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Variable to Fixed Length Source Coding — Tunstall Coding

These notes are based largely on notes by P. A. Humblet and R. G. Gallager.
We first prove an auxiliary result about computing the expectation of non-negative

integer valued random variables:

Theorem 1. If N is a non-negative integer valued random variable then

E[N ] =
∞∑
n=0

Pr(N > n).

Proof.

E[N ] =
∞∑
i=1

iPr(N = i)

= Pr(N = 1)

+ Pr(N = 2) + Pr(N = 2)

+ Pr(N = 3) + Pr(N = 3) + Pr(N = 3)

+ Pr(N = 4) + Pr(N = 4) + Pr(N = 4) + Pr(N = 4)

+
... +

... +
... +

...

= Pr(N > 0) + Pr(N > 1) + Pr(N > 2) + Pr(N > 3) + · · ·

Corollary. Given a tree with probabilities assigned to the leaves, let the probability of
an intermediate node be defined as the sum of the probabilities of all leaves that descend
from that node. Then, the expected depth of a leaf is given by the sum of the probabilities
of all intermediate nodes including the root.

Proof. The sum of the probabilities of the intermediate nodes at depth i is equal to the
probability that a leaf has depth strictly greater than i.

Example 1.
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Parsers and Dictionaries

A parser segments the sequence of letters from a source into a concatenation of words. For
example, the source string

a b a a c b a a b a c a a a b c ...

may be parsed as the concatenation of ab, aac, b, aab, ac, aaa, b, c, . . . .
The conceptual situation looks like this:

Source Parser Encoder
U1, U2, . . .

K-ary letters

W1,W2, . . .

words

Binary

digits

The parser does its job with the help of a dictionary of size M . Such a dictionary is
a collection of words w1, . . . ,wM , where each wm is a sequence of source letters. We will
map each dictionary entry into a binary b-tuple; we will choose b so that M ≤ 2b which
ensures that a distinct mapping is possible.

Given a dictionary of strings w1, . . . ,wM , the parser picks the longest prefix of the
source sequence U1, U2, . . . that is in the dictionary (say, U1, . . . , UL) and then continues
with UL+1, UL+2, . . . .

Example 2. For a binary source with letters a and b, and a dictionary with 4 words
w1 = a, w2 = b, w3 = bba, w4 = bbb, the source sequence abbababba... would be parsed
as a, bba, b, a, bba, . . . .

Definition. A dictionary {w1, . . . ,wM} is valid if every infinite sequence of source letters
has a prefix in the dictionary.

If the source alphabet U contains K letters, we can associate a unique, labelled, K-ary
tree with a dictionary w1, . . . ,wM :

Example 3. The tree associated with the dictionary in the previous example is given by

w1

w2

w3

w4

a

b

b

b

a

a

From the definition, we see that a dictionary is valid, if and only if there is at least one
dictionary word on every path that connects the root to a leaf.

Definition. A dictionary is prefix-free, if no dictionary word is a prefix of another. Such a
dictionary is also called instantaneously encodable, since the parser can emit the dictionary
word as soon as the source sequence is seen to form a dictionary word.

From the definition we see that a words of a valid and prefix-free dictionary are all the
leaves (and only the leaves) of a K-ary tree.
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Example 4. The dictionary in Example 2 is not prefix-free. On the other hand, the
dictionary consisting of the words w1 = a, w2 = ba, w3 = bba, and w4 = bbb is valid and
prefix-free. The corresponding tree is

w1

w2

w3

w4

a

b

b

b

a

a

Consider building such a tree starting from the root: at the first stage, we have K leaves
and 1 intermediate node (the root). Each time we convert a leaf to an intermediate node,
we replace it with K leaves that are its children. Thus, a net of K − 1 leaves are added
each time a new intermediate node is made. This gives us the relation between the number
of leaves M and the number of intermediate nodes α of the tree representation of a valid,
prefix-free dictionary:

M = 1 + (K − 1)α.

To use a valid, prefix-free dictionary, and represent dictionary words with binary strings of
b bits, we choose α such that M ≤ 2b < M + K − 1, i.e., we make the dictionary size M
as large as possible without exceeding 2b.

The expected number of source letters E[L] encoded by a dictionary word is simply
the expected length of a dictionary word. This can be found from the tree representing
the dictionary. Label each leaf by the probability of the corresponding word and label
each intermediate node by the sum of the probabilities of all leaves growing from that
node. Using the corollary we proved in the preliminaries, E[L] is given by the sum of the
probabilities of the intermediate nodes including the root.

Entropy of a Dictionary

Theorem 2. If the dictionary is valid and prefix-free and the source is memoryless (i.e.,
U1, U2, . . . is an i.i.d. sequence) then the parsed sequence W1,W2, . . . of words is also
memoryless. Moreover H(W) equals E[L]H(U).

