ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 9

Solutions to homework 4

Information Theory and Coding
October 22, 2013

Problem 1.

(a) Consider the sequence $a_{i}=2^{i}-1, i=0,1,2, \ldots$ This is a strictly increasing sequence with $a_{0}=0, a_{1}=1, a_{2}=3, a_{3}=7, \ldots$ consequently any $M>0$ will fall between two unique consecutive terms of this sequence, $a_{k} \leq M<a_{k+1}$, i.e., $M=a_{k}+r$, with $0 \leq r<a_{k+1}-a_{k}=2^{k}$. This concludes the existence part.
For the uniqueness part, suppose that there exists another pair of integers (k^{\prime}, r^{\prime}) satisfying $M=2^{k^{\prime}}-1+r^{\prime}$ and $0 \leq r^{\prime}<2^{k^{\prime}}$. This means that $2^{k^{\prime}}-1 \leq M<2^{k^{\prime}+1}-1$. Therefore, $k^{\prime}=k$, from which we can easily deduce that $r=r^{\prime}$.
(b) Consider a non-singular code that maximizes the Kraft sum $K=\sum_{i} 2^{-l_{i}}$. Let L be the length of the longest codeword in such a code. If the tree representing the code contains a node at a level $l<L$ which is not occupied by any codeword, then by deleting any codeword of length L and replacing it by the unoccupied node at level $l<L$ we obtain a new code with a higher Kraft sum which is a contradiction. Therefore, all the levels that are below the level L are completely occupied. This means that the number of codewords of length at most $L-1$ is exactly $2^{L}-1$ and the number of codewords of length L is $N_{L} \leq 2^{L}$. We conclude that $M=2^{L}-1+N_{L}$ and $1 \leq N_{L} \leq 2^{L}$. We have two cases:
(i) $N_{L}=2^{L}$, which means that $M=2^{L+1}-1$ so that $k=L+1=\log _{2}(M+1)=$ $\left\lceil\log _{2}(M+1)\right\rceil$ and $r=0$. In this case we have $K=\sum_{i} 2^{-l_{i}}=L+1=k=$ $k+r 2^{k-1}=\left\lceil\log _{2}(M+1)\right\rceil$.
(ii) $N_{L}<2^{L}$, which means that $k=L$ and $r=N_{L}$ (because of (a)). In this case, we have $K=\sum_{i} 2^{-l_{i}}=k+r 2^{k-1} \leq k+1=\left\lceil\log _{2}(M+1)\right\rceil$.

In both cases, we have $\sum_{i} 2^{-l_{i}}=k+r 2^{k-1} \leq\left\lceil\log _{2}(M+1)\right\rceil$. And since the nonsingular code was chosen to maximize the Kraft sum, we conclude that any nonsingular code satisfies $\sum_{i} 2^{-l_{i}} \leq k+r 2^{k-1} \leq\left\lceil\log _{2}(M+1)\right\rceil$.
(c) Define $K=\sum_{i} 2^{-l_{i}}$ and for each symbol a_{i} define $q\left(a_{i}\right)=\frac{2^{-l_{i}}}{K}$. It is clear that q is a probability distribution over the alphabet $\left\{a_{1}, \ldots, a_{M}\right\}$. Let p be the probability distribution of the random variable U. By the positivity of the kullback-leibler divergence, we have:

$$
D(p \| q)=\sum_{i=1}^{M} p\left(a_{i}\right) \log _{2} \frac{p\left(a_{i}\right)}{q\left(a_{i}\right)} \geq 0
$$

from which we conclude that

$$
\sum_{i=1}^{M} p\left(a_{i}\right) \log _{2} p\left(a_{i}\right)-\sum_{i=1}^{M} p\left(a_{i}\right) \log _{2} \frac{2^{-l_{i}}}{K} \geq 0
$$

By rewriting the last inequality we get $-H(U)+\bar{l}+\log _{2}(K) \geq 0$, and by applying the inequalities of part (b), we conclude:

$$
\bar{l} \geq H(U)-\log _{2}(K) \geq H(U)-\log _{2}\left(k+r 2^{-k}\right) \geq H(U)-\log _{2}\left\lceil\log _{2}(M+1)\right\rceil
$$

Problem 2.

