ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 22
Information Theory and Coding
Solutions to Homework 9

Problem 1.

(a) For all $x, y \in \mathbb{R}$, choosing $\alpha \in[0,1]$, we use the convexity of each $f_{i}, 1 \leq i \leq n$, to get

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y) & =\sum_{i=1}^{n} c_{i} f_{i}(\alpha x+(1-\alpha) y) \\
& \leq \sum_{i=1}^{n} c_{i}\left(\alpha f_{i}(x)+(1-\alpha) f_{i}(y)\right) \\
& =\alpha \sum_{i=1}^{n} c_{i} f_{i}(x)+(1-\alpha) \sum_{i=1}^{n} c_{i} f_{i}(y) \\
& =\alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

(b) For all $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, choosing $\alpha \in[0,1]$, observe first that $\alpha x+(1-\alpha) y=\left(\alpha x_{1}+(1-\alpha) y_{1}, \alpha x_{2}+(1-\alpha) y_{2}, \ldots, \alpha x_{n}+(1-\alpha) y_{n}\right)$. We then use the convexity of each $f_{i}, 1 \leq i \leq n$, to get

$$
\begin{aligned}
g(\alpha x+(1-\alpha) y) & =\sum_{i=1}^{n} c_{i} f_{i}\left(\alpha x_{i}+(1-\alpha) y_{i}\right) \\
& \leq \sum_{i=1}^{n} c_{i}\left(\alpha f_{i}\left(x_{i}\right)+(1-\alpha) f_{i}\left(y_{i}\right)\right) \\
& =\alpha \sum_{i=1}^{n} c_{i} f_{i}\left(x_{i}\right)+(1-\alpha) \sum_{i=1}^{n} c_{i} f_{i}\left(y_{i}\right) \\
& =\alpha g(x)+(1-\alpha) g(y) .
\end{aligned}
$$

Problem 2. For all $\tilde{x} \in D, f(\tilde{x})=\sup _{i \in I} f_{i}(x)$ iff (i) $f(\tilde{x}) \geq f_{i}(\tilde{x})$ for all $i \in I$ and (ii) any $s \in \mathbb{R}$ satisfying $s<f(\tilde{x})$ is such that there exists $i \in I$ satisfying $s<f_{i}(\tilde{x})$.

Choose $x, y \in D$ and $\alpha \in[0,1]$.
First, pick $i \in I$. With the definition of f (point (i)) and the convexity of each $f_{i}, i \in I$, we get

$$
f_{i}(\alpha x+(1-\alpha) y) \leq \alpha f_{i}(x)+(1-\alpha) f_{i}(y) \leq \alpha f(x)+(1-\alpha) f(y) .
$$

Second, since the inequality $f_{i}(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$ holds for all $i \in I$, we use the definition of f (point (ii)) to claim

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) .
$$

To see this, observe that, if it was not the case, then $s=\alpha f(x)+(1-\alpha) f(y)<f(\alpha x+$ $(1-\alpha) y)$ would give the contradiction $s<f_{i}(\tilde{x})$ with $\tilde{x}=\alpha x+(1-\alpha) y$.

Problem 3. Choose $x, y \in U$ and $\alpha \in[0,1]$. The convexity if f associated to the fact that h is an increasing function over $[a, b]$ shows

$$
g(\alpha x+(1-\alpha) y)=h(f(\alpha x+(1-\alpha) y)) \leq h(\alpha f(x)+(1-\alpha) f(y)) .
$$

The convexity of h gives finally

$$
g(\alpha x+(1-\alpha) y) \leq \alpha h(f(x))+(1-\alpha) h(f(y))=\alpha g(x)+(1-\alpha) g(y)
$$

Problem 4. Let us show that the function $g: \lambda \mapsto f\left(\lambda v_{1}+(1-\lambda) v_{2}\right)$ is convex (in λ). Choosing $\lambda_{x}, \lambda_{y} \in[0,1]$ and $\alpha \in[0,1]$, we use the convexity of f in v to write

$$
\begin{aligned}
g\left(\alpha \lambda_{x}+(1-\alpha) \lambda_{y}\right) & =f\left(\left(\alpha \lambda_{x}+(1-\alpha) \lambda_{y}\right) v_{1}+\left(1-\left(\alpha \lambda_{x}+(1-\alpha) \lambda_{y}\right)\right) v_{2}\right) \\
& =f\left(\alpha \lambda_{x} v_{1}+(1-\alpha) \lambda_{y} v_{1}+v_{2}-\alpha \lambda_{x} v_{2}-(1-\alpha) \lambda_{y} v_{2}\right) \\
& =f\left(\alpha \lambda_{x} v_{1}+(1-\alpha) \lambda_{y} v_{1}+(\alpha+(1-\alpha)) v_{2}-\alpha \lambda_{x} v_{2}-(1-\alpha) \lambda_{y} v_{2}\right) \\
& =f\left(\alpha\left(\lambda_{x} v_{1}+\left(1-\lambda_{x}\right) v_{2}\right)+(1-\alpha)\left(\lambda_{y} v_{1}+\left(1-\lambda_{y}\right) v_{2}\right)\right) \\
& \leq \alpha f\left(\lambda_{x} v_{1}+\left(1-\lambda_{x}\right) v_{2}\right)+(1-\alpha) f\left(\lambda_{y} v_{1}+\left(1-\lambda_{y}\right) v_{2}\right) \\
& =\alpha g\left(\lambda_{x}\right)+(1-\alpha) g\left(\lambda_{y}\right) .
\end{aligned}
$$

