ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 24
Information Theory and Coding
Solutions to homework 10
December 10, 2013

Problem 1.

(a)

$$
\begin{aligned}
I(X ; Y) & =I\left(X_{k}, K ; Y_{k}, K\right)=I\left(K ; Y_{k}, K\right)+I\left(X_{k} ; Y_{K}, K \mid K\right)=H(K)+I\left(X_{k} ; Y_{k} \mid K\right) \\
& =h_{2}(\alpha)+\mathbb{P}_{K}[1] . I\left(X_{k} ; Y_{k} \mid K=1\right)+\mathbb{P}_{K}[2] I\left(X_{k} ; Y_{k} \mid K=2\right) \\
& =h_{2}(\alpha)+\alpha \cdot I\left(X_{1} ; Y_{1}\right)+(1-\alpha) I\left(X_{2} ; Y_{2}\right)
\end{aligned}
$$

(b) The distribution of X is determined by α and by the distributions of X_{1} and X_{2}. It is clear from the expression in (a) that for any given $\alpha, I(X ; Y)$ is maximized when $I\left(X_{1} ; Y_{1}\right)$ and $I\left(X_{2} ; Y_{2}\right)$ are maximized, i.e., when the distribution of X_{1} (resp. X_{2}) achieves the capacity of P_{1} (resp. P_{2}). We conclude that the value of α in the capacity achieving distribution is the one that maximizes the function $f(\alpha)=$ $h_{2}(\alpha)+\alpha C_{1}+(1-\alpha) C_{2}$. The derivative of f is:

$$
f^{\prime}(\alpha)=-\log _{2}(\alpha)-\frac{1}{\ln 2}+\log _{2}(1-\alpha)+\frac{1}{\ln 2}+C_{1}-C_{2}=C_{1}-C_{2}+\log _{2} \frac{1-\alpha}{\alpha} .
$$

We have $f^{\prime}(\alpha)=0$ (resp. $\left.f^{\prime}(\alpha)>0, f^{\prime}(\alpha)<0\right)$ if $\alpha=\alpha^{*}\left(\right.$ resp. $\alpha<\alpha^{*}, \alpha>\alpha^{*}$), where $\alpha^{*}=\frac{2^{C_{1}}}{2^{C_{1}}+2^{C_{2}}}$. This means that $f(\alpha)$ is maximized at $\alpha=\alpha^{*}$. Therefore, the capacity achieving distribution is such that $\alpha=\frac{2^{C_{1}}}{2^{C_{1}}+2^{C_{2}}}$ and X_{1} (resp. X_{2}) achieves the capacity of the channel P_{1} (resp. P_{2}).
(c) From (b), we have:

$$
\begin{aligned}
C= & -\frac{2^{C_{1}}}{2^{C_{1}}+2^{C_{2}}} \log _{2} \frac{2^{C_{1}}}{2^{C_{1}}+2^{C_{2}}}-\frac{2^{C_{2}}}{2^{C_{1}}+2^{C_{2}}} \log _{2} \frac{2^{C_{2}}}{2^{C_{1}}+2^{C_{2}}}+\frac{2^{C_{1}} C_{1}}{2^{C_{1}}+2^{C_{2}}}+\frac{2^{C_{2}} C_{2}}{2^{C_{1}}+2^{C_{2}}} \\
= & -\frac{2^{C_{1}}}{2^{C_{1}}+2^{C_{2}}} C_{1}+\frac{2^{C_{1}}}{2^{C_{1}}+2^{C_{2}}} \log _{2}\left(2^{C_{1}}+2^{C_{2}}\right)-\frac{2^{C_{2}}}{2^{C_{1}}+2^{C_{2}}} C_{2} \\
& +\frac{2^{C_{2}}}{2^{C_{1}}+2^{C_{2}}} \log _{2}\left(2^{C_{1}}+2^{C_{2}}\right)+\frac{2^{C_{1}} C_{1}}{2^{C_{1}}+2^{C_{2}}}+\frac{2^{C_{2}} C_{2}}{2^{C_{1}}+2^{C_{2}}} \\
= & \log _{2}\left(2^{C_{1}}+2^{C_{2}}\right) .
\end{aligned}
$$

Therefore, $2^{C}=2^{C_{1}}+2^{C_{2}}$.

