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Problem 1.

(a) Consider the sequence ai = 2i−1, i = 0, 1, 2, . . . This is a strictly increasing sequence
with a0 = 0, a1 = 1, a2 = 3, a3 = 7, . . . consequently any M > 0 will fall between two
unique consecutive terms of this sequence, ak ≤ M < ak+1, i.e., M = ak + r, with
0 ≤ r < ak+1 − ak = 2k. This concludes the existence part.

For the uniqueness part, suppose that there exists another pair of integers (k′, r′)
satisfying M = 2k′−1+r′ and 0 ≤ r′ < 2k′ . This means that 2k′−1 ≤M < 2k′+1−1.
Therefore, k′ = k, from which we can easily deduce that r = r′.

(b) Consider a non-singular code that maximizes the Kraft sum K =
∑

i 2−li . Let L
be the length of the longest codeword in such a code. If the tree representing the
code contains a node at a level l < L which is not occupied by any codeword, then
by deleting any codeword of length L and replacing it by the unoccupied node at
level l < L we obtain a new code with a higher Kraft sum which is a contradiction.
Therefore, all the levels that are below the level L are completely occupied. This
means that the number of codewords of length at most L − 1 is exactly 2L − 1 and
the number of codewords of length L is NL ≤ 2L. We conclude that M = 2L−1+NL

and 1 ≤ NL ≤ 2L. We have two cases:

(i) NL = 2L, which means that M = 2L+1 − 1 so that k = L + 1 = log2(M + 1) =
dlog2(M + 1)e and r = 0. In this case we have K =

∑
i 2−li = L + 1 = k =

k + r2k−1 = dlog2(M + 1)e.
(ii) NL < 2L, which means that k = L and r = NL (because of (a)). In this case,

we have K =
∑

i 2−li = k + r2k−1 ≤ k + 1 = dlog2(M + 1)e.

In both cases, we have
∑

i 2−li = k + r2k−1 ≤ dlog2(M + 1)e. And since the non-
singular code was chosen to maximize the Kraft sum, we conclude that any non-
singular code satisfies

∑
i 2−li ≤ k + r2k−1 ≤ dlog2(M + 1)e.

(c) Define K =
∑

i 2−li and for each symbol ai define q(ai) = 2−li

K
. It is clear that q

is a probability distribution over the alphabet {a1, ..., aM}. Let p be the probabil-
ity distribution of the random variable U . By the positivity of the kullback-leibler
divergence, we have:

D(p||q) =
M∑
i=1

p(ai) log2

p(ai)

q(ai)
≥ 0,

from which we conclude that

M∑
i=1

p(ai) log2 p(ai)−
M∑
i=1

p(ai) log2

2−li

K
≥ 0.

By rewriting the last inequality we get −H(U) + l + log2(K) ≥ 0, and by applying
the inequalities of part (b), we conclude:

l ≥ H(U)− log2(K) ≥ H(U)− log2(k + r2−k) ≥ H(U)− log2dlog2(M + 1)e.



Problem 2.

(a) Let li = dlog2
2

P1(ai)+P2(ai)
e, and let us compute the Kraft sum associated to (li)i:

M∑
i=1

2−li ≤
M∑
i=1

2
− log2

2
P1(ai)+P2(ai) =

M∑
i=1

P1(ai) + P2(ai)

2
= 1.

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of
the codeword associated to ai is li.

(b) Since the code constructed in (a) is prefix free, it must be the case that l ≥ H(U).
In order to prove the upper bound, let P ∗ be the true distribution (which is either
P1 or P2). It is easy to see that P ∗(ai) ≤ P1(ai) +P2(ai) for all 1 ≤ i ≤M . We have:

l =
M∑
i=1

P ∗(ai).li =
M∑
i=1

P ∗(ai).
⌈

log2

2

P1(ai) + P2(ai)

⌉
<

M∑
i=1

P ∗(ai).
(

1 + log2

2

P1(ai) + P2(ai)

)
=

M∑
i=1

P ∗(ai).
(

2 + log2

1

P1(ai) + P2(ai)

)
= 2 +

M∑
i=1

P ∗(ai). log2

1

P1(ai) + P2(ai)

(∗)
≤ 2 +

M∑
i=1

P ∗(ai). log2

1

P ∗(ai)
= 2 +H(U),

where the inequality (∗) uses the fact that P ∗(ai) ≤ P1(ai)+P2(ai) for all 1 ≤ i ≤M .

