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Problem 1.

(a)

I(X;Y ) = I(Xk, K;Yk, K) = I(K;Yk, K) + I(Xk;YK , K|K) = H(K) + I(Xk;Yk|K)

= h2(α) + PK [1].I(Xk;Yk|K = 1) + PK [2]I(Xk;Yk|K = 2)

= h2(α) + α.I(X1;Y1) + (1− α)I(X2;Y2)

(b) The distribution of X is determined by α and by the distributions of X1 and X2.
It is clear from the expression in (a) that for any given α, I(X;Y ) is maximized
when I(X1;Y1) and I(X2;Y2) are maximized, i.e., when the distribution of X1 (resp.
X2) achieves the capacity of P1 (resp. P2). We conclude that the value of α in
the capacity achieving distribution is the one that maximizes the function f(α) =
h2(α) + αC1 + (1− α)C2. The derivative of f is:

f ′(α) = − log2(α)− 1

ln 2
+ log2(1− α) +

1

ln 2
+ C1 − C2 = C1 − C2 + log2

1− α
α

.

We have f ′(α) = 0 (resp. f ′(α) > 0, f ′(α) < 0) if α = α∗ (resp. α < α∗, α > α∗),

where α∗ =
2C1

2C1 + 2C2
. This means that f(α) is maximized at α = α∗. Therefore,

the capacity achieving distribution is such that α =
2C1

2C1 + 2C2
and X1 (resp. X2)

achieves the capacity of the channel P1 (resp. P2).

(c) From (b), we have:

C = − 2C1

2C1 + 2C2
log2

2C1

2C1 + 2C2
− 2C2

2C1 + 2C2
log2

2C2

2C1 + 2C2
+

2C1C1

2C1 + 2C2
+

2C2C2

2C1 + 2C2

= − 2C1

2C1 + 2C2
C1 +

2C1

2C1 + 2C2
log2(2

C1 + 2C2)− 2C2

2C1 + 2C2
C2

+
2C2

2C1 + 2C2
log2(2

C1 + 2C2) +
2C1C1

2C1 + 2C2
+

2C2C2

2C1 + 2C2

= log2(2
C1 + 2C2).

Therefore, 2C = 2C1 + 2C2 .

Problem 2.

(a)

F (p, rp)− F (p, r) =
∑
x∈X

∑
y∈Y

p(x)P (y|x) log2

rp(x|y)

r(x|y)

=
∑
x∈X

∑
y∈Y

p(x)P (y|x) log2

p(x)P (x|y)

r(x|y)
∑

x′∈X p(x
′)P (y|x′)

= D(P1||P2) ≥ 0,

where P1(x, y) := p(x)P (y|x) and P2(x, y) := r(x|y)
∑

x′∈X p(x
′)P (y|x′).



(b) We can rewrite F (p, r) as follows:

F (p, r) =
(∑
x∈X

∑
y∈Y

p(x)P (y|x) log2 r(x|y)
)

+
(∑
x∈X

p(x) log2

1

p(x)

)
. (1)

The first term in 1 is linear in p while the second term is strictly concave in p (since
the function t −→ t log2

1
t

is strictly concave). Therefore, F (p, r) is strictly concave
in p.

The first term in 1 is concave in r (since the function log2 is concave) and the second
term is constant with respect to r. Therefore, F (p, r) is concave in r.

(c) For every x ∈ X , we have:

∂F (p, rk)

∂p(x)
=
∑
y∈Y

P (y|x) log2 rk(x|y) + log2

1

p(x)
− 1

ln 2
.

A probability distribution p satisfies the Kuhn-Tucker conditions if and only if there

exists a real number λ such that for all x ∈ X , we have
∂F (p, rk)

∂p(x)
≤ λ with equality

if p(x) > 0. Therefore, for all x ∈ X we have:∑
y∈Y

P (y|x) log2 rk(x|y)− log2(p(x)) ≤ λ′,

where λ′ = λ+
1

ln 2
. This shows that

p(x) ≥ 2−λ
′
αk(x).

