n-4) \dots \times 2] \times [(n-1) \times (n-3) \times (n-5) \times \dots \times 1]$$

$$= n!$$

Problem 6.

- $100n^3 + n^2$ and $n^2 + n^3$ have the same order.
- $3n^3 + 2^n$ and $n^2 + 2^n$ have the same order.