ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
 School of Computer and Communication Sciences

Handout 7

Information Theory and Coding
Solutions to homework 3
Oct. 08, 2013

Problem 1.

(a) $H(X)=\frac{2}{3} \log \frac{3}{2}+\frac{1}{3} \log 3=0.918$ bits $=H(Y)$.
(b) $H(X \mid Y)=\frac{1}{3} H(X \mid Y=0)+\frac{2}{3} H(X \mid Y=1)=0.667$ bits $=H(Y \mid X)$.
(c) $H(X, Y)=3 \times \frac{1}{3} \log 3=1.585$ bits.
(d) $H(Y)-H(Y \mid X)=0.251$ bits.
(d) $I(X ; Y)=H(Y)-H(Y \mid X)=0.251$ bits.
(f)

Problem 2.

$$
\begin{aligned}
H(X) & =-\sum_{k=1}^{M} P_{X}\left(a_{k}\right) \log P_{X}\left(a_{k}\right) \\
& =-\sum_{k=1}^{M-1}(1-\alpha) P_{Y}\left(a_{k}\right) \log \left[(1-\alpha) P_{Y}\left(a_{k}\right)\right]-\alpha \log \alpha \\
& =(1-\alpha) H(Y)-(1-\alpha) \log (1-\alpha)-\alpha \log \alpha
\end{aligned}
$$

Since Y is a random variable that takes $M-1$ values $H(Y) \leq \log (M-1)$ with equality if and only if Y takes each of its possible values with equal probability.

Problem 3.

(a) Using the chain rule for mutual information,

$$
I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X) \geq I(X ; Z)
$$

with equality iff $I(Y ; Z \mid X)=0$, that is, when Y and Z are conditionally independent given X.
(b) Using the chain rule for conditional entropy,

$$
H(X, Y \mid Z)=H(X \mid Z)+H(Y \mid X, Z) \geq H(X \mid Z)
$$

with equality iff $H(Y \mid X, Z)=0$, that is, when Y is a function of X and Z.
(c) Using first the chain rule for entropy and then the definition of conditional mutual information,

$$
\begin{aligned}
H(X, Y, Z)-H(X, Y) & =H(Z \mid X, Y)=H(Z \mid X)-I(Y ; Z \mid X) \\
& \leq H(Z \mid X)=H(X, Z)-H(X)
\end{aligned}
$$

with equality iff $I(Y ; Z \mid X)=0$, that is, when Y and Z are conditionally independent given X.
(d) Using the chain rule for mutual information,

$$
I(X ; Z \mid Y)+I(Z ; Y)=I(X, Y ; Z)=I(Z ; Y \mid X)+I(X ; Z)
$$

and therefore

$$
I(X ; Z \mid Y)=I(Z ; Y \mid X)-I(Z ; Y)+I(X ; Z)
$$

We see that this inequality is actually an equality in all cases.
Problem 4. Let X^{i} denote X_{1}, \ldots, X_{i}.
(a) By the chain rule for entropy,

$$
\begin{align*}
\frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n} & =\frac{\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right)}{n} \tag{1}\\
& =\frac{H\left(X_{n} \mid X^{n-1}\right)+\sum_{i=1}^{n-1} H\left(X_{i} \mid X^{i-1}\right)}{n} \tag{2}\\
& =\frac{H\left(X_{n} \mid X^{n-1}\right)+H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n} . \tag{3}
\end{align*}
$$

From stationarity it follows that for all $1 \leq i \leq n$,

$$
H\left(X_{n} \mid X^{n-1}\right) \leq H\left(X_{i} \mid X^{i-1}\right)
$$

which further implies, by summing both sides over $i=1, \ldots, n-1$ and dividing by $n-1$, that,

$$
\begin{align*}
H\left(X_{n} \mid X^{n-1}\right) & \leq \frac{\sum_{i=1}^{n-1} H\left(X_{i} \mid X^{i-1}\right)}{n-1} \tag{4}\\
& =\frac{H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n-1} \tag{5}
\end{align*}
$$

Combining (3) and (5) yields,

$$
\begin{align*}
\frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n} & \leq \frac{1}{n}\left[\frac{H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n-1}+H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)\right] \tag{6}\\
& =\frac{H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n-1} \tag{7}
\end{align*}
$$

(b) By stationarity we have for all $1 \leq i \leq n$,

$$
H\left(X_{n} \mid X^{n-1}\right) \leq H\left(X_{i} \mid X^{i-1}\right)
$$

which implies that,

$$
\begin{align*}
H\left(X_{n} \mid X^{n-1}\right) & =\frac{\sum_{i=1}^{n} H\left(X_{n} \mid X^{n-1}\right)}{n} \tag{8}\\
& \leq \frac{\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right)}{n} \tag{9}\\
& =\frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n} . \tag{10}
\end{align*}
$$

