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Problem 1.

(a) Observe that with P3 defined as in the problem, whatever distribution we choose for
X, the random variables X, Y, Z form a Markov chain, i.e., given Y , the random
variables X and Z are independent. The data processing theorem then yields:

I(X;Z) ≤ I(X;Y ) ≤ C1

I(X;Z) ≤ I(Y ;Z) ≤ C2

and thus I(X;Z) ≤ min{C1, C2} for any distribution on X. We then conclude that
C3 = maxpX I(X;Z) ≤ min{C1, C2}.

(b) The statistician calculates Ỹ = g(Y ).

(b1) Since X → Y → Ỹ forms a Markov chain, we can apply the data processing
inequality. Hence for every distribution on X,

I(X;Y ) ≥ I(X; Ỹ ).

Let p̃(x) be the distribution on x that maximizes I(X; Ỹ ). Then

C = max
p(x)

I(X;Y ) ≥ I(X;Y )p(x)=p̃(x) ≥ I(X; Ỹ )p(x)=p̃(x) = max
p(x)

I(X; Ỹ ) = C̃.

Thus, the statistician is wrong and processing the output does not increase
capacity.

(b2) We have equality (no decrease in capacity) in the above sequence of inequalities
only if we have equality in data processing inequality, i.e., for the distribution
that maximizes I(X; Ỹ ), we have X → Ỹ → Y forming a Markov chain, in
other words if given Ỹ , X and Y are independent.

Problem 2. Observe that H(Y )−H(Y |X) = I(X;Y ) = I(X;Z) = H(Z)−H(Z|X).

(a) Consider a channel with binary input alphabet X = {0, 1} with X uniformly dis-
tributed over X , output alphabet Y = {0, 1, 2, 3}, and probability law

PY |X(y|x) =



1
2
, if x = 0 and y = 0

1
2
, if x = 0 and y = 1

1
2
, if x = 1 and y = 2

1
2
, if x = 1 and y = 3

0, otherwise.



It is easy to verify H(Y |X) = 1. Since Y takes any value in Y with equal probability,
its entropy is H(Y ) = 2. Therefore I(X;Y ) = 1. Define the processor output to be
in alphabet Z and construct a deterministic processor g : y 7→ z = g(y) such that,

g : Y → Z = {0, 1}
0 7→ 0

1 7→ 0

2 7→ 1

3 7→ 1.

Clearly, H(Z|X) = 0 and H(Z) = 1. Therefore I(X;Z) = 1. We conclude that
I(X;Z) = I(X;Y ) and H(Z) < H(Y ).

(b) Consider an error-free channel with binary input alphabet X = {0, 1} with X uni-
formly distributed over X , binary output alphabet Y = {0, 1}, and probability law

PY |X(y|x) =

{
1, if x = y

0, otherwise.

Choose now Z = {0, 1, 2, 3} an construct a probabilistic processor G such that

G : Y → Z

0 7→ 0 with probability
1

2
or 1 with probability

1

2

1 7→ 2 with probability
1

2
or 3 with probability

1

2
.

Clearly, I(X;Y ) = 1 = I(X;Z) and H(Y ) = 1 < 2 = H(Z).

Problem 3.
Y = X + Z X ∈ {0, 1}, Z ∈ {0, a}

We have to distinguish various cases depending on the values of a.

a = 0 In this case, Y = X, and max I(X;Y ) = maxH(X) = 1. Hence the capacity is 1
bit per transmission.

a 6= 0,±1 In this case, Y has four possible values 0, 1, a and 1+a. Knowing Y , we know the
X which was sent, and hence H(X|Y ) = 0. Hence max I(X;Y ) = maxH(X) = 1,
achieved for an uniform distribution on the input X.

a = ±1 In the case a = 1, Y has three possible output values, 0, 1 and 2, and the channel
is identical to the binary erasure channel discussed in class, with ε = 1/2. As derived
in class, the capacity of this channel is 1− ε = 1/2 bit per transmission. The case of
a = −1 is essentially the same and the capacity here is also 1/2 bit per transmission.

Problem 4. Since given X, one can determine Y from Z and vice versa, H(Y |X) =
H(Z|X) = H(Z) = log 3, regardless of the distribution of X. Hence the capacity of the
channel is

C = max
pX

I(X;Y )

= max
pX

H(Y )−H(Y |X)

= log 11− log 3

2



which is attained when X has uniform distribution. The same result can also be seen by
observing that this channel is symmetric.

Problem 5.

(a) Since the channel is symmetric, the input distribution that maximizes the mutual
information is the uniform one. Therefore, C = 1 + ε log2(ε) + (1− ε) log2(ε) which is
equal to 0 when ε = 1

2
.

(b) We have

– I(Xn;Y n) = I(Xn
2 ;Y n−1) + I(Xn

2 ;Yn|Y n−1) + I(X1;Y
n|Xn

2 ).

– Xn
2 = Y n−1 and Y1, . . . , Yn are i.i.d. and uniform in {0, 1}, so I(Xn

2 ;Y n−1) =
H(Y n−1) = n− 1.

– Yn is independent of (Xn
2 , Y

n−1), so I(Xn
2 ;Yn|Y n−1) = 0.

– X1 is independent of (Y n, Xn
2 ), so I(X1;Y

n|Xn
2 ) = 0.

Therefore, I(Xn;Y n) = n− 1.

(c) W is independent of Y n, so I(W ;Y n) = 0 = nC.

Problem 6.

(a) Chain rule for mutual information.

(b) I(W,Y i−1;Yi) = I(Y i−1;Yi) + I(W ;Yi|Y i−1) ≥ I(W ;Yi|Y i−1).

(c) I(W,Xi, X
i−1, Y i−1;Yi) = I(W,Y i−1;Yi) + I(Xi, X

i−1;Yi|W,Y i−1) ≥ I(W,Y i−1;Yi).
Note that this inequality is in fact equality, unless the mapping fi is randomized.

(d) W → (Xi, X
i−1, Y i−1)→ Yi is a Markov chain. This follows from the following facts:

– For all 1 ≤ j ≤ i, Xj is a function of (W,Y j−1).

– For all 1 ≤ j ≤ i, Yj depends on (W,Xj, Y j−1) only through Xj since the channel
is memoryless.

This means that the joint probability distribution of (W,X i, Y i) can be written as
follows:

PW,Xi,Y i(w, xi, yi) = PW (w)× PX1|W (x1|w)PY1|X1(y1|x1)
× PX2|W,Y1(x2|w, y1)PY2|X2(y2|x2)× . . .× PXi|W,Y i−1(xi|w, xi−1)PYi|Xi

(yi|xi),

which can be rewritten as

PW,Xi,Y i(w, xi, yi) = PW (w)PXi,Xi−1,Y i−1|W (xi, x
i−1, yi−1|w)PYi|Xi

(yi|xi).

(e) Since the channel is stationary and memoryless, (X i−1, Y i−1)→ Xi → Yi is a Markov
chain.

(f) From the definition of the capacity.

This proof still works even when the mappings fi are randomized. We conclude that
feedback does not increase the capacity even if we are allowed to use a randomized encoder.
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