Proof. Because the dictionary is prefix-free, the parser can emit W1 before it sees any letters
of W2,W3, . . . . Thus, knowing that W1 = u1u2 . . . ul only tells us that the first l letters of
the source were U1 = u1, . . . , Ul = ul. Since the source emits independent letters, it thus fol-
lows that knowing W1 does not give us any information about Ul+1, Ul+2, . . . which will form
W2,W3, . . . , and so we conclude that W1,W2, . . . are independent. Furthermore, since
the source letters are not only independent but identically distributed, Ul+1, Ul+2, . . . have
the same statistics as U1, U2, . . . , it then follows that the random variables W1,W2, . . . ,
are not only independent independent but identically distributed as well. Let PW denote
the distribution of the W1. It now remains to show that H(W1) = E[L]H(U).

Since W1 is a function of the sequence of source letters, so is the length of W1, and
so is logPW (W1). (Note that W1 is a random variable, thus length(W1), logPW (W1) are
also random variables). As the length of W1 is a function of U1, U2, . . . ,, denote this length
by l(U1, , U2, . . . ). Since the source letters are independent, we see that

Pr(W1) =

l(U1,U2,... )∏
j=1

PU(Uj)
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and by taking logarithms

logP (W1) =

l(U1,U2,... )∑
j=1

logPU(Uj).

Let 1{a} equal to 1 if a is true and 0 if a is false. Noticing that an index j ≥ 1 participates
in the sum above if and only if l(U1, U2, . . . ) ≥ j, we can write

logP (W1) =

l(U1,U2,... )∑
j=1

logPU(Uj) =
∞∑
j=1

1{l(U1, U2, . . . ) ≥ j} logPU(Uj),

and taking expectations

H(W1) = −
∞∑
j=1

E
[
log(PU(Uj))1{l(U1, U2, . . . )} ≥ j}

]
.

Since the the dictionary is prefix free, the event {l(U1, U2, . . . ) ≤ j − 1} is determined by
U1, . . . , Uj−1 and thus is independent of Uj. Since {l(U1, U2, . . . ) ≥ j} is the complement
of this event it is also independent of Uj. Thus

E
[
log(PU(Uj))1{l(U1, U2, . . . ) ≥ j}

]
= E

[
log(PU(Uj))

]
E
[
1{l(U1, U, . . . ) ≥ j}

]
= −H(U) Pr(l(U1, U2, . . . ) ≥ j)

Thus,

H(W1) = H(U)
∞∑
j=1

Pr(l(U1, U2, . . . ) ≥ j)

= H(U)
∞∑
j=0

Pr(l(U1, U2, . . . ) > j)

= H(U)E[L]

concluding the proof.

An alternate proof of this theorem is given in the exercises.

Tunstall Construction

In general, we would like to construct the dictionary for a given M so as to maximize E[L].
This will minimize b/E[L], the number of binary digits per average number of source letters
encoded. In light of the corollary proved in the preliminaries, we want to keep the most
likely α nodes as intermediate nodes. This is easy; pick out the intermediate nodes one by
one in decreasing order of probabability, starting at the root. Each node picked will have
all its ancestors already picked since an ancestor of a node has higher probability than the
node. Because of this, the intermediate nodes picked as such will form the intermediate
nodes of a tree. We thus have:
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Tunstall algorithm

1. Start with the root as intermediate node and all level 1 nodes as leaves.

2. If number of leaves is equal to the desired dictionary size stop.

3. Otherwise, pick the highest probability leaf, make it an intermediate node and grow
K leaves on it. Goto step 2.

Analysis of the Tunstall algorithm

Let Q be the probability of the last intermediate node picked by the Tunstall algorithm.
Since at the time it was picked this intermediate node was the largest probability leaf, we
see that Q is an upper bound to the probability of any leaf, i.e., P (leaf) ≤ Q.

Furthemore, since intermediate nodes are picked in decreasing order of probability,
every intermediate node has probability at least Q. Let Pmin be the probability of the least
probable source letter. Since the probability of a leaf is given by the probability of its
immediate ancestor times the probability of a source letter, P (leaf) ≥ QPmin. We thus see
that

QPmin ≤ P (leaf) ≤ Q.

Summing over all leaves in the left inequality we conclude that MQPmin ≤ 1 and thus
1/Q ≥MPmin. From the right hand inequality we see that

− logP (leaf) ≥ log(1/Q) ≥ log(MPmin).

Taking expectations we see that H(leaves) ≥ log(MPmin). Now, H(leaves) = H(U)E[L].
Thus

b < log(M +K − 1)

= log(M) + log(1 + (K − 1)/M)

= log(MPmin) + log(1/Pmin) + log(1 + (K − 1)/M)

≤ H(U)E[L] + log(1/Pmin) + log(1 + (K − 1)/M)

and thus
b

E[L]
< H(U) +

1

E[L]
[log(1/Pmin) + log(1 + (K − 1)/M)].

By choosing b large, we are choosing M large and thus E[L] large. This makes the term
excess of H(U) approach zero. Thus, by taking a large dictionary, the number of bits per
source letter the scheme uses can be made as close to H(U) as desired.
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