ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 10
Information Theory and Coding
Solutions to homework 5

Problem 1.

(a) Since the X_{1}, \ldots, X_{n} are i.i.d., so are $q\left(X_{1}\right), q\left(X_{2}\right), \ldots, q\left(X_{n}\right)$, and hence we can apply the strong law of large numbers to obtain

$$
\begin{aligned}
\lim -\frac{1}{n} \log q\left(X_{1}, \ldots, X_{n}\right) & =\lim -\frac{1}{n} \sum \log q\left(X_{i}\right) \\
& =-E[\log q(X)] \quad \text { w.p. } 1 \\
& =-\sum p(x) \log q(x) \\
& =\sum p(x) \log \frac{p(x)}{q(x)}-\sum p(x) \log p(x) \\
& =D(p \| q)+H(X) .
\end{aligned}
$$

(b) Again, by the strong law of large numbers,

$$
\begin{aligned}
\lim -\frac{1}{n} \log \frac{q\left(X_{1}, \ldots, X_{n}\right)}{p\left(X_{1}, \ldots, X_{n}\right)} & =\lim -\frac{1}{n} \sum \log \frac{q\left(X_{i}\right)}{p\left(X_{i}\right)} \\
& =-E\left[\log \frac{q(X)}{p(X)}\right] \quad \text { w.p. } 1 \\
& =-\sum p(x) \log \frac{q(x)}{p(x)} \\
& =\sum p(x) \log \frac{p(x)}{q(x)} \\
& =D(p \| q)
\end{aligned}
$$

Problem 2.

(a) It is easy to check that W is an i.i.d. process but Z is not. As W is i.i.d. it is also stationary. We want to show that Z is also stationary. To show this, it is sufficient to prove that the distribution of the process does not change by shift in the time domain.

$$
\begin{aligned}
& p_{Z}\left(Z_{m}=a_{m}, Z_{m+1}=a_{m+1}, \cdots, Z_{m+r}=a_{m+r}\right) \\
& =\frac{1}{2} p_{X}\left(X_{m}=a_{m}, X_{m+1}=a_{m+1}, \cdots, X_{m+r}=a_{m+r}\right) \\
& +\frac{1}{2} p_{Y}\left(Y_{m}=a_{m}, Y_{m+1}=a_{m+1}, \cdots, Y_{m+r}=a_{m+r}\right) \\
& =\frac{1}{2} p_{X}\left(X_{m+s}=a_{m}, X_{m+s+1}=a_{m+1}, \cdots, X_{m+s+r}=a_{m+r}\right) \\
& +\frac{1}{2} p_{Y}\left(Y_{m+s}=a_{m}, Y_{m+s+1}=a_{m+1}, \cdots, Y_{m+s+r}=a_{m+r}\right) \\
& =p_{Z}\left(Z_{m+s}=a_{m}, Z_{m+s+1}=a_{m+1}, \cdots, Z_{m+s+r}=a_{m+r}\right),
\end{aligned}
$$

where we used the stationarity of the X and Y processes. This shows the invariance of the distribution with respect to the arbitrary shift s in time which implies stationarity.
(b) For the Z process we have

$$
\begin{aligned}
H(Z) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(Z_{1}, \cdots, Z_{n}\right) \\
& =\lim _{n \rightarrow \infty} H\left(Z_{1}, \cdots, Z_{n} \mid \Theta\right) \\
& =\frac{1}{2} H\left(X_{0}\right)+\frac{1}{2} H\left(Y_{0}\right)=1 .
\end{aligned}
$$

W process is an i.i.d process with the distribution $p_{W}(a)=\frac{1}{2} p_{X}(a)+\frac{1}{2} p_{Y}(a)$. From concavity of the entropy, it is easy to see that $H(W)=H\left(W_{0}\right) \geq \frac{1}{2} H\left(X_{0}\right)+\frac{1}{2} H\left(Y_{0}\right)=$ 1. Hence, the entropy rate of W is greater than the entropy rate of Z and the equality holds if and only if X_{0} and Y_{0} have the same probability distribution function.

Problem 3. (a) We can write the following chain of inequalities:

$$
\begin{aligned}
Q^{n}(\mathbf{x}) & \stackrel{1}{=} \prod_{i=1}^{n} Q\left(x_{i}\right) \stackrel{2}{=} \prod_{a \in \mathcal{X}} Q(a)^{N(a \mid \mathbf{x})} \stackrel{3}{=} \prod_{a \in \mathcal{X}} Q(a)^{n P_{\mathbf{x}}(a)}=\prod_{a \in \mathcal{X}} 2^{n P_{\mathbf{x}}(a) \log Q(a)} \\
& =\prod_{a \in \mathcal{X}} 2^{n\left(P_{\mathbf{x}}(a) \log Q(a)-P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)+P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)\right)} \\
& =2^{n \sum_{a \in \mathcal{X}}\left(-P_{\mathbf{x}}(a) \log \frac{P_{\mathbf{x}}(a)}{Q(a)}+P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)\right)}=2^{n\left(-D\left(P_{\mathbf{x}} \| Q+H\left(P_{\mathbf{x}}\right)\right)\right.}
\end{aligned}
$$

where 1 follows because the sequence is i.i.d., grouping symbols gives 2 , and 3 is the definition of type.
(b) Upper bound: We know that