If p(x) > 0, we have p(x) = 2−λ
′
αk(x), and if p(x) = 0 we must also have p(x) =

2−λ
′
αk(x) = 0 since 2−λ

′
2
∑

y∈Y P (y|x) log2 rk(x|y) ≥ 0. We conclude that p(x) = 2−λ
′
αk(x)

in all cases. Therefore, 1 = 2−λ
′∑

x∈X αk(x), and λ′ = log2

∑
x∈X αk(x). We conclude

that the only distribution that satisfies the Kuhn-Tucker conditions is the one given by

p(x) =
αk(x)∑

x′∈X αk(x
′)

. On the other hand, the fact that F (p, rk) is concave in p shows

that it admits a maximum pk+1, which has to satisfy the Kuhn-Tucker conditions.

Therefore, pk+1(x) =
αk(x)∑

x′∈X αk(x
′)

.

(d) C ≥ F (pk+1, rk+1) since F (pk+1, rk+1) = I(X;Y )|pX=pk+1
. This implies that C ≥

F (pk+1, rk) since F (pk+1, rk+1) ≥ F (pk+1, rk). On the other hand, we have

F (pk+1, rk)

=
∑
x∈X

∑
y∈Y

αk(x)∑
x′∈X αk(x

′)
P (y|x) log2

rk(x|y)
∑

x′∈X αk(x
′)

αk(x)

=
∑
x∈X

αk(x)∑
x′∈X αk(x

′)

[∑
y∈Y

P (y|x) log2 rk(x|y)− log2(αk(x)) + log2

∑
x′∈X

αk(x
′)
]

= log2

∑
x′∈X

αk(x
′) +

∑
x∈X

αk(x)∑
x′∈X αk(x

′)

[
log2(αk(x))− log2(αk(x))

]
= log2

∑
x∈X

αk(x).
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(e)

log2

αk(x)

pk(x)
= log2 αk(x)− log2 pk(x) =

∑
y∈Y

P (y|x) log2 rk(x|y)− log2 pk(x)

=
∑
y∈Y

P (y|x) log2

rk(x|y)

pk(x)
=
∑
y∈Y

P (y|x) log2

P (y|x)∑
x′∈X pk(x

′)P (y|x′)
.

(f) Given that log2

αk(x)

pk(x)
=
∑
y∈Y

P (y|x) log2

P (y|x)∑
x′∈X pk(x

′)P (y|x′)
, the inequality C ≤

∑
x∈X

p∗(x) log2

αk(x)

pk(x)
is a direct application of homework 8 problem 4.

(g) From (d) and (f), we have:

C − F (pk+1, rk)

≤
∑
x∈X

p∗(x) log2

αk(x)

pk(x)
− log2

∑
x∈X

αk(x) =
∑
x∈X

p∗(x) log2

αk(x)

pk(x)
− log2

∑
x′∈X

αk(x
′)

=
∑
x∈X

p∗(x) log2

αk(x)

pk(x)
∑

x′∈X αk(x
′)

=
∑
x∈X

p∗(x) log2

pk+1(x)

pk(x)
≤ max

x∈X
log2

pk+1(x)

pk(x)
.

(h) We prove it by induction on n. The result is trivial for n = 0. Now assume that it is
true for n, and let us prove it for n+ 1:

n+1∑
k=0

(C − F (pk+1, rk)) = C − F (pn+2, rn+1) +
n∑
k=0

(C − F (pk+1, rk))

≤
∑
x∈X

p∗(x) log2

pn+2(x)

pn+1(x)
+
∑
x∈X

p∗(x) log2

pn+1(x)

p0(x)

=
∑
x∈X

p∗(x) log2

pn+2(x)

p0(x)
.

On the other hand, since pn+1(x) ≤ 1 for all x ∈ X , we have:∑
x∈X

p∗(x) log2

pn+1(x)

p0(x)
≤
∑
x∈X

p∗(x) log2

1

1/|X |
= log2 |X |.

(i) The sequence sn =
n∑
k=0

C − F (pk+1, rk) is increasing and upper-bounded, thus con-

vergent, which implies that the sequence C − F (pk+1, rk) = sk − sk−1 converges to
zero. Therefore, F (pk+1, rk) converges to C.
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