Problem 5. By the chain rule for entropy,

$$
\begin{align*}
H\left(X_{0} \mid X_{-1}, \ldots, X_{-n}\right) & =H\left(X_{0}, X_{-1}, \ldots, X_{-n}\right)-H\left(X_{-1}, \ldots, X_{-n}\right) \tag{11}\\
& =H\left(X_{0}, X_{1}, \ldots, X_{n}\right)-H\left(X_{1}, \ldots, X_{n}\right) \tag{12}\\
& =H\left(X_{0} \mid X_{1}, \ldots, X_{n}\right), \tag{13}
\end{align*}
$$

where (12) follows from stationarity.
Problem 6. For a Markov chain, given X_{0} and X_{n} are independent given X_{n-1}. Thus

$$
H\left(X_{0} \mid X_{n} X_{n-1}\right)=H\left(X_{0} \mid X_{n-1}\right)
$$

But, since conditioning reduces entropy,

$$
H\left(X_{0} \mid X_{n} X_{n-1}\right) \leq H\left(X_{0} \mid X_{n}\right)
$$

Putting the above together we see that $H\left(X_{0} \mid X_{n-1}\right) \leq H\left(X_{0} \mid X_{n}\right)$.
Problem 7.
X_{1}, X_{2}, \ldots are i.i.d. with distribution $p(x)$. Hence $\log p\left(X_{i}\right)$ are also i.i.d. and

$$
\begin{aligned}
\lim \left(p\left(X_{1}, \ldots, X_{n}\right)\right)^{\frac{1}{n}} & =\lim 2^{\log \left(p\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)^{\frac{1}{n}}} \\
& =2^{\lim \frac{1}{n} \sum \log p\left(X_{i}\right)} \\
& =2^{E(\log (p(X)))} \text { a.e. } \\
& =2^{-H(X)}
\end{aligned}
$$

by the strong law of large numbers (assuming of course that $H(X)$ exists). Note: The abbreviation a.e. stands for 'almost everywhere', which is synonymous with 'with probability 1 '.

For the second part of the problem we had intended to ask a question for which taking limit and taking the expectation do not commute (i.e., the order you take them matters). This, however, is not the case here: Let G_{n} be the set of $\left(x_{1}, \ldots, x_{n}\right)$ for which $\left|p\left(x_{1}, \ldots, x_{n}\right)^{1 / n}-2^{-H(X)}\right|<\epsilon$. We know from the first part that $\operatorname{Pr}\left(G_{n}\right) \rightarrow 1$ as n gets large. Since $0 \leq p\left(x_{1}, \ldots, x_{n}\right)^{1 / n} \leq 1$ for any x_{1}, \ldots, x_{n}, we see that

$$
\begin{aligned}
\left|E\left[p\left(X_{1}, \ldots, X_{n}\right)^{1 / n}\right]-2^{-H(X)}\right|= & \left|\sum_{x_{1}, \ldots, x_{n}} p\left(x_{1}, \ldots, x_{n}\right)\left[p\left(x_{1}, \ldots, x_{n}\right)^{1 / n}-2^{-H(X)}\right]\right| \\
\leq & \sum_{x_{1}, \ldots, x_{n}} p\left(x_{1}, \ldots, x_{n}\right)\left|p\left(x_{1}, \ldots, x_{n}\right)^{1 / n}-2^{-H(X)}\right| \\
= & \sum_{\left(x_{1}, \ldots, x_{n}\right) \in G_{n}} p\left(x_{1}, \ldots, x_{n}\right)\left|p\left(x_{1}, \ldots, x_{n}\right)^{1 / n}-2^{-H(X)}\right| \\
& +\sum_{\left(x_{1}, \ldots, x_{n}\right) \notin G_{n}} p\left(x_{1}, \ldots, x_{n}\right)\left|p\left(x_{1}, \ldots, x_{n}\right)^{1 / n}-2^{-H(X)}\right| \\
& \text { (a) } \sum_{\left(x_{1}, \ldots, x_{n}\right) \in G_{n}} p\left(x_{1}, \ldots, x_{n}\right) \epsilon+\sum_{\left(x_{1}, \ldots, x_{n}\right) \notin G_{n}} p\left(x_{1}, \ldots, x_{n}\right) \\
= & P\left(G_{n}\right) \epsilon+\left(1-P\left(G_{n}\right)\right) \\
\leq & \epsilon+\left(1-P\left(G_{n}\right)\right) .
\end{aligned}
$$

Where (a) follows from the definition of G_{n} and the fact that $\left|p\left(x_{1}, \ldots, x_{n}\right)^{1 / n}-2^{-H}\right| \leq 1$. Now, as n gets large $1-P\left(G_{n}\right)$ approaches zero, and we see that the difference between $E\left[p\left(X_{1}, \ldots, X_{n}\right)^{1 / n}\right]$ and $2^{-H(X)}$ gets smaller than any arbitrary $\epsilon>0$, and thus

$$
\lim _{n \rightarrow \infty} E\left[p\left(X_{1}, \ldots, X_{n}\right)^{1 / n}\right]=2^{-H(X)}
$$