(c) Now let li = dlog2
k

P1(ai)+...+Pk(ai)
e, and let us compute the Kraft sum associated to

(li)i:
M∑
i=1

2−li ≤
M∑
i=1

2
− log2

k
P1(ai)+...+Pk(ai) =

M∑
i=1

P1(ai) + . . .+ Pk(ai)

k
= 1.

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of
the codeword associated to ai is li. Since the code is prefix free, it must be the case
that l ≥ H(U). In order to prove the upper bound, let P ∗ be the true distribution
(which is either P1 or . . . or Pk). It is easy to see that P ∗(ai) ≤ P1(ai) + . . .+ Pk(ai)
for all 1 ≤ i ≤M . We have:

l =
M∑
i=1

P ∗(ai).li =
M∑
i=1

P ∗(ai).
⌈

log2

k

P1(ai) + . . .+ Pk(ai)

⌉
<

M∑
i=1

P ∗(ai).
(

1 + log2

k

P1(ai) + . . .+ Pk(ai)

)
=

M∑
i=1

P ∗(ai).
(

1 + log2 k + log2

1

P1(ai) + . . .+ Pk(ai)

)
= 1 + log2 k +

M∑
i=1

P ∗(ai). log2

1

P1(ai) + . . .+ Pk(ai)

(∗)
≤ 1 + log2 k +

M∑
i=1

P ∗(ai). log2

1

P ∗(ai)
= 1 + log2 k +H(U),

where the inequality (∗) uses the fact that P ∗(ai) ≤ P1(ai) + . . . + Pk(ai) for all
1 ≤ i ≤M .
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Problem 3.

(a) Consider a maximally branched Huffman code, and for each 1 ≤ l ≤ lmax, let Nl be
the number of codewords of length l. Since the Huffman code is maximally branched,
we have Nl ≥ 1 for 1 ≤ l < lmax, and clearly we have Nl ≥ 2 for l = lmax since any
Huffman code contains at least two longest codewords. The Kraft-sum of this code
is equal to:

lmax∑
l=1

Nl2
−l ≥

( lmax−1∑
l=1

2−l
)

+ 2.2−lmax = 2−1
1− 2−lmax+1

2−1
+ 2−lmax+1 = 1,

where the equality holds if and only if we have Nl = 1 for 1 ≤ l < lmax and Nlmax = 2.
Now since any Huffman code is a prefix-free code, the Kraft-sum must be at most
1. We conclude that the Kraft-sum is equal to 1, which implies that Nl = 1 for
1 ≤ l < lmax and Nlmax = 2.

(b) We will prove by induction on M ≥ 3 the following statement: If we have P (ai) ≥
i−2∑
j=1

P (aj) for every 3 ≤ i ≤ M , there exists a maximally branched Huffman code in

which the codewords associated to a1 and a2 are the longest two codewords. The
statement is trivial for M = 3. Now suppose that the statement is true up to
alphabets of length M − 1, and suppose that we have an alphabet of length M > 3

such that P (ai) ≥
i−2∑
j=1

P (aj) for every 3 ≤ i ≤ M . Now consider the alphabet

{a′1, . . . , a′M−1} such that a′i = ai+1 for 2 ≤ i ≤ M − 1, and define the probability
distribution P ′ on this alphabet by P ′(a′1) = P (a1) + P (a2) and P ′(a′i) = P (a′i) =

P (ai+1) for every 2 ≤ i ≤M − 1. It is easy to show that we have P ′(a′i) ≥
i−2∑
j=1

P (a′j)
′

for every 3 ≤ i ≤ M − 1. By the induction hypothesis, there exists a maximally
branched Huffman code for the new alphabet in which the codewords associated to
a′1 and a′2 are the longest two words. By deleting the codeword associated to a′1 and
replacing it with its two descendants, and associating the new codewords to a1 and
a2, we get a maximally branched Huffman code for the original alphabet {a1, . . . , aM}
in which the codewords associated to a1 and a2 are the longest two codewords.

