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Problem 1.

(a) H(X) = 2
3

log 3
2

+ 1
3

log 3 = 0.918 bits = H(Y ).

(b) H(X|Y ) = 1
3
H(X|Y = 0) + 2

3
H(X|Y = 1) = 0.667 bits = H(Y |X).

(c) H(X, Y ) = 3× 1
3

log 3 = 1.585 bits.

(d) H(Y )−H(Y |X) = 0.251 bits.

(d) I(X;Y ) = H(Y )−H(Y |X) = 0.251 bits.

(f)
H(X) H(Y )

H(X|Y ) H(Y |X)I(X;Y )

H(X,Y )

Problem 2.

H(X) = −
M∑
k=1

PX(ak) logPX(ak)

= −
M−1∑
k=1

(1− α)PY (ak) log[(1− α)PY (ak)]− α logα

= (1− α)H(Y )− (1− α) log(1− α)− α logα

Since Y is a random variable that takes M − 1 values H(Y ) ≤ log(M − 1) with equality if
and only if Y takes each of its possible values with equal probability.

Problem 3.

(a) Using the chain rule for mutual information,

I(X, Y ;Z) = I(X;Z) + I(Y ;Z | X) ≥ I(X;Z),

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(b) Using the chain rule for conditional entropy,

H(X, Y | Z) = H(X | Z) +H(Y | X,Z) ≥ H(X | Z),

with equality iff H(Y | X,Z) = 0, that is, when Y is a function of X and Z.



(c) Using first the chain rule for entropy and then the definition of conditional mutual
information,

H(X, Y, Z)−H(X, Y ) = H(Z | X, Y ) = H(Z | X)− I(Y ;Z | X)

≤ H(Z | X) = H(X,Z)−H(X) ,

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(d) Using the chain rule for mutual information,

I(X;Z | Y ) + I(Z;Y ) = I(X, Y ;Z) = I(Z;Y | X) + I(X;Z) ,

and therefore
I(X;Z | Y ) = I(Z;Y | X)− I(Z;Y ) + I(X;Z) .

We see that this inequality is actually an equality in all cases.

Problem 4. Let X i denote X1, . . . , Xi.

(a) By the chain rule for entropy,

H(X1, X2, . . . , Xn)

n
=

∑n
i=1H(Xi|X i−1)

n
(1)

=
H(Xn|Xn−1) +

∑n−1
i=1 H(Xi|X i−1)

n
(2)

=
H(Xn|Xn−1) +H(X1, X2, . . . , Xn−1)

n
. (3)

From stationarity it follows that for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xi|X i−1),

which further implies, by summing both sides over i = 1, . . . , n − 1 and dividing by
n− 1, that,

H(Xn|Xn−1) ≤
∑n−1

i=1 H(Xi|X i−1)

n− 1
(4)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (5)

Combining (3) and (5) yields,

H(X1, X2, . . . , Xn)

n
≤ 1

n

[
H(X1, X2, . . . , Xn−1)

n− 1
+H(X1, X2, . . . , Xn−1)

]
(6)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (7)

(b) By stationarity we have for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xi|X i−1),

which implies that,

H(Xn|Xn−1) =

∑n
i=1H(Xn|Xn−1)

n
(8)

≤
∑n

i=1H(Xi|X i−1)

n
(9)

=
H(X1, X2, . . . , Xn)

n
. (10)
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Problem 5. By the chain rule for entropy,

H(X0|X−1, . . . , X−n) = H(X0, X−1, . . . , X−n)−H(X−1, . . . , X−n) (11)

= H(X0, X1, . . . , Xn)−H(X1, . . . , Xn) (12)

= H(X0|X1, . . . , Xn), (13)

where (12) follows from stationarity.

Problem 6. For a Markov chain, given X0 and Xn are independent given Xn−1. Thus

H(X0|XnXn−1) = H(X0|Xn−1)

But, since conditioning reduces entropy,

H(X0|XnXn−1) ≤ H(X0|Xn).

Putting the above together we see that H(X0|Xn−1) ≤ H(X0|Xn).

Problem 7.
X1, X2, . . . are i.i.d. with distribution p(x). Hence log p(Xi) are also i.i.d. and

lim(p(X1, . . . , Xn))
1
n = lim 2log(p(X1,X2,...,Xn))

1
n

= 2lim 1
n

∑
log p(Xi)

= 2E(log(p(X))) a.e.

= 2−H(X)

by the strong law of large numbers (assuming of course that H(X) exists). Note: The ab-
breviation a.e. stands for ‘almost everywhere’, which is synonymous with ‘with probability
1’.

For the second part of the problem we had intended to ask a question for which taking
limit and taking the expectation do not commute (i.e., the order you take them mat-
ters). This, however, is not the case here: Let Gn be the set of (x1, . . . , xn) for which
|p(x1, . . . , xn)1/n − 2−H(X)| < ε. We know from the first part that Pr(Gn) → 1 as n gets
large. Since 0 ≤ p(x1, . . . , xn)1/n ≤ 1 for any x1, . . . , xn, we see that

|E[p(X1, . . . , Xn)1/n]− 2−H(X)| =
∣∣∣∣ ∑
x1,...,xn

p(x1, . . . , xn)
[
p(x1, . . . , xn)1/n − 2−H(X)

]∣∣∣∣
≤

∑
x1,...,xn

p(x1, . . . , xn)
∣∣p(x1, . . . , xn)1/n − 2−H(X)

∣∣
=

∑
(x1,...,xn)∈Gn

p(x1, . . . , xn)
∣∣p(x1, . . . , xn)1/n − 2−H(X)

∣∣
+

∑
(x1,...,xn)6∈Gn

p(x1, . . . , xn)
∣∣p(x1, . . . , xn)1/n − 2−H(X)

∣∣
(a)

≤
∑

(x1,...,xn)∈Gn

p(x1, . . . , xn)ε+
∑

(x1,...,xn)6∈Gn

p(x1, . . . , xn)

= P (Gn)ε+ (1− P (Gn))

≤ ε+ (1− P (Gn)).

Where (a) follows from the definition of Gn and the fact that |p(x1, . . . , xn)1/n− 2−H | ≤ 1.
Now, as n gets large 1 − P (Gn) approaches zero, and we see that the difference between
E[p(X1, . . . , Xn)1/n] and 2−H(X) gets smaller than any arbitrary ε > 0, and thus

lim
n→∞

E[p(X1, . . . , Xn)1/n] = 2−H(X).
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