ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 22	Information Theory and Coding
Solutions to Homework 9	November 26, 2013

Problem 1.

(a) For all $x, y \in \mathbb{R}$, choosing $\alpha \in [0, 1]$, we use the convexity of each $f_i, 1 \leq i \leq n$, to get

$$f(\alpha x + (1 - \alpha)y) = \sum_{i=1}^{n} c_i f_i(\alpha x + (1 - \alpha)y)$$
$$\leq \sum_{i=1}^{n} c_i \left(\alpha f_i(x) + (1 - \alpha)f_i(y)\right)$$
$$= \alpha \sum_{i=1}^{n} c_i f_i(x) + (1 - \alpha) \sum_{i=1}^{n} c_i f_i(y)$$
$$= \alpha f(x) + (1 - \alpha)f(y).$$

(b) For all $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and $y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$, choosing $\alpha \in [0, 1]$, observe first that $\alpha x + (1-\alpha)y = (\alpha x_1 + (1-\alpha)y_1, \alpha x_2 + (1-\alpha)y_2, ..., \alpha x_n + (1-\alpha)y_n)$. We then use the convexity of each f_i , $1 \le i \le n$, to get

$$g(\alpha x + (1 - \alpha)y) = \sum_{i=1}^{n} c_i f_i(\alpha x_i + (1 - \alpha)y_i)$$

$$\leq \sum_{i=1}^{n} c_i (\alpha f_i(x_i) + (1 - \alpha)f_i(y_i))$$

$$= \alpha \sum_{i=1}^{n} c_i f_i(x_i) + (1 - \alpha) \sum_{i=1}^{n} c_i f_i(y_i)$$

$$= \alpha g(x) + (1 - \alpha)g(y).$$

PROBLEM 2. For all $\tilde{x} \in D$, $f(\tilde{x}) = \sup_{i \in I} f_i(x)$ iff (i) $f(\tilde{x}) \ge f_i(\tilde{x})$ for all $i \in I$ and (ii) any $s \in \mathbb{R}$ satisfying $s < f(\tilde{x})$ is such that there exists $i \in I$ satisfying $s < f_i(\tilde{x})$.

Choose $x, y \in D$ and $\alpha \in [0, 1]$.

First, pick $i \in I$. With the definition of f (point (i)) and the convexity of each $f_i, i \in I$, we get

$$f_i(\alpha x + (1 - \alpha)y) \le \alpha f_i(x) + (1 - \alpha)f_i(y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Second, since the inequality $f_i(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)$ holds for all $i \in I$, we use the definition of f (point (ii)) to claim

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

To see this, observe that, if it was not the case, then $s = \alpha f(x) + (1 - \alpha)f(y) < f(\alpha x + (1 - \alpha)y)$ would give the contradiction $s < f_i(\tilde{x})$ with $\tilde{x} = \alpha x + (1 - \alpha)y$.

PROBLEM 3. Choose $x, y \in U$ and $\alpha \in [0, 1]$. The convexity if f associated to the fact that h is an increasing function over [a, b] shows

$$g(\alpha x + (1 - \alpha)y) = h\left(f\left(\alpha x + (1 - \alpha)y\right)\right) \le h\left(\alpha f(x) + (1 - \alpha)f(y)\right).$$

The convexity of h gives finally

$$g(\alpha x + (1 - \alpha)y) \le \alpha h(f(x)) + (1 - \alpha)h(f(y)) = \alpha g(x) + (1 - \alpha)g(y).$$

PROBLEM 4. Let us show that the function $g : \lambda \mapsto f(\lambda v_1 + (1 - \lambda)v_2)$ is convex (in λ). Choosing $\lambda_x, \lambda_y \in [0, 1]$ and $\alpha \in [0, 1]$, we use the convexity of f in v to write

$$g(\alpha\lambda_x + (1-\alpha)\lambda_y) = f((\alpha\lambda_x + (1-\alpha)\lambda_y)v_1 + (1-(\alpha\lambda_x + (1-\alpha)\lambda_y))v_2)$$

$$= f(\alpha\lambda_xv_1 + (1-\alpha)\lambda_yv_1 + v_2 - \alpha\lambda_xv_2 - (1-\alpha)\lambda_yv_2)$$

$$= f(\alpha\lambda_xv_1 + (1-\alpha)\lambda_yv_1 + (\alpha + (1-\alpha))v_2 - \alpha\lambda_xv_2 - (1-\alpha)\lambda_yv_2)$$

$$= f(\alpha(\lambda_xv_1 + (1-\lambda_x)v_2) + (1-\alpha)(\lambda_yv_1 + (1-\lambda_y)v_2))$$

$$\leq \alpha f(\lambda_xv_1 + (1-\lambda_x)v_2) + (1-\alpha)f(\lambda_yv_1 + (1-\lambda_y)v_2)$$

$$= \alpha g(\lambda_x) + (1-\alpha)g(\lambda_y).$$

PROBLEM 5. Let $\mathcal{X} = \{x_i\}_{1 \leq i \leq n}$ and $\mathcal{Y} = \{y_j\}_{1 \leq j \leq m}$ be the input alphabet and output alphabet. Let $p = (p_1, p_2, \ldots, p_n) = (P(x_1), P(x_2), \ldots, P(x_n))$ denote the input probability vector. The channel is given by the probability law $\{W_{i,j} = P(y_j|x_i)\}_{i,j}$.

