Solution to Problem Set 5

Date: 17.10.2014
Not graded

Problem 1.

a) $\pi n^{4}+10 n^{3}+10^{10} n^{2}+10^{10^{10}} n=\left(\pi+\frac{10}{n}+\frac{10^{10}}{n^{2}}+\frac{10^{10^{10}}}{n^{3}}\right) n^{4} \leq 7 n^{4}$ for $n \geq k:=\left\lceil\sqrt[3]{10^{10^{10}}}\right\rceil$ (since for such n 's all the three fractions inside the parenthesis are less than 1).
b) $1 \cdot 2+2 \cdot 3+\cdots+(n-1) \cdot n \leq(n-1) \cdot n+(n-1) \cdot n+\cdots+(n-1) \cdot n=(n-1)^{2} \cdot n \leq n^{3}$.
c) $1^{2014}+2^{2014}+\cdots+n^{2014} \leq n^{2014}+n^{2014}+\cdots+n^{2014}=n^{2015}$.
d) Using the identities $\lfloor x\rfloor \leq x$ and $\lceil x\rceil \leq x+1$ we can write,

$$
\begin{aligned}
\lceil n+\sqrt{7}\rceil \cdot\left\lfloor n^{2}-\sqrt{2}\right\rfloor+\left\lceil n^{4}+\sqrt{3}\right\rceil & \leq(n+\sqrt{7}+1)\left(n^{2}-\sqrt{2}\right)+\left(n^{4}+\sqrt{3}\right) \\
& =n^{4}+n^{3}+(\sqrt{7}+1) n^{2}-\sqrt{2} n+(\sqrt{3}-\sqrt{2}-\sqrt{7} \sqrt{2}) \\
& =\left(1+\frac{1}{n}+\frac{\sqrt{7}+1}{n^{2}}-\frac{\sqrt{2}}{n^{3}}+\frac{\sqrt{3}-\sqrt{2}-\sqrt{7} \sqrt{2}}{n^{4}}\right) \cdot n^{4} \\
& \leq 11 n^{4}, \quad \text { for } n \geq 1 .
\end{aligned}
$$

Problem 2. It is clear that the first algorithm uses fewer operations as n grows. In fact it can easily checked that $\lim _{n \rightarrow+\infty} \frac{n \sqrt{n}}{n^{2} \log n}=\lim _{n \rightarrow+\infty} \frac{1}{\sqrt{n} \log n}=0$.

Problem 3. Each execution of line 4 involves 2 additions. Consequently each round of the inner for loop requires $2 i$ additions. Thus, the total number of additions performed in the algorithm is

$$
\sum_{i=1}^{n^{2}} 2 i=2 \times \frac{1}{2} n^{2}\left(n^{2}+1\right)=n^{2}\left(n^{2}+1\right) .
$$

Furthermore $n^{2}\left(n^{2}+1\right)=\Theta\left(n^{4}\right)$ because,

$$
n^{4} \leq n^{2}\left(n^{2}+1\right) \leq 2 n^{4}
$$

for all $n \geq 1$.

Problem 4.

a) We need $n-1$ additions to compute the sum of the elements of a length n vectors and $n-1=\Theta(n)$.
b) For multiplying each row by the vector, we need n multiplications and $n-1$ additions. Thus, in total we need n^{2} multiplications and $n(n-1)$ additions which means in total $2 n^{2}-n$ operations. $2 n^{2}-n=\Theta\left(n^{2}\right)$.
c) We need to repeat the task of b) n times. Hence we need $n^{3}-n^{2}=\Theta\left(n^{3}\right)$ operations in total.
d) The result is a $n \times n$ matrix. To compute each element of the result, we need $\lceil\sqrt{n}$ multiplications and $\lceil\sqrt{n}\rceil-1$ additions. Thus, in total, we need $n^{2}(2\lceil\sqrt{n}\rceil-1)=\Theta\left(n^{2} \sqrt{n}\right)$ operations.

Problem 5.

a) True. $\frac{1}{n^{2}} \geq \frac{1}{n^{2}}$ for $n \geq 1$.
b) False. $\lim _{n \rightarrow+\infty} \frac{1 / n^{a}}{1 / n^{b}}=n^{b-a}=+\infty($ since $b>a)$.
c) True

$$
\begin{aligned}
\log (1+n) & \leq \log (2 n)=2 \log (\sqrt{2 n}) \\
& \leq 2 \sqrt{2 n}=2 \sqrt{2} \cdot \sqrt{n}
\end{aligned}
$$

for $n \geq 1$.
d) True. $\lim _{n \rightarrow+\infty} \frac{n^{4} 4^{n}}{\frac{1}{n^{5}} 5^{n}}=\lim _{n \rightarrow+\infty} n^{9}\left(\frac{4}{5}\right)^{n}=0$.
e) False. $\lim _{n \rightarrow+\infty} \frac{2^{n^{2}}}{4^{n} 3^{n \log n}}=\lim _{n \rightarrow+\infty} 2^{n^{2}-2 n-\log _{2}(3) n \log n}=+\infty$. This means for every $C \geq$ 0 , there exists $n_{0}=n_{0}(M)$ such that for $n \geq n_{0}, \frac{2^{n^{2}}}{4^{n} 3^{n \log n}} \geq C$. That is, $2^{n^{2}} \geq C 4^{n} 3^{n \log n}$ for $n \geq n_{0}(C)$. Thus, it is impossible to find k and C such that $2^{n^{2}} \leq C 4^{n} 3^{n \log n}$ for $n \geq k$ (since for $n \geq \max \left\{k, n_{0}(C)\right\}, 2^{n^{2}} \geq C 4^{n} 3^{n \log n}$).
f) True. For $n \geq 4$,

$$
\begin{aligned}
\frac{n!}{2^{n}} & =\frac{n \times(n-1) \times \cdots \times 4 \times 3 \times 2 \times 1}{2^{n}} \\
& \geq \frac{4 \times 4 \times \cdots \times 4 \times 3 \times 2 \times 1}{2^{n}}=\frac{4^{n-3} \times 6}{2^{n}} \\
& =\frac{4^{n}}{2^{n}} \times \frac{6}{64}=\frac{6}{64} 2^{n} .
\end{aligned}
$$

g) True. For $n \geq 2$,

$$
\begin{aligned}
(n!!)^{2} & =[n \times(n-2) \times(n-4) \times \cdots \times 2] \times[n \times(n-2) \times(n-4) \times \cdots \times 2] \\
& \geq[n \times(n-2) \times(n-4) \cdots \times 2] \times[(n-1) \times(n-3) \times(n-5) \times \cdots \times 1] \\
& =n!
\end{aligned}
$$

Problem 6.

- $100 n^{3}+n^{2}$ and $n^{2}+n^{3}$ have the same order.
- $3 n^{3}+2^{n}$ and $n^{2}+2^{n}$ have the same order.

