Solution to Problem Set 3

Date: 3.10.2014 Not graded

Problem 1.

a) We first show $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$. Let $x \in \overline{A \cap B}$. Hence $x \notin A \cap B$ which implies $x \notin A$ or $x \notin B$. Therefore, $x \in \bar{A}$ or $x \in \bar{B}$. Consequently $x \in \bar{A} \cup \bar{B}$.
Reversing the steps shows $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$.
b) Firstly,

On the other side,

$(A \cap B) \cup(A \cap C)$
\cup

Problem 2.
a) True
b) True
c) True
d) False
e) False
f) False

Problem 3.

a) Finite with cardinality 7 .
b) Infinite.
c) Finite with cardinality 0 (empty set).
d) Finite with cardinality 0 (empty set).
e) Finite with cardinality 0 (empty set).
f) Infinite.
g) Finite with cardinality 5 .

Problem 4. In order for an integer to be multiple of 2,3 , and 5 it must be a multiple of $2 \times 3 \times 5=30$. There are, hence, 3 numbers in A that are multiple of 2, 3, and 5 (namely, 30, 60 , and 90).

To answer the second part of the question, let B, C and D denote the sets of multiples of 2 , 3 , and 5 respectively. We are looking for $|B \cup C \cup D|$ which is,

$$
\begin{equation*}
|B \cup C \cup D|=|B|+|C|+|D|-|B \cap C|-|B \cap D|-|C \cap D|+|B \cap C \cap D| . \tag{*}
\end{equation*}
$$

Now,

$$
|B|=50, \quad|C|=33, \quad|D|=20
$$

and using the same reasoning above,

$$
|B \cap C|=16, \quad|B \cap D|=10, \quad|C \cap D|=6
$$

(note that $B \cap C$ is the set of multiples of 2 and 3 , that is the set of multiples of $6, B \cap D$ is the set of multiples of 2 and 5 , i.e., multiples of 10 , and $C \cap D$ is the set of multiples of 3 and 5 , i.e. multiples of 15). Finally, as we computed in the first part,

$$
|B \cap C \cap D|=3
$$

Plugging these into $\left(^{*}\right)$ we conclude there are 74 integers between 1 and 100 that are multiple of 2,3 , and 5 .

Problem 5.

a) This is a function but not injective nor surjective.

The elements a and $-a$ are both mapped to a^{2014} (hence not injective) and no element in \mathbb{R} is mapped to a negative element of \mathbb{R} (hence not surjective).
b) This is not a function (for negative $x, f(x)$ is undefined).
c) This is an injective function but not surjective.

Suppose $\sin (x)=\sin (y)$ for some natural numbers $x \neq y$. Then, $x=2 k \pi+y$ or $x=$ $(2 k+1) \pi-y$ (for some integer k). But there are now two integers that differ (or sum to) multiples of π. Hence the function is injective.
The function is not subjective simply because $\sin (x) \in[-1,1] \subsetneq \mathbb{R}$.
d) This is an injective function but not surjective $(x+2014$ is always integer hence all the elements of the codomain are not covered).
e) This is an injective and surjective (hence bijective) function.
f) This a surjective but not injective function.

The whole interval of $[-1,1]$ is covered by $\cos (x)$ but if $x=y+2 \pi, \cos (x)=\cos (y)$.
g) This is not a function, the elements $x \in(1,2)$ are mapped into two different values.
h) This is bijective function.

Indeed, $(1+x)^{2}-(1-x)^{2}=4 x$. Hence $f(x)=4 x$ for $\forall x \in \mathbb{R}$ which is clearly an injective and surjective function.
i) This is not a function; $f(0)$ in undefined.
j) This is an injective but not surjective function.

Suppose $f(x)=f(y)$ for some $x \neq y$. Then $e^{-e^{-x}}=e^{-e^{-y}}$. Hence, $e^{-x}=e^{-y}$ which implies $x=y$. Thus, $f(x)$ is injective.
Also, one can check that $f(x) \in\left[\frac{1}{2}, \frac{1}{3}\right]$ thus is not surjective.

Problem 6.

a) $f \circ g=\{(1,2),(2,4),(3,2),(4,3)\}$.
b) $g \circ f=\{(1,2),(2,3),(3,1),(4,3)\}$.
c) $g^{-1}=\{(1,4),(2,3),(3,2),(4,1)\}$.
d) $g \circ g=\{(1,1),(2,2),(3,3),(4,4)\}$. Note that in the previous part we discovered that $g^{-1}=g$. Thus, $g \circ g=g \circ g^{-1}$ is the identity function on A.
e) f is not injective (both elements 2 and 4 are mapped to 2) hence f^{-1} is undefined.