(a) Let us denote $q_j = P(y_j) = \sum_i W_{i,j}p_i$ and observe that the output vector $q = (q_1, q_2, \ldots, q_m)$ is a linear (convex and concave) function of p. Let $w : p \mapsto q$ denote this linear mapping. Observe also that $H(Y) = -\sum_j q_j \log q_j$ is of function of q, i.e., H(Y) = g(q). To keep this in mind, let us write H(Y) = h(q). We see that $H(Y) = h(q) = (h \circ w)(p)$, i.e., $g = h \circ w$. We want to show the concavity of g.

The concavity of $t \mapsto -t \log t$ and Problem 1 (b) show h(q) is concave in q. Choose now two input probability vectors $p = (p_1, p_2, \ldots, p_n)$, $\tilde{p} = (\tilde{p}_1, \tilde{p}_2, \ldots, \tilde{p}_n)$ and $\alpha \in [0, 1]$. We get

$$g(\alpha p + (1 - \alpha)\tilde{p}) = h(w((\alpha p + (1 - \alpha)\tilde{p})))$$

= $h((\alpha w(p) + (1 - \alpha)w(\tilde{p})))$ since w is linear
 $\geq \alpha h(w(p)) + (1 - \alpha)h(w(\tilde{p}))$ since h is concave
= $\alpha g(p) + (1 - \alpha)g(\tilde{p})$

proving the concavity of g.

- (b) Many examples might be found. A trivial one is the case when $\mathcal{X} = \{0, 1\}$ and $\mathcal{Y} = \{0, 1\}$ such that $P_{Y|X}(0|0) = P_{Y|X}(0|1) = 1$ for which H(Y) = 0 for all input distributions.
- (c) Observe that $-H(Y|X) = \sum_{i,j} W_{i,j} p_i \log W_{i,j}$ is a function, call it $\xi(p)$. Clearly, $\xi(\alpha p + \tilde{p}) \alpha \xi(p) + \xi(\tilde{p})$ showing the linearity of the function.
- (d) By definition I(X;Y) = H(Y) H(Y|X). The quantity I(X;Y) is therefore a function of p, call it $\iota(p) = g(p) \xi(p)$. By (c), ξ is linear therefore $-\xi$ is concave. By (a) g is concave. By linear combination of concave function (Problem 2 (a)), we claim that I(X;Y) is a concave function of the input probability vector.

PROBLEM 6. Define

$$Q_i = \frac{a_i^{1/\lambda}}{\sum_{i=1}^n a_i^{1/\lambda}}$$

and

$$P_i = \frac{b_i^{1/(1-\lambda)}}{\sum_{i=1}^n b_i^{1/(1-\lambda)}}$$

and observe that they are non-negative numbers which sum to one.

and observe that they are non-negative numbers which sum to one. Observe that $\phi : \lambda \mapsto Q_i^{\lambda} P_i^{1-\lambda}$ is a convex function for all i. To see this, note that $\phi''(\lambda) = P_i \left[\log \left(\frac{Q_i}{P_i} \right) \right]^2 \exp \left[\lambda \log \left(\frac{Q_i}{P_i} \right) \right] \ge 0$ with equality iff, for all $i \in \{1, 2, ..., n\}, P_i = Q_i$. Therefore so is $\lambda \mapsto \sum_{i=1}^n Q_i^{\lambda} P_i^{1-\lambda}$ by Problem 2 (a). The maximum of this function can therefore only be near the boundary $\lambda = 0$ or $\lambda = 1$. Therefore $\sum_{i=1}^n Q_i^{\lambda} P_i^{1-\lambda} < 1$ because of $\lambda \in (0, 1)$ and the strict convexity when $P_i \neq Q_i$. Moreover $\sum_{i=1}^n Q_i^{\lambda} P_i^{1-\lambda} = 1$ iff for all $i \in \{1, 2, ..., n\}$.

iff, for all $i \in \{1, 2, ..., n\}$, $P_i = Q_i$. By replacing the Q_i s and P_i s in the inequality $\sum_{i=1}^n Q_i^{\lambda} P_i^{1-\lambda} \leq 1$, we get Holder's inequality, i.e., $-\lambda$

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^{1/\lambda}\right)^{\lambda} \left(\sum_{i=1}^{n} b_i^{1/(1-\lambda)}\right)^{1-\lambda}$$

with equality iff there exists some c that satisfies $a_i^{1-\lambda} = b_i^{\lambda}c$ for all $i \in \{1, 2, ..., n\}$. For the special case $\lambda = \frac{1}{2}$, this inequality is also known as the Cauchy-Schwarz inequality.