(c) We will prove the statement by induction on M ≥ 3. The statement is trivial for
M = 3. Now suppose that it is true for alphabets of length up to M−1, and consider

an alphabet of length M satisfying P (ai) >
i−2∑
j=1

P (aj) for every 3 ≤ i ≤ M . It is

easy to see that a1 and a2 are the unique two symbols with smallest probability,
and so every Huffman code must begin by combining a1 and a2. Now consider the
alphabet {a′1, . . . , a′M−1} such that a′i = ai+1 for 2 ≤ i ≤ M − 1, and define the
probability distribution P ′ by P ′(a′1) = P (a1) + P (a2) and P ′(a′i) = P (a′i) = P (ai+1)

for every 2 ≤ i ≤ M − 1. It is easy to show that we have P ′(a′i) >
i−2∑
j=1

P (a′j)
′ for

every 3 ≤ i ≤ M − 1. Since every Huffman code for the new alphabet is maximally
branched, every Huffman code for the initial alphabet {a1, . . . , aM} is maximally
branched as well.
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(d) Let P (ai) = ϕi∑M
j=1 ϕ

j
= ϕi−1(ϕ−1)

ϕM−1 . It is easy to see that P (a1) ≤ . . . ≤ P (aM). We will

prove by induction on 3 ≤ i ≤ M that we have
i−2∑
j=1

P (aj) = P (ai). The statement

is trivial for i = 3 since ϕ2 = ϕ + 1. Now let 4 ≤ i ≤ M and suppose that we have
i−3∑
j=1

P (aj) = P (ai−1), then:

i−2∑
j=1

P (aj) = P (ai−2) +
i−3∑
j=1

P (aj) = P (ai−2) + P (ai−1) =
(ϕi−3 + ϕi−2)(ϕ− 1)

ϕM − 1

=
ϕi−3(1 + ϕ)(ϕ− 1)

ϕM − 1
=
ϕi−3(ϕ2)(ϕ− 1)

ϕM − 1
=
ϕi−1(ϕ− 1)

ϕM − 1
= P (ai).

By applying (b), we get the result.
Note that the Huffman code for this distribution has l1 = M − 1, where as log2

1
p1

=

M log2 φ−const ≈ (0.695)M−const. We see that l1 and log2
1
p1

can be very different.

Therefore, it is not true that li is close to log2
1
pi

for Huffman codes.

Problem 4.

(a) We prove the identity by induction on n ≥ 1. For n = 1, the identity is trivial. Let
n > 1 and suppose that the identity is true up to n− 1. We have:

I(Y n−1
1 ;Xn) = I(Y n−2

1 , Yn−1;Xn)
(∗)
= I(Y n−2

1 ;Xn) + I(Xn;Yn−1|Y n−2
1 )

(∗∗)
=
( n−2∑

i=1

I(Xn;Yi|Y i−1
1 )

)
+ I(Xn;Yn−1|Y n−2

1 ) =
n−1∑
i=1

I(Xn;Yi|Y i−1
1 ).

The identity (∗) is by the chain rule for mutual information, and the identity (**) is
by the induction hypothesis.

(b) For every 0 ≤ i ≤ n, define ai = I(Xn
i+1;Y

i
1 ), and for every 1 ≤ i ≤ n, define

bi = I(Xn
i+1;Y

i−1
1 ). It is easy to see that a0 = an = 0. We have:

n∑
i=1

I(Xn
i+1;Yi|Y i−1

1 )
(∗)
=

n∑
i=1

(
I(Xn

i+1;Y
i
1 )− I(Xn

i+1;Y
i−1
1 )

)
=
( n∑

i=1

ai

)
−
( n∑

i=1

bi

)
(∗∗)
=
( n−1∑

i=0

ai

)
−
( n∑

i=1

bi

)
=
( n∑

i=1

ai−1

)
−
( n∑

i=1

bi

)
=

n∑
i=1

(
ai−1 − bi

)
=

n∑
i=1

(
I(Xn

i ;Y i−1
1 )− I(Xn

i+1;Y
i−1
1 )

)
(∗∗∗)
=

n∑
i=1

I(Y i−1
1 ;Xi|Xn

i+1).

The identities (∗) and (∗∗∗) are by the chain rule for mutual information. The identity

(∗∗) follows from the fact that a0 = an = 0, which implies that
n∑

i=1

ai =
n−1∑
i=0

ai.
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