Discrete Structures

EPFL, Fall 2014

Solution to Problem Set 3

Date: 3.10.2014

Not graded

Problem 1.

- a) We first show $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$. Let $x \in \overline{A \cap B}$. Hence $x \notin A \cap B$ which implies $x \notin A$ or $x \notin B$. Therefore, $x \in \overline{A}$ or $x \in \overline{B}$. Consequently $x \in \overline{A} \cup \overline{B}$. Reversing the steps shows $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$.
- b) Firstly,

On the other side,

Problem 2.

- a) True
- b) True
- c) True
- d) False
- e) False
- f) False

Problem 3.

- a) Finite with cardinality 7.
- b) Infinite.
- c) Finite with cardinality 0 (empty set).
- d) Finite with cardinality 0 (empty set).
- e) Finite with cardinality 0 (empty set).
- f) Infinite.
- g) Finite with cardinality 5.

Problem 4. In order for an integer to be multiple of 2, 3, and 5 it must be a multiple of $2 \times 3 \times 5 = 30$. There are, hence, 3 numbers in A that are multiple of 2, 3, and 5 (namely, 30, 60, and 90).

To answer the second part of the question, let B, C and D denote the sets of multiples of 2, 3, and 5 respectively. We are looking for $|B \cup C \cup D|$ which is,

$$|B \cup C \cup D| = |B| + |C| + |D| - |B \cap C| - |B \cap D| - |C \cap D| + |B \cap C \cap D|.$$
(*)

Now,

$$|B| = 50,$$
 $|C| = 33,$ $|D| = 20,$

and using the same reasoning above,

$$|B \cap C| = 16,$$
 $|B \cap D| = 10,$ $|C \cap D| = 6$

(note that $B \cap C$ is the set of multiples of 2 and 3, that is the set of multiples of 6, $B \cap D$ is the set of multiples of 2 and 5, i.e., multiples of 10, and $C \cap D$ is the set of multiples of 3 and 5, i.e. multiples of 15). Finally, as we computed in the first part,

$$|B \cap C \cap D| = 3.$$

Plugging these into (*) we conclude there are 74 integers between 1 and 100 that are multiple of 2, 3, and 5.

Problem 5.

a) This is a function but not injective nor surjective.

The elements a and -a are both mapped to a^{2014} (hence not injective) and no element in \mathbb{R} is mapped to a negative element of \mathbb{R} (hence not surjective).

- b) This is not a function (for negative x, f(x) is undefined).
- c) This is an injective function but not surjective.

Suppose sin(x) = sin(y) for some natural numbers $x \neq y$. Then, $x = 2k\pi + y$ or $x = (2k+1)\pi - y$ (for some integer k). But there are now two integers that differ (or sum to) multiples of π . Hence the function is injective.

The function is not subjective simply because $\sin(x) \in [-1, 1] \subsetneq \mathbb{R}$.

- d) This is an injective function but not surjective (x + 2014) is always integer hence all the elements of the codomain are not covered).
- e) This is an injective and surjective (hence bijective) function.

- f) This a surjective but not injective function. The whole interval of [-1, 1] is covered by $\cos(x)$ but if $x = y + 2\pi$, $\cos(x) = \cos(y)$.
- g) This is not a function, the elements $x \in (1, 2)$ are mapped into two different values.
- h) This is bijective function.

Indeed, $(1+x)^2 - (1-x)^2 = 4x$. Hence f(x) = 4x for $\forall x \in \mathbb{R}$ which is clearly an injective and surjective function.

- i) This is not a function; f(0) in undefined.
- j) This is an injective but not surjective function.

Suppose f(x) = f(y) for some $x \neq y$. Then $e^{-e^{-x}} = e^{-e^{-y}}$. Hence, $e^{-x} = e^{-y}$ which implies x = y. Thus, f(x) is injective. Also, one can check that $f(x) \in [\frac{1}{2}, \frac{1}{3}]$ thus is not surjective.

Problem 6.

- a) $f \circ g = \{(1,2), (2,4), (3,2), (4,3)\}.$
- b) $g \circ f = \{(1,2), (2,3), (3,1), (4,3)\}.$
- c) $g^{-1} = \{(1,4), (2,3), (3,2), (4,1)\}.$
- d) $g \circ g = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$. Note that in the previous part we discovered that $g^{-1} = g$. Thus, $g \circ g = g \circ g^{-1}$ is the identity function on A.
- e) f is not injective (both elements 2 and 4 are mapped to 2) hence f^{-1} is undefined.