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=1
$$

Consider one term and set $p=k / n$. Then,

$$
1 \geq\binom{ n}{k}\left(\frac{k}{n}\right)^{k}\left(1-\frac{k}{n}\right)^{n-k}=\binom{n}{k} 2^{n\left(\frac{k}{n} \log \frac{k}{n}+\frac{n-k}{n} \log \frac{n-k}{n}\right)}=\binom{n}{k} 2^{-n h_{2}\left(\frac{k}{n}\right)}
$$

Lower bound: Define $S_{j}=\binom{n}{j} p^{j}(1-p)^{n-j}$. We can compute

$$
\frac{S_{j+1}}{S_{j}}=\frac{n-j}{j+1} \frac{p}{1-p}
$$

One can see that this ratio is a decreasing function in j. It equals 1 , if $j=n p+p-1$, so $\frac{S_{j+1}}{S_{j}}<1$ for $j=\lfloor n p+p\rfloor$ and $\frac{S_{j+1}}{S_{j}} \geq 1$ for any smaller j. Hence, S_{j} takes its maximum value at $j=\lfloor n p+p\rfloor$, which equals k in our case. From this we have that

$$
\begin{aligned}
1 & =\sum_{j=0}^{n}\binom{n}{j} p^{j}(1-p)^{n-j} \leq(n+1) \max _{j}\binom{n}{j} p^{j}(1-p)^{j} \\
& \leq(n+1)\binom{n}{k}\left(\frac{k}{n}\right)^{k}\left(1-\frac{k}{n}\right)^{n-k}=(n+1)\binom{n}{k} 2^{-n h_{2}\left(\frac{k}{n}\right)} .
\end{aligned}
$$

The last equality comes from the derivation we had when proving the upper bound.

Problem 4. Upon noticing $0.9^{6}>0.1$, we obtain $\{1,01,001,0001,00001,000001,0000001$, $0000000\}$ as the dictionary entries.

Problem 5. Since the words of a valid and prefix condition dictionary reside in the leaves of a full tree, the Kraft inequality must be satisfied with equality: Consider climbing up the tree starting from the root, choosing one of the D branches that climb up from a node with equal probability. The probability of reaching a leaf at depth l_{i} is then $D^{-l_{i}}$. Since the climbing process will certainly end in a leaf, we have

$$
1=\operatorname{Pr}(\text { ending in a leaf })=\sum_{i} D^{-l_{i}} .
$$

If the dictionary is valid but not prefix-free, by removing all words that already have a prefix in the dictionary we would obtain a valid prefix-free dictionary. Since this reduced dictionary would satisfy the Kraft inequality with equality, the extra words would cause the inequality to be violated.

Problem 6.

(a) Let I be the set of intermediate nodes (including the root), let N be the set of nodes except the root and let L be the set of all leaves. For each $n \in L$ define $A(n)=\{m \in N: m$ is an ancestor of $n\}$ and for each $m \in N$ define $D(m)=\{n \in$ $L: n$ is a descendant of $m\}$. We assume each leaf is an ancestor and a descendant of itself. Then

$$
\begin{aligned}
E[\text { distance to a leaf }]=\sum_{n \in L} P(n) \sum_{m \in A(n)} & d(m) \\
& =\sum_{m \in N} d(m) \sum_{n \in D(m)} P(n)=\sum_{m \in N} P(m) d(m) .
\end{aligned}
$$

(b) Let $d(n)=-\log Q(n)$. We see that $-\log P\left(n_{j}\right)$ is the distance associated with a leaf. From part (a),

$$
\begin{aligned}
H(\text { leaves }) & =E[\text { distance to a leaf }] \\
& =\sum_{n \in N} P(n) d(n) \\
& =-\sum_{n \in N} P(n) \log Q(n) \\
& =-\sum_{n \in N} P(\text { parent of } n) Q(n) \log Q(n) \\
& =-\sum_{m \in I} P(m) \sum_{n: n \text { is a child of } m} Q(n) \log Q(n) \\
& =\sum_{m \in I} P(m) H_{m^{\prime}}
\end{aligned}
$$

(c) Since all the intermediate nodes of a valid and prefix condition dictionary have the same number of children with the same set of Q_{n}, each $H_{n}=H$. Thus H (leaves) $=$ $H \sum_{n \in I} P(n)=H E[L]$.