Problem 2.

(a)

$$
\begin{aligned}
F\left(p, r_{p}\right)-F(p, r) & =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) P(y \mid x) \log _{2} \frac{r_{p}(x \mid y)}{r(x \mid y)} \\
& =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) P(y \mid x) \log _{2} \frac{p(x) P(x \mid y)}{r(x \mid y) \sum_{x^{\prime} \in \mathcal{X}} p\left(x^{\prime}\right) P\left(y \mid x^{\prime}\right)} \\
& =D\left(P_{1} \| P_{2}\right) \geq 0
\end{aligned}
$$

where $P_{1}(x, y):=p(x) P(y \mid x)$ and $P_{2}(x, y):=r(x \mid y) \sum_{x^{\prime} \in \mathcal{X}} p\left(x^{\prime}\right) P\left(y \mid x^{\prime}\right)$.
(b) We can rewrite $F(p, r)$ as follows:

$$
\begin{equation*}
F(p, r)=\left(\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) P(y \mid x) \log _{2} r(x \mid y)\right)+\left(\sum_{x \in \mathcal{X}} p(x) \log _{2} \frac{1}{p(x)}\right) \tag{1}
\end{equation*}
$$

The first term in 1 is linear in p while the second term is strictly concave in p (since the function $t \longrightarrow t \log _{2} \frac{1}{t}$ is strictly concave). Therefore, $F(p, r)$ is strictly concave in p.
The first term in 1 is concave in r (since the function $\log _{2}$ is concave) and the second term is constant with respect to r. Therefore, $F(p, r)$ is concave in r.
(c) For every $x \in \mathcal{X}$, we have:

$$
\frac{\partial F\left(p, r_{k}\right)}{\partial p(x)}=\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} r_{k}(x \mid y)+\log _{2} \frac{1}{p(x)}-\frac{1}{\ln 2} .
$$

A probability distribution p satisfies the Kuhn-Tucker conditions if and only if there exists a real number λ such that for all $x \in \mathcal{X}$, we have $\frac{\partial F\left(p, r_{k}\right)}{\partial p(x)} \leq \lambda$ with equality if $p(x)>0$. Therefore, for all $x \in \mathcal{X}$ we have:

$$
\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} r_{k}(x \mid y)-\log _{2}(p(x)) \leq \lambda^{\prime}
$$

where $\lambda^{\prime}=\lambda+\frac{1}{\ln 2}$. This shows that

$$
p(x) \geq 2^{-\lambda^{\prime}} \alpha_{k}(x) .
$$

If $p(x)>0$, we have $p(x)=2^{-\lambda^{\prime}} \alpha_{k}(x)$, and if $p(x)=0$ we must also have $p(x)=$ $2^{-\lambda^{\prime}} \alpha_{k}(x)=0$ since $2^{-\lambda^{\prime}} 2^{\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} r_{k}(x \mid y)} \geq 0$. We conclude that $p(x)=2^{-\lambda^{\prime}} \alpha_{k}(x)$ in all cases. Therefore, $1=2^{-\lambda^{\prime}} \sum_{x \in \mathcal{X}} \alpha_{k}(x)$, and $\lambda^{\prime}=\log _{2} \sum_{x \in \mathcal{X}} \alpha_{k}(x)$. We conclude that the only distribution that satisfies the Kuhn-Tucker conditions is the one given by $p(x)=\frac{\alpha_{k}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}$. On the other hand, the fact that $F\left(p, r_{k}\right)$ is concave in p shows that it admits a maximum p_{k+1}, which has to satisfy the Kuhn-Tucker conditions. Therefore, $p_{k+1}(x)=\frac{\alpha_{k}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}$.
(d) $C \geq F\left(p_{k+1}, r_{k+1}\right)$ since $F\left(p_{k+1}, r_{k+1}\right)=\left.I(X ; Y)\right|_{p_{X}=p_{k+1}}$. This implies that $C \geq$ $F\left(p_{k+1}, r_{k}\right)$ since $F\left(p_{k+1}, r_{k+1}\right) \geq F\left(p_{k+1}, r_{k}\right)$. On the other hand, we have