(a) Let $l_{i}=\left\lceil\log _{2} \frac{2}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}\right\rceil$, and let us compute the Kraft sum associated to $\left(l_{i}\right)_{i}$:

$$
\sum_{i=1}^{M} 2^{-l_{i}} \leq \sum_{i=1}^{M} 2^{-\log _{2} \frac{2}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}}=\sum_{i=1}^{M} \frac{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}{2}=1
$$

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the codeword associated to a_{i} is l_{i}.
(b) Since the code constructed in (a) is prefix free, it must be the case that $\bar{l} \geq H(U)$. In order to prove the upper bound, let P^{*} be the true distribution (which is either P_{1} or P_{2}). It is easy to see that $P^{*}\left(a_{i}\right) \leq P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)$ for all $1 \leq i \leq M$. We have:

$$
\begin{aligned}
\bar{l} & =\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot l_{i}=\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left[\log _{2} \frac{2}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}\right] \\
& <\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(1+\log _{2} \frac{2}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}\right)=\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(2+\log _{2} \frac{1}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}\right) \\
& =2+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)} \stackrel{(*)}{\leq} 2+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{P^{*}\left(a_{i}\right)}=2+H(U),
\end{aligned}
$$

where the inequality $(*)$ uses the fact that $P^{*}\left(a_{i}\right) \leq P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)$ for all $1 \leq i \leq M$.
(c) Now let $l_{i}=\left\lceil\log _{2} \frac{k}{P_{1}\left(a_{i}\right)+\ldots+P_{k}\left(a_{i}\right)}\right\rceil$, and let us compute the Kraft sum associated to $\left(l_{i}\right)_{i}$:

$$
\sum_{i=1}^{M} 2^{-l_{i}} \leq \sum_{i=1}^{M} 2^{-\log _{2} \frac{k}{P_{1}\left(a_{i}\right)+\ldots+P_{k}\left(a_{i}\right)}}=\sum_{i=1}^{M} \frac{P_{1}\left(a_{i}\right)+\ldots+P_{k}\left(a_{i}\right)}{k}=1 .
$$

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the codeword associated to a_{i} is l_{i}. Since the code is prefix free, it must be the case that $\bar{l} \geq H(U)$. In order to prove the upper bound, let P^{*} be the true distribution (which is either P_{1} or \ldots or P_{k}). It is easy to see that $P^{*}\left(a_{i}\right) \leq P_{1}\left(a_{i}\right)+\ldots+P_{k}\left(a_{i}\right)$ for all $1 \leq i \leq M$. We have:

$$
\begin{aligned}
\bar{l} & =\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot l_{i}=\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left[\log _{2} \frac{k}{P_{1}\left(a_{i}\right)+\ldots+P_{k}\left(a_{i}\right)}\right] \\
& <\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(1+\log _{2} \frac{k}{P_{1}\left(a_{i}\right)+\ldots+P_{k}\left(a_{i}\right)}\right) \\
& =\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot\left(1+\log _{2} k+\log _{2} \frac{1}{P_{1}\left(a_{i}\right)+\ldots+P_{k}\left(a_{i}\right)}\right) \\
& =1+\log _{2} k+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{P_{1}\left(a_{i}\right)+\ldots+P_{k}\left(a_{i}\right)} \\
& \stackrel{(*)}{\leq} 1+\log _{2} k+\sum_{i=1}^{M} P^{*}\left(a_{i}\right) \cdot \log _{2} \frac{1}{P^{*}\left(a_{i}\right)}=1+\log _{2} k+H(U),
\end{aligned}
$$

where the inequality $(*)$ uses the fact that $P^{*}\left(a_{i}\right) \leq P_{1}\left(a_{i}\right)+\ldots+P_{k}\left(a_{i}\right)$ for all $1 \leq i \leq M$.

Problem 3.

(a) Consider a maximally branched Huffman code, and for each $1 \leq l \leq l_{\max }$, let N_{l} be the number of codewords of length l. Since the Huffman code is maximally branched, we have $N_{l} \geq 1$ for $1 \leq l<l_{\max }$, and clearly we have $N_{l} \geq 2$ for $l=l_{\max }$ since any Huffman code contains at least two longest codewords. The Kraft-sum of this code is equal to:

$$
\sum_{l=1}^{l_{\max }} N_{l} 2^{-l} \geq\left(\sum_{l=1}^{l_{\max }-1} 2^{-l}\right)+2.2^{-l_{\max }}=2^{-1} \frac{1-2^{-l_{\max }+1}}{2^{-1}}+2^{-l_{\max }+1}=1
$$