Problem 5. Let $\mathcal{X}=\left\{x_{i}\right\}_{1 \leq i \leq n}$ and $\mathcal{Y}=\left\{y_{j}\right\}_{1 \leq j \leq m}$ be the input alphabet and output alphabet. Let $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\left(P\left(x_{1}\right), P\left(x_{2}\right), \ldots, P\left(x_{n}\right)\right)$ denote the input probability vector. The channel is given by the probability law $\left\{W_{i, j}=P\left(y_{j} \mid x_{i}\right)\right\}_{i, j}$.
(a) Let us denote $q_{j}=P\left(y_{j}\right)=\sum_{i} W_{i, j} p_{i}$ and observe that the output vector $q=$ $\left(q_{1}, q_{2}, \ldots, q_{m}\right)$ is a linear (convex and concave) function of p. Let $w: p \mapsto q$ denote this linear mapping. Observe also that $H(Y)=-\sum_{j} q_{j} \log q_{j}$ is of function of q, i.e., $H(Y)=g(q)$. To keep this in mind, let us write $H(Y)=h(q)$. We see that $H(Y)=h(q)=(h \circ w)(p)$, i.e., $g=h \circ w$. We want to show the concavity of g.
The concavity of $t \mapsto-t \log t$ and Problem 1 (b) show $h(q)$ is concave in q. Choose now two input probability vectors $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right), \tilde{p}=\left(\tilde{p}_{1}, \tilde{p}_{2}, \ldots, \tilde{p}_{n}\right)$ and $\alpha \in$ $[0,1]$. We get

$$
\begin{aligned}
g(\alpha p+(1-\alpha) \tilde{p}) & =h(w((\alpha p+(1-\alpha) \tilde{p})) \\
& =h((\alpha w(p)+(1-\alpha) w(1 \\
& \geq \alpha h(w(p))+(1-\alpha) h(2 \\
& =\alpha g(p)+(1-\alpha) g(\tilde{p})
\end{aligned}
$$

$$
=h((\alpha w(p)+(1-\alpha) w(\tilde{p})) \quad \text { since } w \text { is linear }
$$

$$
\geq \alpha h(w(p))+(1-\alpha) h(w(\tilde{p})) \quad \text { since } h \text { is concave }
$$

proving the concavity of g.
(b) Many examples might be found. A trivial one is the case when $\mathcal{X}=\{0,1\}$ and $\mathcal{Y}=\{0,1\}$ such that $P_{Y \mid X}(0 \mid 0)=P_{Y \mid X}(0 \mid 1)=1$ for which $H(Y)=0$ for all input distributions.
(c) Observe that $-H(Y \mid X)=\sum_{i, j} W_{i, j} p_{i} \log W_{i, j}$ is a function, call it $\xi(p)$. Clearly, $\xi(\alpha p+\tilde{p})-\alpha \xi(p)+\xi(\tilde{p})$ showing the linearity of the function.
(d) By definition $I(X ; Y)=H(Y)-H(Y \mid X)$. The quantity $I(X ; Y)$ is therefore a function of p, call it $\iota(p)=g(p)-\xi(p)$. By (c), ξ is linear therefore $-\xi$ is concave. By (a) g is concave. By linear combination of concave function (Problem 2 (a)), we claim that $I(X ; Y)$ is a concave function of the input probability vector.

Problem 6. Define

$$
Q_{i}=\frac{a_{i}^{1 / \lambda}}{\sum_{i=1}^{n} a_{i}^{1 / \lambda}}
$$

and

$$
P_{i}=\frac{b_{i}^{1 /(1-\lambda)}}{\sum_{i=1}^{n} b_{i}^{1 /(1-\lambda)}}
$$

and observe that they are non-negative numbers which sum to one.
Observe that $\phi: \lambda \mapsto Q_{i}^{\lambda} P_{i}^{1-\lambda}$ is a convex function for all i. To see this, note that $\phi^{\prime \prime}(\lambda)=P_{i}\left[\log \left(\frac{Q_{i}}{P_{i}}\right)\right]^{2} \exp \left[\lambda \log \left(\frac{Q_{i}}{P_{i}}\right)\right] \geq 0$ with equality iff, for all $i \in\{1,2, \ldots, n\}, P_{i}=$ Q_{i}. Therefore so is $\lambda \mapsto \sum_{i=1}^{n} Q_{i}^{\lambda} P_{i}^{1-\lambda}$ by Problem 2 (a). The maximum of this function can therefore only be near the boundary $\lambda=0$ or $\lambda=1$. Therefore $\sum_{i=1}^{n} Q_{i}^{\lambda} P_{i}^{1-\lambda}<1$ because of $\lambda \in(0,1)$ and the strict convexity when $P_{i} \neq Q_{i}$. Moreover $\sum_{i=1}^{n} Q_{i}^{\lambda} P_{i}^{1-\lambda}=1$ iff, for all $i \in\{1,2, \ldots, n\}, P_{i}=Q_{i}$.

By replacing the $Q_{i} \mathrm{~S}$ and $P_{i} \mathrm{~S}$ in the inequality $\sum_{i=1}^{n} Q_{i}^{\lambda} P_{i}^{1-\lambda} \leq 1$, we get Holder's inequality, i.e.,

$$
\sum_{i=1}^{n} a_{i} b_{i} \leq\left(\sum_{i=1}^{n} a_{i}^{1 / \lambda}\right)^{\lambda}\left(\sum_{i=1}^{n} b_{i}^{1 /(1-\lambda)}\right)^{1-\lambda}
$$

with equality iff there exists some c that satisfies $a_{i}^{1-\lambda}=b_{i}^{\lambda} c$ for all $i \in\{1,2, \ldots, n\}$. For the special case $\lambda=\frac{1}{2}$, this inequality is also known as the Cauchy-Schwarz inequality.