$$
\begin{aligned}
& F\left(p_{k+1}, r_{k}\right) \\
& \quad=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \frac{\alpha_{k}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)} P(y \mid x) \log _{2} \frac{r_{k}(x \mid y) \sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}{\alpha_{k}(x)} \\
& \quad=\sum_{x \in \mathcal{X}} \frac{\alpha_{k}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}\left[\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} r_{k}(x \mid y)-\log _{2}\left(\alpha_{k}(x)\right)+\log _{2} \sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)\right] \\
& \quad=\log _{2} \sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)+\sum_{x \in \mathcal{X}} \frac{\alpha_{k}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}\left[\log _{2}\left(\alpha_{k}(x)\right)-\log _{2}\left(\alpha_{k}(x)\right)\right] \\
& \quad=\log _{2} \sum_{x \in \mathcal{X}} \alpha_{k}(x) .
\end{aligned}
$$

(e)

$$
\begin{aligned}
\log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)} & =\log _{2} \alpha_{k}(x)-\log _{2} p_{k}(x)=\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} r_{k}(x \mid y)-\log _{2} p_{k}(x) \\
& =\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} \frac{r_{k}(x \mid y)}{p_{k}(x)}=\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} \frac{P(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} p_{k}\left(x^{\prime}\right) P\left(y \mid x^{\prime}\right)} .
\end{aligned}
$$

(f) Given that $\log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)}=\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} \frac{P(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} p_{k}\left(x^{\prime}\right) P\left(y \mid x^{\prime}\right)}$, the inequality $C \leq$ $\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)}$ is a direct application of homework 8 problem 4.
(g) From (d) and (f), we have:

$$
\begin{aligned}
C & -F\left(p_{k+1}, r_{k}\right) \\
& \leq \sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)}-\log _{2} \sum_{x \in \mathcal{X}} \alpha_{k}(x)=\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)}-\log _{2} \sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right) \\
& =\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{\alpha_{k}(x)}{p_{k}(x) \sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}=\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{k+1}(x)}{p_{k}(x)} \leq \max _{x \in \mathcal{X}} \log _{2} \frac{p_{k+1}(x)}{p_{k}(x)} .
\end{aligned}
$$

(h) We prove it by induction on n. The result is trivial for $n=0$. Now assume that it is true for n, and let us prove it for $n+1$:

$$
\begin{aligned}
\sum_{k=0}^{n+1}\left(C-F\left(p_{k+1}, r_{k}\right)\right) & =C-F\left(p_{n+2}, r_{n+1}\right)+\sum_{k=0}^{n}\left(C-F\left(p_{k+1}, r_{k}\right)\right) \\
& \leq \sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{n+2}(x)}{p_{n+1}(x)}+\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{n+1}(x)}{p_{0}(x)} \\
& =\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{n+2}(x)}{p_{0}(x)}
\end{aligned}
$$

On the other hand, since $p_{n+1}(x) \leq 1$ for all $x \in \mathcal{X}$, we have:

$$
\sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{n+1}(x)}{p_{0}(x)} \leq \sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{1}{1 /|\mathcal{X}|}=\log _{2}|\mathcal{X}| .
$$

(i) The sequence $s_{n}=\sum_{k=0}^{n} C-F\left(p_{k+1}, r_{k}\right)$ is increasing and upper-bounded, thus convergent, which implies that the sequence $C-F\left(p_{k+1}, r_{k}\right)=s_{k}-s_{k-1}$ converges to zero. Therefore, $F\left(p_{k+1}, r_{k}\right)$ converges to C.