where the equality holds if and only if we have $N_{l}=1$ for $1 \leq l<l_{\max }$ and $N_{l_{\max }}=2$. Now since any Huffman code is a prefix-free code, the Kraft-sum must be at most 1. We conclude that the Kraft-sum is equal to 1, which implies that $N_{l}=1$ for $1 \leq l<l_{\max }$ and $N_{l_{\max }}=2$.
(b) We will prove by induction on $M \geq 3$ the following statement: If we have $P\left(a_{i}\right) \geq$ $\sum_{j=1}^{i-2} P\left(a_{j}\right)$ for every $3 \leq i \leq M$, there exists a maximally branched Huffman code in which the codewords associated to a_{1} and a_{2} are the longest two codewords. The statement is trivial for $M=3$. Now suppose that the statement is true up to alphabets of length $M-1$, and suppose that we have an alphabet of length $M>3$ such that $P\left(a_{i}\right) \geq \sum_{j=1}^{i-2} P\left(a_{j}\right)$ for every $3 \leq i \leq M$. Now consider the alphabet $\left\{a_{1}^{\prime}, \ldots, a_{M-1}^{\prime}\right\}$ such that $a_{i}^{\prime}=a_{i+1}$ for $2 \leq i \leq M-1$, and define the probability distribution P^{\prime} on this alphabet by $P^{\prime}\left(a_{1}^{\prime}\right)=P\left(a_{1}\right)+P\left(a_{2}\right)$ and $P^{\prime}\left(a_{i}^{\prime}\right)=P\left(a_{i}^{\prime}\right)=$ $P\left(a_{i+1}\right)$ for every $2 \leq i \leq M-1$. It is easy to show that we have $P^{\prime}\left(a_{i}^{\prime}\right) \geq \sum_{j=1}^{i-2} P\left(a_{j}^{\prime}\right)^{\prime}$ for every $3 \leq i \leq M-1$. By the induction hypothesis, there exists a maximally branched Huffman code for the new alphabet in which the codewords associated to a_{1}^{\prime} and a_{2}^{\prime} are the longest two words. By deleting the codeword associated to a_{1}^{\prime} and replacing it with its two descendants, and associating the new codewords to a_{1} and a_{2}, we get a maximally branched Huffman code for the original alphabet $\left\{a_{1}, \ldots, a_{M}\right\}$ in which the codewords associated to a_{1} and a_{2} are the longest two codewords.
(c) We will prove the statement by induction on $M \geq 3$. The statement is trivial for $M=3$. Now suppose that it is true for alphabets of length up to $M-1$, and consider an alphabet of length M satisfying $P\left(a_{i}\right)>\sum_{j=1}^{i-2} P\left(a_{j}\right)$ for every $3 \leq i \leq M$. It is easy to see that a_{1} and a_{2} are the unique two symbols with smallest probability, and so every Huffman code must begin by combining a_{1} and a_{2}. Now consider the alphabet $\left\{a_{1}^{\prime}, \ldots, a_{M-1}^{\prime}\right\}$ such that $a_{i}^{\prime}=a_{i+1}$ for $2 \leq i \leq M-1$, and define the probability distribution P^{\prime} by $P^{\prime}\left(a_{1}^{\prime}\right)=P\left(a_{1}\right)+P\left(a_{2}\right)$ and $P^{\prime}\left(a_{i}^{\prime}\right)=P\left(a_{i}^{\prime}\right)=P\left(a_{i+1}\right)$ for every $2 \leq i \leq M-1$. It is easy to show that we have $P^{\prime}\left(a_{i}^{\prime}\right)>\sum_{j=1}^{i-2} P\left(a_{j}^{\prime}\right)^{\prime}$ for every $3 \leq i \leq M-1$. Since every Huffman code for the new alphabet is maximally branched, every Huffman code for the initial alphabet $\left\{a_{1}, \ldots, a_{M}\right\}$ is maximally branched as well.
(d) Let $P\left(a_{i}\right)=\frac{\varphi^{i}}{\sum_{j=1}^{M} \varphi^{j}}=\frac{\varphi^{i-1}(\varphi-1)}{\varphi^{M}-1}$. It is easy to see that $P\left(a_{1}\right) \leq \ldots \leq P\left(a_{M}\right)$. We will prove by induction on $3 \leq i \leq M$ that we have $\sum_{j=1}^{i-2} P\left(a_{j}\right)=P\left(a_{i}\right)$. The statement is trivial for $i=3$ since $\varphi^{2}=\varphi+1$. Now let $4 \leq i \leq M$ and suppose that we have $\sum_{j=1}^{i-3} P\left(a_{j}\right)=P\left(a_{i-1}\right)$, then:

$$
\begin{aligned}
\sum_{j=1}^{i-2} P\left(a_{j}\right) & =P\left(a_{i-2}\right)+\sum_{j=1}^{i-3} P\left(a_{j}\right)=P\left(a_{i-2}\right)+P\left(a_{i-1}\right)=\frac{\left(\varphi^{i-3}+\varphi^{i-2}\right)(\varphi-1)}{\varphi^{M}-1} \\
& =\frac{\varphi^{i-3}(1+\varphi)(\varphi-1)}{\varphi^{M}-1}=\frac{\varphi^{i-3}\left(\varphi^{2}\right)(\varphi-1)}{\varphi^{M}-1}=\frac{\varphi^{i-1}(\varphi-1)}{\varphi^{M}-1}=P\left(a_{i}\right)
\end{aligned}
$$

By applying (b), we get the result.
Note that the Huffman code for this distribution has $l_{1}=M-1$, where as $\log _{2} \frac{1}{p_{1}}=$ $M \log _{2} \phi$ - const $\approx(0.695) M$ - const. We see that l_{1} and $\log _{2} \frac{1}{p_{1}}$ can be very different. Therefore, it is not true that l_{i} is close to $\log _{2} \frac{1}{p_{i}}$ for Huffman codes.

Problem 4.

(a) We prove the identity by induction on $n \geq 1$. For $n=1$, the identity is trivial. Let $n>1$ and suppose that the identity is true up to $n-1$. We have:

$$
\begin{aligned}
I\left(Y_{1}^{n-1} ; X_{n}\right) & =I\left(Y_{1}^{n-2}, Y_{n-1} ; X_{n}\right) \stackrel{(*)}{=} I\left(Y_{1}^{n-2} ; X_{n}\right)+I\left(X_{n} ; Y_{n-1} \mid Y_{1}^{n-2}\right) \\
& \stackrel{(* *)}{=}\left(\sum_{i=1}^{n-2} I\left(X_{n} ; Y_{i} \mid Y_{1}^{i-1}\right)\right)+I\left(X_{n} ; Y_{n-1} \mid Y_{1}^{n-2}\right)=\sum_{i=1}^{n-1} I\left(X_{n} ; Y_{i} \mid Y_{1}^{i-1}\right)
\end{aligned}
$$

The identity $(*)$ is by the chain rule for mutual information, and the identity $\left({ }^{* *}\right)$ is by the induction hypothesis.
(b) For every $0 \leq i \leq n$, define $a_{i}=I\left(X_{i+1}^{n} ; Y_{1}^{i}\right)$, and for every $1 \leq i \leq n$, define $b_{i}=I\left(X_{i+1}^{n} ; Y_{1}^{i-1}\right)$. It is easy to see that $a_{0}=a_{n}=0$. We have:

$$
\begin{aligned}
\sum_{i=1}^{n} I\left(X_{i+1}^{n} ; Y_{i} \mid Y_{1}^{i-1}\right) & \stackrel{(*)}{=} \sum_{i=1}^{n}\left(I\left(X_{i+1}^{n} ; Y_{1}^{i}\right)-I\left(X_{i+1}^{n} ; Y_{1}^{i-1}\right)\right)=\left(\sum_{i=1}^{n} a_{i}\right)-\left(\sum_{i=1}^{n} b_{i}\right) \\
& \stackrel{(* *)}{=}\left(\sum_{i=0}^{n-1} a_{i}\right)-\left(\sum_{i=1}^{n} b_{i}\right)=\left(\sum_{i=1}^{n} a_{i-1}\right)-\left(\sum_{i=1}^{n} b_{i}\right)=\sum_{i=1}^{n}\left(a_{i-1}-b_{i}\right) \\
& =\sum_{i=1}^{n}\left(I\left(X_{i}^{n} ; Y_{1}^{i-1}\right)-I\left(X_{i+1}^{n} ; Y_{1}^{i-1}\right)\right) \stackrel{(* * *)}{=} \sum_{i=1}^{n} I\left(Y_{1}^{i-1} ; X_{i} \mid X_{i+1}^{n}\right) .
\end{aligned}
$$

The identities $(*)$ and $(* * *)$ are by the chain rule for mutual information. The identity $(* *)$ follows from the fact that $a_{0}=a_{n}=0$, which implies that $\sum_{i=1}^{n} a_{i}=\sum_{i=0}^{n-1} a_{i}$.

